NOTICE

AT THE TIME OF ISSUANCE, THIS INFORMATION MANUAL WAS AN EXACT DUPLICATE OF THE OFFICIAL PILOT'S OPERATING HANDBOOK AND FAA APPROVED AIRPLANE FLIGHT MANUAL AND IS TO BE USED FOR GENERAL PURPOSES ONLY.

IT WILL NOT BE KEPT CURRENT AND, THEREFORE, CANNOT BE USED AS A SUBSTITUTE FOR THE OFFICIAL PILOT'S OPERATING HANDBOOK AND FAA APPROVED AIRPLANE FLIGHT MANUAL INTENDED FOR OPERATION OF THE AIRPLANE.

THE PILOT'S OPERATING HANDBOOK MUST BE CARRIED IN THE AIRPLANE AND AVAILABLE TO THE PILOT AT ALL TIMES.

i

PERFORMANCE - SPECIFICATIONS CARGO VERSION

*SPEED (KTAS):
Maximum Cruise at 10,000 Feet
Maximum Cruise at 20,000 Feet
RANGE: With 2224 pounds usable fuel and fuel allowance for engine
start, taxi, takeoff, climb, descent and 45 minutes reserve.
Max Cruise at 10,000 Feet Range 862 NM
Max Cruise at 18,000 Feet
Max Range at 10,000 Feet Range - 963 NM
Max Range at 18,000 FeetRange - 1076 NM
RATE-OF-CLIMB AT SEA LEVEL
SERVICE CEILING 22,800 Feet
MAXIMUM OPERATING ALTITUDE
TAKEOFF PERFORMANCE:
Ground Roll
Total Distance Over 50 Foot Obstacle
LANDING PERFORMANCE:
Ground Roll
Total Distance Over 50 Foot Obstacle
STALL SPEED (KCAS):
Flaps Up, Idle Power
Flaps Full, Idle Power 61 Knots
MAXIMUM WEIGHT:
Ramp
Takeoff
Landing
STANDARD EMPTY WEIGHT 4680 Pounds
Maximum USEFUL LOAD 4105 Pounds

*Speeds are based on mid-cruise weight.

PERFORMANCE - SPECIFICATIONS

CARGO VERSION (Continued)

WING LOADING	31.3 Pounds/Square Foot
POWER LOADING 13	3.0 Pounds/Shaft Horsepower
FUEL CAPACITY	335.6 Gallons
OIL CAPACITY	14 Quarts
ENGINE: Pratt & Whitney Canada	PT6A-114A
Free Turbine Flat Rated at 675 Shaft	Horsepower
PROPELLER:	
McCauley 3-bladed, Constant Speed,	
Full Feathering, Reversible Propelle	r
Diameter	106 Inches

NOTE

The above performance figures are based on indicated weights, standard atmospheric conditions, level, hardsurfaced dry runways and no wind. They are calculated values derived from flight tests conducted by Cessna Aircraft Company under carefully documented conditions and will vary with individual airplanes and numerous factors affecting flight performance. Performance for other operational conditions can be derived by reference to operational data in other sections of this POH/AFM.

PERFORMANCE - SPECIFICATIONS PASSENGER VERSION

* SPEED (KTAS):

Maximum Cruise at 10,000 Feet
Max Cruise at 18,000 Feet
Max Range at 10,000 FeetRange - 1026 NM
Max Range at 18,000 Feet
RATE-OF-CLIMB AT SEA LEVEL
SERVICE SEALING
MAXIMUM OPERATING ALTITUDE
Ground Roll
Total Distance Over 50 Foot Obstacle
LANDING PERFORMANCE: Ground Roll
STALL SPEED (KCAS): Flaps Up, Idle Power
MAXIMUM WEIGHT: Ramp

*Speeds are based on mid-cruise weight.

PERFORMANCE - SPECIFICATIONS

PASSENGER VERSION (Continued)

WING LOADING	
POWER LOADING	13.0 Pounds/Shaft Horsepower
FUEL CAPACITY	335.6 Gallons
OIL CAPACITY	14 Quarts
ENGINE: Pratt & Whitney Canada	PT6A-114A
Eron Turbing Elat Dated at 675 Sha	ft Horeopowor

Free Turbine Flat Rated at 675 Shaft Horsepower

PROPELLER:

NOTE

The above performance figures are based on indicated weights, standard atmospheric conditions, level, hardsurfaced dry runways and no wind. They are calculated values derived from flight tests conducted by Cessna Aircraft Company under carefully documented conditions and will vary with individual airplanes and numerous factors affecting flight performance. Performance for other operational conditions can be derived by reference to operational data in other sections of this POH/AFM.

Member of GAMA

Cessna Aircraft Company

Model 208B G1000

This manual incorporates information issued in the Pilot's Operating Handbook and FAA approved Airplane Flight Manual at Revision 1, Dated 5 June 2008 (Part Number 208BPHBUS-01).

COPYRIGHT © 2008 CESSNA AIRCRAFT COMPANY WICHITA, KANSAS, USA

INTRODUCTION

CESSNA MODEL 208B G1000

TABLE OF CONTENTS

SE	CTION
GENERAL	1
LIMITATIONS	2
EMERGENCY PROCEDURES	3
NORMAL PROCEDURES	4
PERFORMANCE	5
WEIGHT AND BALANCE/EQUIPMENT LIST	6
AIRPLANE AND SYSTEM DESCRIPTION	7
HANDLING, SERVICE AND MAINTENANCE	8
SUPPLEMENTS	9

WARNINGS, CAUTIONS, AND NOTES

Throughout the text, warnings, cautions, and notes pertaining to airplane handling and operations are utilized. These adjuncts to the text are used to highlight or emphasize important points.

WARNING

Operating procedures, techniques, etc., which can result in personal injury or loss of life if not carefully followed.

CAUTION

Operating procedures, techniques, etc., which can result in damage to equipment if not carefully followed.

NOTE

An operating procedure, technique, etc., which is considered essential to emphasize.

INTRODUCTION

CESSNA MODEL 208B G1000

TABLE OF CONTENTS

SE	CTION
GENERAL	1
LIMITATIONS	2
EMERGENCY PROCEDURES	3
NORMAL PROCEDURES	4
PERFORMANCE	5
WEIGHT AND BALANCE/EQUIPMENT LIST	6
AIRPLANE AND SYSTEM DESCRIPTION	7
HANDLING, SERVICE AND MAINTENANCE	8
SUPPLEMENTS	9

GENERAL

TABLE OF CONTENTS

	Page
Three View	1-3
Introduction	1-5
Descriptive Data	1-6
Engine	1-6
Propeller	1-6
Fuel	1-7
Oil	1-8
Maximum Certificated Weights	1-9
Cabin and Entry Door Dimensions	
Baggage/Cargo Compartment	
and Cargo Door Entry Dimensions	1-9
Specific Loadings	1-9
Symbols, Abbreviations and Terminology	1-10
General Airspeed Terminology and Symbols.	1-10
Engine Power Terminology	1-11
Airplane Performance and Flight Planning Terminology	1-13
Weight and Balance Terminology	1-13
Autopilot/Flight Director and TFS Terminology	1-15
Warning, Cautions, and Notes	1-16
Metric/Imperial/U.S. Conversion Charts	1-16
Weight Conversions	1-17
Length Conversions	1-19
Distance Conversions	1-23
Volume Conversions	1-24
Temperature Conversions	1-27
Pressure Conversions	1-28

CESSNA MODEL 208B G1000

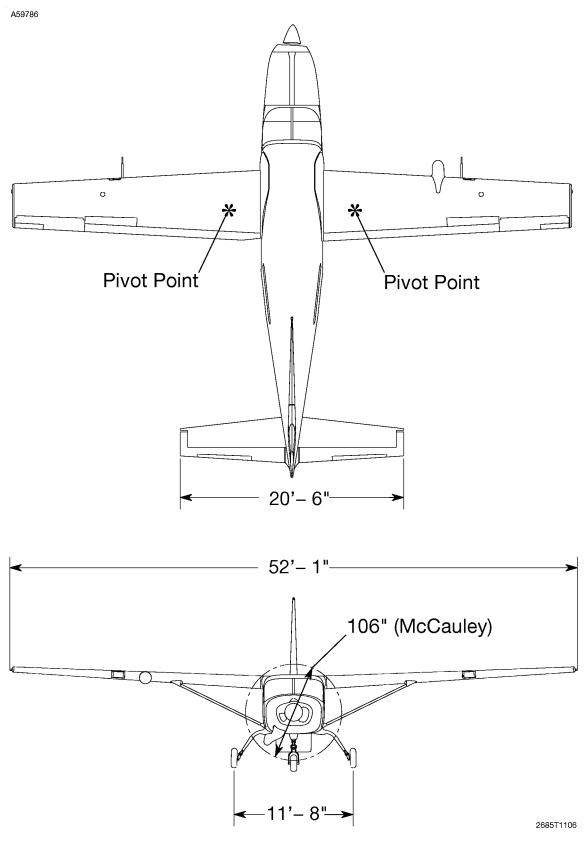
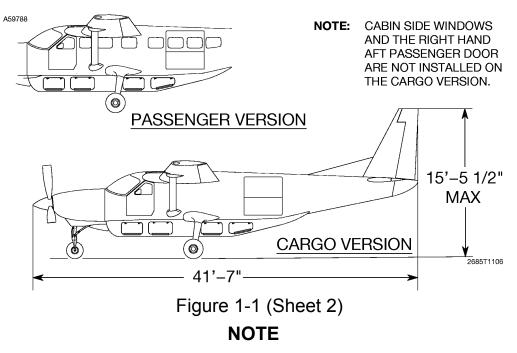



Figure 1-1 (Sheet 1 of 2)

- 1. Dimensions shown are based on standard empty weight and proper inflation of nose and main gear tires.
- 2. Wing span dimension includes strobe lights.
- 3. Maximum height shown with nose gear depressed as far as possible.
- 4. Wheel base length is 13'-3 1/2".
- 5. Wing area is 279.4 square feet.
- 6. Minimum turning radius (*pivot point to outboard wing tip strobe light) is 33' -8".
- Propeller ground clearance with standard tires and nose gear fork:
- a. Nose tire inflated and nose gear barrel extended 3 5/8": 11 1/4".
- b. Nose tire deflated and nose strut fully compressed: 2 1/2".
- 8. Propeller ground clearance with standard tires and extended nose gear fork:
 - a. Nose tire inflated and nose gear barrel extended 3 5/8": 14 3/4".
 - b. Nose tire deflated and nose strut fully compressed: 5 7/8".

CESSNA MODEL 208B G1000

INTRODUCTION

This POH/AFM contains 9 sections, and includes the material required to be furnished to the pilot by Federal Aviation Regulations and additional information provided by Cessna Aircraft Company. This handbook constitutes the FAA Approved Airplane Flight Manual.

WARNING

- This POH/AFM is not intended to be a guide for basic flight instruction or a training manual and should not be used as one. It is not a substitute for adequate and competent flight instruction, pilot skill, and pilot knowledge of current Airworthiness Directives, applicable federal aviation regulations and/or advisory circulars.
- Assuring the airworthiness of the airplane is the responsibility of the airplane owner or operator. Determining if the airplane is safe for flight is the responsibility of the pilot in command. The pilot is also responsible for adhering to the operating limitations set forth by instrument markings, placards, and this POH/AFM.

Generally, information in this POH/AFM is applicable to both the cargo version and the passenger version of the Model 208B. Some equipment differences exist between these versions. Specific versions are identified through use of the terms "Cargo Version" and "Passenger Version". When one of these terms appears in text or on an illustration, the information applies only to that group of airplanes. If no term appears, the information applies to all airplanes.

Section 1 provides basic data and information of general interest. It also contains definitions or explanations of symbols, abbreviations, and terminology commonly used.

SECTION 1 GENERAL

DESCRIPTIVE DATA

ENGINE

Number of Engines	
Engine Manufacturer	. Pratt & Whitney Canada, Inc.
Engine Model Number	PT6A-114A
Engine Type:	

Free turbine, two-shaft engine utilizing a compressor section having three axial stages and one centrifugal stage, an annular reverse-flow combustion chamber, a one-stage compressor turbine, a one-stage power turbine, and a single exhaust. The power turbine drives the propeller through a two-stage planetary gearbox at the front of the engine.

Horsepower Flat rated at 675 shaft horsepower.

PROPELLER

Propeller Manufacturer	. McCauley Accessory Division
Propeller Model Number	3GFR34C703/106GA-0
Number of Blades	
Propeller Diameter	Maximum 106 Inches
•	Minimum 104 Inches

Propeller Type:

Constant-speed, full-feathering, reversible, hydraulically-actuated aluminum-bladed propeller, with a feathered blade angle of 88°, a low pitch blade angle of 15.6°, and a maximum reverse blade angle of -14° (30-inch station).

CESSNA MODEL 208B G1000

FUEL

Approved Fuel Grade (Specification):

JET A (ASTM-D1655)

JET A-1 (ASTM-D1655)

JET B (ASTM-D1655)

JP-1 (MIL-L-5616)

JP-4 (MIL-T-5624)

JP-5 (MIL-T-5624)

JP-8 (MIL-T-83133A)

Alternate/Emergency Fuels:

Aviation Fuel (All grades of military and commercial aviation gasoline).

CAUTION

Aviation gasoline is restricted to emergency use and shall not be used for more than 150 hours in one overhaul period; a mixture of one part aviation gasoline and three parts of Jet A, Jet A-1, JP-5 or JP-8 may be used for emergency purposes for a maximum of 450 hours per overhaul period.

Approved Fuel Additives:

One of the following additives is required for anti-icing protection: Ethylene Glycol Monomethyl Ether

Diethylene Glycol Monomethyl Ether

CAUTION

JP-4 and JP-5 fuel per MIL-T-5624 and JP-8 fuel per MIL-T-83133A contain the correct premixed quantity of an approved type of anti-icing fuel additive and no additional anti-ice compounds should be added.

If additional anti-static protection is desired, the following additive is approved for use:

Dupont Stadis 450

If additional biocidal protection is desired, the following additives are permitted for use in certain conditions:

Sohio Biobor JF

Kathon FP 1.5

(Continued Next Page)

1-7

SECTION 1 GENERAL

FUEL (Continued)

NOTE

Refer to Section 8 for allowable concentrations of the above additives and additional information.

Fuel Capacity:

Total Capacity	. 335.6 U.S. Gallons
Total Capacity Each Tank	. 167.8 U.S. Gallons
Total Usable	. 332.0 U.S. Gallons

OIL

Oil Grade (Specification):

Oil conforming to Pratt & Whitney Engine Service Bulletin No. 1001, and all revisions or supplements thereto, must be used. Refer to Section 8 for a listing of approved oils.

Total Oil Capacity: 14 U.S. Quarts
(including filter, cooler, and hoses)
Drain and Refill Quantity
(approximately)

Oil Quantity Operating Range:

Fill to within 1 1/2 quarts of MAX HOT or MAX COLD (as appropriate) on dipstick. Quart marking indicate U.S. quarts low if oil is hot. For example, a dipstick reading of 3 indicates the system is within 2 quarts of MAX if the oil is cold and within 3 quarts of MAX if the oil is hot.

WARNING

Make sure oil dipstick cap is securely latched down. Operating the engine with less than the recommended oil level and with the dipstick cap unlatched will result in excessive oil loss and eventual engine stoppage.

CESSNA MODEL 208B G1000

OIL (Continued)

NOTE

To obtain an accurate oil level reading, it is recommended the oil level be checked within 10 minutes after engine shutdown while the oil is hot (MAX HOT marking) or prior to the first flight of the day while the oil is cold (MAX COLD marking). If more than 10 minutes has elapsed since engine shutdown and engine oil is still warm, perform an engine dry motoring run before checking oil level.

MAXIMUM CERTIFICATED WEIGHTS

Ramp	ds
Takeoff	ds
Landing	ds

NOTE

Refer to Section 6 of this POH/AFM for recommended loading arrangements.

CABIN AND ENTRY DOOR DIMENSIONS

Detailed dimensions of the cabin interior and entry door openings are illustrated in Section 6.

BAGGAGE/CARGO COMPARTMENT AND CARGO DOOR ENTRY DIMENSIONS

Detailed dimensions of the baggage/cargo area and cargo door openings are illustrated in Section 6.

SPECIFIC LOADINGS

Wing Loading	
Power Loading	. 13.0 Pounds/Shaft Horsepower

GENERAL AIRSPEED TERMINOLOGY AND SYMBOLS

- KCAS **Knots Calibrated Airspeed** is indicated airspeed corrected for position and instrument error and expressed in knots. Knots calibrated airspeed is equal to KTAS in standard atmosphere at sea level.
- KIAS **Knots Indicated Airspeed** is the speed shown on the airspeed indicator and expressed in knots.
- KTAS **Knots True Airspeed** is the airspeed expressed in knots relative to undisturbed air which is KCAS corrected for altitude and temperature.
- V_A **Maneuvering Speed** is the maximum speed at which full or abrupt control movements may be used without overstressing the airframe.
- V_{FE} **Maximum Flap Extended Speed** is the highest speed permissible with wing flaps in a prescribed extended position.
- V_{MO} **Maximum Operating Speed** is the speed that may not be deliberately exceeded at any time.
- V_S Stalling Speed or the minimum steady flight speed is the minimum speed at which the airplane is controllable.
- V_{SO} Stalling Speed or the minimum steady flight speed is the minimum speed at which the airplane is controllable in the landing configuration at the most forward center of gravity.
- V_X Best Angle-of-Climb Speed is the speed which results in the greatest gain of altitude in a given horizontal distance.
- V_Y Best Rate-of-Climb Speed is the speed which results in the greatest gain in altitude in a given time.

(Continued)

- OAT **Outside Air Temperature** is the free air static temperature. It may be expressed in either degrees Celsius (°C) or degrees Fahrenheit (°F).
- Pressure Altitude is the altitude read from an altimeter when the altimeter's barometric scale has been set to 29.92 inches of mercury (inHg) (1013.2 mb).
- ISA **International Standard Atmosphere** is an atmosphere in which:
 - 1. The air is a perfect dry gas;
 - 2. The temperature at sea level is 15°C;
 - 3. The pressure at sea level is 29.92 inches of mercury (inHg) (1013.2 mb);
 - 4. The temperature gradient from sea level to the altitude at which the temperature is -56.5°C is -1.98°C per 1000 feet.

ENGINE POWER TERMINOLOGY

- Beta Mode is the engine operational mode in which propeller blade pitch is controlled by the power lever. The beta mode may be used during ground operations only.
- Flameout **Flameout** is the unintentional loss of combustion chamber flame during operation.
- Flat Rated **Flat Rated** denotes constant horsepower over a specific altitude and/or temperature.

Gas Generator RPM indicates the percent of gas generator RPM based on a figure of 100% being 37,500 RPM (N_{d}) RPM.

GCU **GCU** is the generator control unit.

- Hot Start **Hot Start** is an engine start, or attempted start, which results in an ITT exceeding 1090°C.
- ITT **ITT** signifies interstage turbine temperature.

Maximum Climb Power is the maximum power approved for normal climb. Use of this power setting is limited to climb operations. This power corresponds to that developed at the maximum torque limit, ITT of 765°C or N_g limit, whichever is less. This power corresponds to that shown in the Maximum Engine Torque for Climb figure of Section 5.

(Continued)	
Maximum Rated Power	Maximum Rated Power is the maximum power rating not limited by time. Use of this power should be limited to those abnormal circumstances which require maximum aircraft performance (i.e., severe icing conditions or windshear downdrafts). This power corresponds to that developed at the maximum torque limit, ITT of 805°C or N_g limit, whichever is less.
Ng	N_g signifies gas generator RPM.
Propeller RPM	Propeller RPM indicates propeller speed in RPM.
Reverse Thrust	Reverse Thrust is the thrust produced when the propeller blades are rotated past flat pitch into the reverse range.
RPM	RPM is revolutions per minute.
SHP	SHP is shaft horsepower and is the power delivered at the propeller shaft.
	SHP = <u>Propeller RPM x Torque (foot-pounds)</u>
	5252
Takeoff Power	Takeoff Power is the maximum power rating and is limited to a maximum of 5 minutes under normal operation. Use of this power should be limited to normal takeoff operations. This power corresponds to that shown in the Maximum Engine Torque For Takeoff figure of Section 5.
Torque	Torque is a measurement of rotational force exerted by the engine on the propeller.

the engine on the propeller.WindmillWindmill is propeller rotation from airstream inputs.

(Continued)

AIRPLANE PERFORMANCE AND FLIGHT PLANNING TERMINOLOGY

Demonstrated Crosswind Velocity is the velocity of the crosswind component for which adequate control of the airplane during takeoff and landing was actually demonstrated during certification tests. The value shown is not considered to be limiting.

- g **g** is acceleration due to gravity.
- NM/1000 lbs **Nautical Miles Per Thousand Pounds of Fuel** is the distance which can be expected per 1000 Pounds of fuel consumed at a specific engine power setting and/ or flight configuration.
- PPH **PPH** signifies pounds per hour and is the amount of fuel used per hour.

Usable Fuel **Usable Fuel** is the fuel available for flight planning.

Unusable Fuel **Unusable Fuel** is the quantity of fuel that can not be safely used in flight.

WEIGHT AND BALANCE TERMINOLOGY

Arm **Arm** is the horizontal distance from the reference datum to the center of gravity (C.G.) of an item.

Basic **Basic Empty Weight** is the standard empty weight plus the weight of optional equipment. Weight

- Center of Gravity is the point at which an airplane would balance if suspended. Its distance from the reference datum is found by dividing the total moment by the total weight of the airplane.
- C.G. Arm **Center of Gravity Arm** is the arm obtained by adding the airplane's individual moments and dividing the sum by the total weight.
- C.G. Limits **Center of Gravity Limits** are the extreme center of gravity locations within which the airplane must be operated at a given weight.
- MAC **MAC (Mean Aerodynamic Chord)** of a wing is the chord of an imaginary airfoil which throughout the flight range will have the same force vectors as those of the wing.

(Continued)

- Maximum Landing Weight is the maximum Landing weight approved for the landing touchdown.
- Maximum **Maximum Ramp Weight** is the maximum weight Ramp Weight of fuel used for start, taxi and runup.
- Maximum **Maximum Takeoff Weight** is the maximum weight Takeoff approved for the start of the takeoff roll. Weight
- Moment Moment is the product of the weight of an item multiplied by its arm. (Moment divided by the constant 1000 is used in this POH/AFM to simplify balance calculations by reducing the number of digits.)
- Reference **Reference Datum** is an imaginary vertical plane 100 inches forward of the front face of the firewall.
- Residual **Residual Fuel** is the fuel remaining when the airplane is defueled in a specific attitude by the normal means and procedures specified for draining the tanks.
- Scale Drift Scale Drift may occur on some types of electronic scales because of the inability of the scale to return to a true zero reading after weighing. If present, this deviation from zero should be accounted for when calculating the net weight of the airplane.
- Standard **Standard Empty Weight** is the weight of a standard airplane, including unusable fuel, full operating fluids and full engine oil.
- Fuselage **Fuselage Station** is a location along the airplane fuselage given in terms of the distance from the reference datum.
- Tare **Tare** is the weight of chocks, blocks, stands, etc. used when weighing an airplane, and is included in the scale readings. Tare is deducted from the scale reading to obtain the actual (net) airplane weight.
- Useful Load **Useful Load** is the difference between ramp weight and the basic empty weight.

AUTOPILOT/FLIGHT DIRECTOR AND AFCS TERMINOLOGY

CAUTION

A thorough understanding of the difference between an autopilot, a flight director, and an AFCS is required before operating any of the components of the Garmin G1000/GFC 700 Flight Control System. Refer to Garmin Cockpit Resource Guide (CRG) for complete operating details.

- Autopilot **Autopilot** is a system which automatically controls attitude and/or flight path of the airplane as directed by the pilot through the system's computer.
- Flight **Flight Director** is a system which provides visual recommendations to the pilot to allow him to manually control the airplane attitude and/or flight path in response to his desires as selected through the system's computer.

Automated Flight Control System (AFCS) AFCS applies to the union of autopilot and flight director systems which allows the pilot to manage his flight by observing computed visual recommendations while the autopilot automatically follows these recommendations as selected by the pilot using the system's controls.

Course **C/D** is the compass reference used by the autopilot, along with course deviation, to provide laterial control when tracking a navigation signal.

WARNINGS, CAUTIONS, AND NOTES

WARNING

An operating procedure, technique, or maintenance practice which may result in personal injury or loss of life if not carefully obeyed.

CAUTION

An operating procedure, technique, or maintenance practice which may result in damage to equipment if not carefully obeyed.

NOTE

An operating procedure, technique, or maintenance condition which is considered essential to emphasize.

METRIC/IMPERIAL/U.S. CONVERSION CHARTS

The following charts have been provided to help international operators convert U.S. measurement supplied with the POH/AFM into metric and imperial measurements.

The standard followed for measurement units shown is the National Institute of Standards Technology (NIST), Publication 811, "Guide for the Use of the International System of Units (SI)."

Please refer to the following pages for these charts.

WEIGHT CONVERSIONS

(Kilogrames x 2.2046 = Pounds) (Pounds x 0.4536 = Kilograms)

Kilograms into Pounds Kilogrammes en Livres

				-						
kg	0	1	2	3	4	5	6	7	8	9
	lb									
0		2.20	4.41	6.61	8.82	11.02	13.23	15.43	17.64	19.84
10	22.05	24.25	26.46	28.66	30.86	33.07	35.27	37.48	39.68	41.89
20	44.09	46.30	48.50	50.71	52.91	55.12	57.32	59.52	61.73	63.93
30	66.14	68.34	70.55	72.75	74.96	77.16	79.37	81.57	83.77	85.98
40	88.18	90.39	92.59	94.80	97.00	99.21	101.41	103.62	105.82	108.03
50	110.23	112.43	114.64	116.84	119.05	121.25	123.46	125.66	127.87	130.07
60	132.28	134.48	136.69	138.89	141.09	143.30	145.50	147.71	149.91	152.12
70	154.32	156.53	158.73	160.94	163.14	165.35	167.55	169.75	171.96	174.16
80	176.37	178.57	180.78	182.98	185.19	187.39	189.60	191.80	194.00	196.21
90	198.41	200.62	202.82	205.03	207.23	209.44	211.64	213.85	216.05	218.26
100	220.46	222.66	224.87	227.07	229.28	231.48	233.69	235.89	238.10	240.30

Pounds into Kilograms Livres en Kilogrammes

20100 011 100 011 100										
lb	0	1	2	3	4	5	6	7	8	9
	kg									
0		0.45	0.91	1.36	1.81	2.27	2.72	3.18	3.63	4.08
10	4.54	4.99	5.44	5.90	6.35	6.80	7.26	7.71	8.16	8.62
20	9.07	9.53	9.98	10.43	10.89	11.34	11.79	12.25	12.70	13.15
30	13.61	14.06	14.52	14.97	15.42	15.88	16.33	16.78	17.24	17.69
40	18.14	18.60	19.05	19.50	19.96	20.41	20.87	21.32	21.77	22.23
50	22.68	23.13	23.59	24.04	24.49	24.95	25.40	25.86	26.31	26.76
60	27.22	27.67	28.12	28.58	29.03	29.48	29.94	30.39	30.84	31.30
70	31.75	32.21	32.66	33.11	33.57	34.02	34.47	34.93	35.38	35.83
80	36.29	36.74	37.20	37.65	38.10	38.56	39.01	39.46	39.92	40.37
90	40.82	41.28	41.73	42.18	42.64	43.09	43.55	44.00	44.45	44.91
100	45.36	45.81	46.27	46.72	47.17	47.63	48.08	48.54	48.99	49.44

Figure 1-2 (Sheet 1 of 2)

U.S.

SECTION 1 GENERAL

WEIGHT CONVERSIONS

B3081

Figure 1-2 (Sheet 2)

LENGTH CONVERSIONS

(Meters \times 3.2808 = Feet) (Feet \times 0.3048 = Meters)

Meters	into Feet
Metres	en Pieds

m	0	1	2	3	4	5	6	7	8	9
	ft									
0		3.28	6.56	9.84	13.12	16.40	19.68	22.97	26.25	29.53
10	32.81	36.09	39.37	42.65	45.93	49.21	52.49	55.77	59.05	62.34
20	65.62	68.90	72.18	75.46	78.74	82.02	85.30	88.58	91.86	95.14
30	98.42	101.70	104.99	108.27	111.55	114.83	118.11	121.39	124.67	127.95
40	131.23	134.51	137.79	141.07	144.36	147.64	150.92	154.20	157.48	160.76
50	164.04	167.32	170.60	173.88	177.16	180.44	183.72	187.01	190.29	193.57
60	196.85	200.13	203.41	206.69	209.97	213.25	216.53	219.81	223.09	226.38
70	229.66	232.94	236.22	239.50	242.78	246.06	249.34	252.62	255.90	259.18
80	262.46	265.74	269.03	272.31	275.59	278.87	282.15	285.43	288.71	291.99
90	295.27	298.55	301.83	305.11	308.40	311.68	314.96	318.24	321.52	324.80
100	328.08	331.36	334.64	337.92	341.20	344.48	347.76	351.05	354.33	357.61

Feet into Meters Pieds en Metres

ft	0	1	2	3	4	5	6	7	8	9
	m	m	m	m	m	m	m	m	m	m
0		0.30	0.61	0.91	1.22	1.52	1.83	2.13	2.44	2.74
10	3.05	3.35	3.66	3.96	4.27	4.57	4.88	5.18	5.49	5.79
20	6.10	6.40	6.71	7.01	7.32	7.62	7.92	8.23	8.53	8.84
30	9.14	9.45	9.75	10.06	10.36	10.67	10.97	11.28	11.58	11.89
40	12.19	12.50	12.80	13.11	13.41	13.72	14.02	14.33	14.63	14.94
50	15.24	15.54	15.85	16.15	16.46	16.76	17.07	17.37	17.68	17.98
60	18.29	18.59	18.90	19.20	19.51	19.81	20.12	20.42	20.73	21.03
70	21.34	21.64	21.95	22.25	22.56	22.86	23.16	23.47	23.77	24.08
80	24.38	24.69	24.99	25.30	25.60	25.91	26.21	26.52	26.82	27.13
90	27.43	27.74	28.04	28.35	28.65	28.96	29.26	29.57	29.87	30.18
100	30.48	30.78	31.09	31.39	31.70	32.00	32.31	32.61	32.92	33.22

Figure 1-3 (Sheet 1 of 4)

SECTION 1 GENERAL

LENGTH CONVERSIONS

B3082

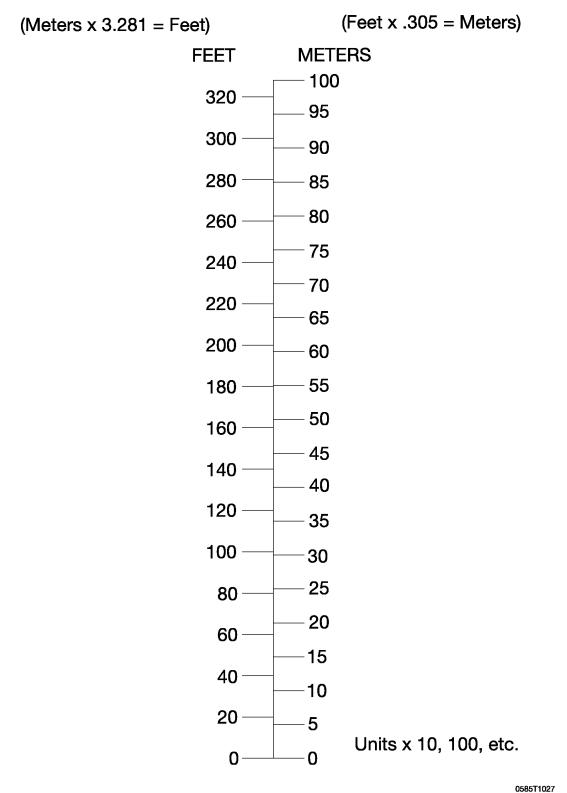


Figure 1-3 (Sheet 2)

LENGTH CONVERSIONS

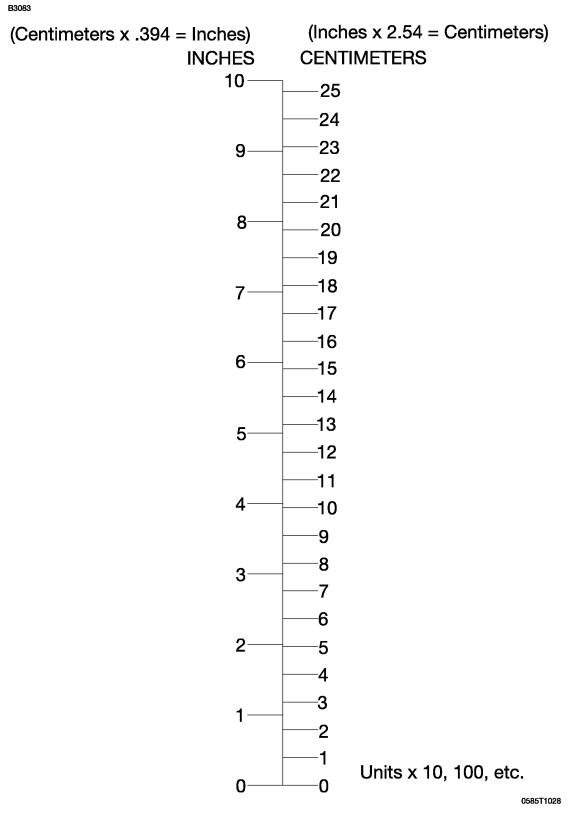
(Centimeters x 0.3937 = Inches)

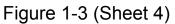
(Inches x 2.54 = Centimeters)

cm	0	1	2	3	4	5	6	7	8	9
	in									
0		0.39	0.79	1.18	1.57	1.97	2.36	2.76	3.15	3.54
10	3.94	4.33	4.72	5.12	5.51	5.91	6.30	6.69	7.09	7.48
20	7.87	8.27	8.66	9.06	9.45	9.84	10.24	10.63	11.02	11.42
30	11.81	12.20	12.60	12.99	13.39	13.78	14.17	14.57	14.96	15.35
40	15.75	16.14	16.54	16.93	17.32	17.72	18.11	18.50	18.90	19.29
50	19.69	20.08	20.47	20.87	21.26	21.65	22.05	22.44	22.83	23.23
60	23.62	24.02	24.41	24.80	25.20	25.59	25.98	26.38	26.77	27.17
70	27.56	27.95	28.35	28.74	29.13	29.53	29.92	30.31	30.71	31.10
80	31.50	31.89	32.28	32.68	33.07	33.46	33.86	34.25	34.65	35.04
90	35.43	35.83	36.22	36.61	37.01	37.40	37.80	38.19	38.58	38.98
100	39.37	39.76	40.16	40.55	40.94	41.34	41.73	42.13	42.52	42.91

Centimeters into Inches Centimetres en Pouces

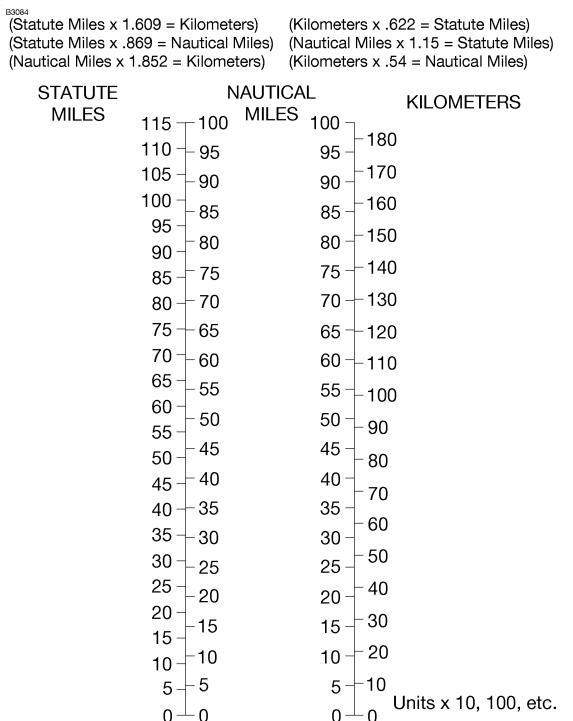
Inches into Centimeters Pouces en Centimetres


in	0	1	2	3	4	5	6	7	8	9
	cm									
0		2.54	5.08	7.62	10.16	12.70	15.24	17.78	20.32	22.86
10	25.40	27.94	30.48	33.02	35.56	38.10	40.64	43.18	45.72	48.26
20	50.80	53.34	55.88	58.42	60.96	63.50	66.04	68.58	71.12	73.66
30	76.20	78.74	81.28	83.82	86.36	88.90	91.44	93.98	96.52	99.06
40	101.60	104.14	106.68	109.22	111.76	114.30	116.84	119.38	121.92	124.46
50	127.00	129.54	132.08	134.62	137.16	139.70	142.24	144.78	147.32	149.86
60	152.40	154.94	157.48	160.02	162.56	165.10	167.64	170.18	172.72	175.26
70	177.80	180.34	182.88	185.42	187.96	190.50	193.04	195.58	198.12	200.66
80	203.20	205.74	208.28	210.82	213.36	215.90	218.44	220.98	223.52	226.06
90	228.60	231.14	233.68	236.22	238.76	241.30	243.84	246.38	248.92	251.46
100	254.00	256.54	259.08	261.62	264.16	266.70	269.24	271.78	274.32	276.86


Figure 1-3 (Sheet 3)

1-21

SECTION 1 GENERAL


LENGTH CONVERSIONS

CESSNA MODEL 208B G1000

DISTANCE CONVERSIONS

0585T1029

Figure 1-4

VOLUME CONVERSIONS

(Imperial Gallons x 4.546 = liters)

(Liters x 0.22 = Imperial Gallons)

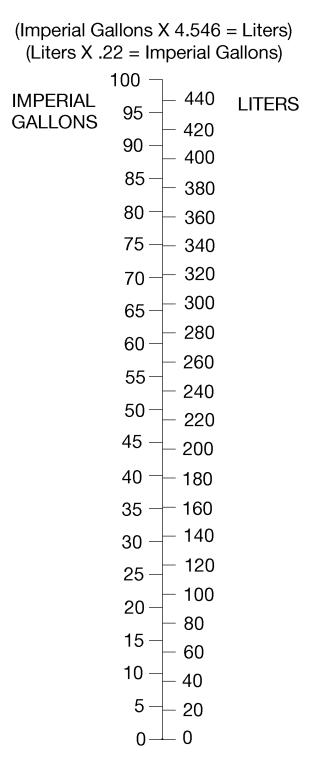
			Litr	es en	Gallon	is Impe	erial			
L	0	1	2	3	4	5	6	7	8	9
	IG	IG	G	G	IG	G	IG	IG	IG	G
0		0.22	0.44	0.66	0.88	1.10	1.32	1.54	1.76	1.98
10	2.20	2.42	2.64	2.86	3.08	3.30	3.52	3.74	3.96	4.18
20	4.40	4.62	4.84	5.06	5.28	5.50	5.72	5.94	6.16	6.38
30	6.60	6.82	7.04	7.26	7.48	7.70	7.92	8.14	8.36	8.58
40	8.80	9.02	9.24	9.46	9.68	9.90	10.12	10.34	10.56	10.78
50	11.00	11.22	11.44	11.66	11.88	12.10	12.32	12.54	12.76	12.98
60	13.20	13.42	13.64	13.86	14.08	14.30	14.52	14.74	14.96	15.18
70	15.40	15.62	15.84	16.06	16.28	16.50	16.72	16.94	17.16	17.38
80	17.60	17.82	18.04	18.26	18.48	18.70	18.92	19.14	19.36	19.58
90	19.80	20.02	20.24	20.46	20.68	20.90	21.12	21.34	21.56	21.78
100	22.00	22.22	22.44	22.66	22.88	23.10	23.32	23.54	23.76	23.98

Liters into Imperial Gallons

Imperial Gallons into Liters Gallons Imperial en Litres

	0	4	•	0		_		-	-	0
IG	0	1	2	3	4	5	6	7	8	9
	L	L	L	L	L	L	L	L	L	L
0		4.55	9.09	13.64	18.18	22.73	27.28	31.82	36.37	40.91
10	45.46	50.01	54.55	59.10	63.64	68.19	72.74	77.28	81.83	86.37
20	90.92	95.47	100.01	104.56	109.10	113.65	118.20	122.74	127.29	131.83
30	136.38	140.93	145.47	150.02	154.56	159.11	163.66	168.20	172.75	177.29
40	181.84	186.39	190.93	195.48	200.02	204.57	209.12	213.66	218.21	222.75
50	227.30	231.85	236.39	240.94	245.48	250.03	254.58	259.12	263.67	268.21
60	272.76	277.31	281.85	286.40	290.94	295.49	300.04	304.58	309.13	313.67
70	318.22	322.77	327.31	331.86	336.40	340.95	345.50	350.04	354.59	359.13
80	363.68	368.23	372.77	377.32	381.86	386.41	390.96	395.50	400.05	404.59
90	409.14	413.69	418.23	422.78	427.32	431.87	436.42	440.96	445.51	450.05
100	454.60	459.15	463.69	468.24	472.78	477.33	481.88	486.42	490.97	495.51

Figure 1-5 (Sheet 1 of 3)


1-24

CESSNA MODEL 208B G1000

SECTION 1 GENERAL

VOLUME CONVERSIONS

B3085

Units x 10, 100, etc.

Figure 1-5 (Sheet 2)

208BPHBUS-00

U.S.

0585T1032

VOLUME CONVERSIONS

B3086

(Imperial Gallons x 1.2 = U.S. Gallons) (U.S. Gallons x .833 = Imperial Gallons) (U.S. Gallons x 3.785 = Liters) (Liters x .264 = U.S. Gallons)

IMPERIAL	U.S.	
GALLONS	GALLONS	LITERS
100 — 120		100 – 380
95 — 115		95 — 360
90 - 110		90 — 340
85 - 105 85 - 100		85 - 320
80 - 95		80 – <u>300</u>
75 90		75 - 280
70 – 85		70 - 260
65 - 80		6E
eo 75		60 J
/0		- 220
55 — 65		55 _ 200
50 — 60		50 - 180
45 55		45 - 160
40 - 50		40 –
35 - 45 35 - 40		35 - 140
30 35		30 - 120
25 30		25 - 100
20 – 25		20 - 80
15 - 20		15 60
⊢ 15		10 40
^{10 —} — 10		
5 – 5		5 — 20
0 <u> </u>		0 [⊥] 0 _{0585T1033}

Figure 1-5 (Sheet 3)

CESSNA MODEL 208B G1000

SECTION 1 GENERAL

TEMPERATURE CONVERSIONS

B3087

(°F − 32) x 5/9 =°C	°C x 9/5 + 32 = °F
°F °C	°F°C
-40 -40	320 - 160
-30-	340
_20 <u>+</u> _30	360 <u></u> 180
	380
0 - 20	400 1 200
10 重	120 重
10 ± -10 20 ±	440 ± 220
30重0	460 1 240
40 重 0	480 圭
50 10	500 - 12 260
60 事	520 - 圭
₇₀	₅₄₀ 圭 280
80 1	560 1
90 ^{1 30}	₅₈₀
100 重 40	600 <u>事</u> 320
110 圭 🍟	620 圭 520
120 <u></u> 50	640 <u>-</u> 340
130 圭	660 圭
140 🛨 60	680 🛨 360
150 畫	700-重。。。
160 重 70	720 圭 380
	740 重 400
1001	/60 圭
¹⁹⁰ – 90	⁷⁸⁰ 420
200	800
²¹⁰ ± 100	820 <u>440</u>
220 - 230 - 110	840 - <u>-</u> 860 - <u>-</u> 460
240 <u>+</u>	880
250 120	900 480
260	920 <u>–</u>
270 ± 130	940 ± 500
280 主	gen I
200 ± 140 290 ±	980 <u>520</u>
300 <u>事</u> 150	1000 <u> </u>
310	1020
320	1040

0585T1034

SECTION 1 GENERAL

CESSNA MODEL 208B G1000

PRESSURE CONVERSION

HECTOPASCALS TO INCHES OF MERCURY

B3995

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	³⁰⁴ ¹ ¹ ² ² ³ ⁴	
	28.3	
	重 [_]	
	952 <u>28.1</u> 948 <u>28.0</u>	Ir
cals s)	948 — 28.0	n (ir

Hectopascals (Millibars) Inches (in.hg.)

CESSNA MODEL 208B G1000

SECTION 2 LIMITATIONS

LIMITATIONS TABLE OF CONTENTS

	Page
Introduction	2-3
Airspeed Limitations	2-4
Airspeed Indicator Markings	
Power Plant Limitations	
Power Plant Instrument Markings	
Miscellaneous Instrument Markings	
Preflight	
Visual and Tactile Check	
Weight Limits	
Center of Gravity Limits	
Maneuver Limits	
Flight Load Factor Limits	
Flight Crew Limits	
Kinds of Operation Limits.	
Fuel Limitations	
Maximum Operating Altitude Limit.	
Outside Air Temperature Limits	
Maximum Passenger Seating Limits	
Other Limitations	
Flap Limitations	
Type II, Type III or Type IV Anti-ice Fluid Takeoff Limitations	
Flap Limitations	
Airspeed Limitations	
Flight in Known Icing Visual Cues	. 2-27

(Continued Next Page)

2-1

Table of Contents (Continued)

G1000 Limitations	2-28
Operational Approvals	2-29
Garmin GFC-700 AFCS	2-30
L3 Communications WX 500 Stormscope	2-31
Traffic Advisory System (TAS)	2-31
Terrain Awareness and Warning System (TAWS-B)	2-31
Optional Equipment User's Guide	2-31
Placards	2-32

CESSNA MODEL 208B G1000

INTRODUCTION

Section 2 includes the operating limitations, instrument markings, and basic placards necessary for the safe operation of the airplane, its engine, standard/non-standard systems and standard/non-standard equipment.

WARNING

The limitations included in this section and in Section 9 have been approved by the Federal Aviation Administration. Observance of these operating limitations is required by federal aviation regulations.

NOTE

- Operation in countries other than the United States may require observance of other limitations, procedures or performance data.
- Refer to Section 9 of this POH/AFM for amended operating limitations, procedures, performance data and other necessary information for supplemental systems.
- The airspeeds listed in Airspeed Limitations chart, and Airspeed Indicator Markings chart are based on Airspeed Calibration data shown in Section 5 with the normal static source. If the alternate static source is being used, ample margins should be observed to allow for the airspeed calibration variations between the normal and alternate static sources as shown in Section 5.

Your Cessna is certificated under FAA Type Certificate No. A37CE as Cessna Model No. 208B.

2 - 3

SECTION 2 LIMITATIONS

AIRSPEED LIMITATIONS

Airspeed limitations and their operational significance are shown in Airspeed Limitations chart.

	SPEED	KCAS	KIAS	REMARKS
V _{MO}	Maximum Operating Speed	175	175	Do not exceed this speed in any operation.
V _A	Maneuvering Speed: 8750 Pounds 7500 Pounds 6250 Pounds 5000 Pounds	148 137 125 112	148 137 125 112	Do not make full or abrupt control movements above this speed.
V _{FE}	Maximum Flap Extended Speed: UP - 10° Flaps 10° - 20° Flaps 20° - FULL	175 150 125	175 150 125	Do not exceed these speeds with the given flap settings.
	Maximum Open Window Speed	175	175	Do not exceed this speed with window open.

AIRSPEED INDICATOR MARKINGS

Airspeed indicator markings and their color code significance are shown in Airspeed Indicator Markings chart.

MARKING	KIAS VALUE OR RANGE	SIGNIFICANCE
Red Band	20 - 50	Low Airspeed Warning
White Band	50 - 125	Full Flap Operating Range. Lower limit is maximum weight V _{so} in landing configuration. Upper limit is maximum speed permissible with flaps fully extended.
Green Band	63 - 175	Normal Operating Range. Lower limit is maximum weight V _s at most forward C.G. with flaps retracted. Upper limit is maximum operating speed.
Red Line	175	Maximum speed for all operations.

POWER PLANT LIMITATIONS

Engine Manufacturer Pratt & Whitney Canada Inc. Engine Model Number PT6A-114A Engine Operating Limits ... Refer to Engine Operating Limits chart Fuel Grade and Approved Fuel Additives ... Refer to Fuel Limitations

Oil Grade (Specification):

Oil conforming to Pratt & Whitney Engine Service Bulletin No. 1001, and all revisions or supplements thereto, must be used. Refer to Section 8 for a listing of approved oils. When adding oil, service the engine with the type and brand which is currently being used in the engine.

CAUTION

Do not mix types or brands of oil.

PROPELLER:

Propeller Manufacturer McCauley Propeller Systems
Propeller Model Number
Propeller Diameter
Maximum
Minimum
Propeller Blade Angle at 30-inch Station:
Feathered
Low Pitch
Maximum Reverse14°

POWER PLANT LIMITATIONS (Continued)

Propeller System Operating Limits:

An overspeed governor check shall be performed before the first flight of the day, after engine control system maintenance, or if adjustment has been made.

Propeller RPM must be set at 1900 during all instrument approaches.

Engine Control Operating Limits:

Flight operation with the POWER Lever retarded below the IDLE position is prohibited. Such positioning may lead to loss of airplane control or may result in an engine overspeed condition and consequent loss of engine power.

Operation of the EMERGENCY POWER Lever is prohibited with the POWER Lever out of the IDLE position.

Engine Starting Cycle Limits:

Using the airplane battery, the starting cycle shall be limited to the following intervals and sequence:

30 seconds ON - 60 seconds OFF,

30 seconds ON - 60 seconds OFF,

30 seconds ON - 30 minutes OFF.

Repeat the above cycle as required.

Using external power, the starting cycle shall be limited to the following intervals and sequence:

20 seconds ON - 120 seconds OFF,

20 seconds ON - 120 seconds OFF,

20 seconds ON - 60 minutes OFF.

Repeat the above cycle as required.

(Continued Next Page)

2-7

POWER PLANT LIMITATIONS (Continued)

ENGINE OPERATING LIMITS

POWER SETTING	TORQUE Foot- Pound	MAXIMUM ITT ℃	GAS GEN RPM %N _g (2)	PROP RPM	OIL PSIG (3)	OIL TEMP ℃ (7)	SHP
Takeoff	(1), (4)	805 (9)	101.6	1900	85 to 105	10 to 99	675
Maximum Climb	(4), (12)	765	101.6	1900	85 to 105	0 to 99	675
Maximum Cruise	(4), (13)	740	101.6	1900	85 to 105	0 to 99	675
ldle		685 (14)	52 Minimum		40 Minimum	-40 to 99	
Maximum Reverse (5)	1865	805	101.6	1825	85 to 105	0 to 99	675
Transient	2400 (6)	850 (10)	102.6 (10)	2090		0 to 104 (11)	
Starting		1090 (10)				-40 Minimum	
Maximum Rated (8)	1865	805	101.6	1900	85 to 105	10 to 99	675

NOTE

- 1. Per the Maximum Engine Torque for Takeoff figure in Section 5.
- For every 10 °C (18 °F) below -30 °C (-22 °F) ambient temperature, reduce maximum allowable N_g by 2.2%.
- 3. Normal oil pressure is 85 to 105 PSI at gas generator speeds above 72% with oil temperature between 60° and 70°C (140° and 158°F). Oil pressures below 85 PSI are undesirable and should be tolerated only for the completion of the flight, preferably at a reduced power setting. Oil pressures below normal should be reported as an engine discrepancy and should be corrected before the next flight. Oil pressures below 40 PSI are unsafe and require that either the engine be shut down or a landing be made as soon as possible using the minimum power required to sustain flight.
- 4. Propeller RPM must be set so as not to exceed 675 SHP with torque above 1865 foot-pounds. Full 675 SHP rating is available only at RPM setting of 1800 or greater.

Figure 2-3 (Sheet 1 of 2)

POWER PLANT LIMITATIONS (Continued) ENGINE OPERATING LIMITS

- 5. Reverse power operation is limited to one minute.
- 6. These values are time-limited to 20 seconds.
- 7. For increased oil service life, an oil temperature between 74° and 80°C (165° and 176°F) is recommended. A minimum oil temperature of 55°C (130°F) is recommended for fuel heater operation at takeoff power.
- 8. Use of this rating is intended for abnormal situations (e.g., maintain altitude or climb out of severe icing or windshear conditions).
- 9. When the ITT exceeds 765 °C, this temperature power setting is time-limited to five minutes.
- 10. The values are time-limited to two seconds.
- 11. These values are time-limited up to 10 minutes.
- 12. Per the Maximum Engine Torque for Climb figure in Section 5.
- 13. Per the Maximum Cruise Torque figure in Section 5.
- 14. Increase N_g to keep within limit.

Figure 2-3 (Sheet 2)

POWER PLANT INSTRUMENT MARKINGS

Power plant instrument markings and their color significance are shown in Power Plant Instrument Markings chart.

INSTRUMENT	RED LINE	GREEN BAND	YELLOW BAND	RED LINE
INSTROMENT	MINIMUM LIMIT	NORMAL OPERATING	CAUTION RANGE	MAXIMUM LIMIT
Torque Indicator Foot-Pound (1)(4)		0 to 1865		1865 to 1970
Interstage Turbine Temperature (ITT) Indicator °C (2)		100 to 740	765 to 805	805
Gas Generator Indicator % RPM (3)		52% to 101.6%		101.6%
Propeller RPM Indicator		1600 to 1900		1900
Oil Pressure Indicator PSI	40	85 to 105	40 to 85	105
Oil Temperature Indicator ℃	-40	10 to 99	-40 to +10 99 to 104	104

NOTE

- 1. Incorporates red line that moves to compensate for propeller RPM variation.
- 2. Incorporates enlarged ITT scaling with engine OFF and during start (STRT) sequence to aid temperature monitoring.
- 3. Incorporates red line that moves to compensate for OAT. 100% $N_{\rm g}$ is 37,500 RPM.
- 4. Propeller RPM must be set so as not to exceed 675 SHP with torque above 1865 foot-pounds. Full 675 SHP rating is available only at RPM settings of 1800 or greater. Figure 2-4

MISCELLANEOUS INSTRUMENT MARKINGS

Power plant instrument markings and their color significance are shown in Miscellaneous Instrument Markings chart.

INSTRUMENT	RED LINE	GREEN BAND	YELLOW BAND	RED LINE
INSTITUMENT	MINIMUM LIMIT	NORMAL OPERATING	CAUTION RANGE	MAXIMUM LIMIT
Fuel Quantity Indicators (1)	E (2.8 Gallons Unusable Each Tank)			
Oxygen Pressure Gage PSI		1550 to 1850	0 to 300	2000
Gen Amps Amps			< -10 > 200	
Alt Amps Amps			< -10 > 75	
Bat Amps Amps			< -5	
Bus Volts Volts	24.5			32
Prop Anti-Ice Amps		20 to 24		G2088675-00

NOTE

1. Total unusable fuel when operating with both tanks ON is 3.6 U.S. gallons.

Figure 2-5

SECTION 2 LIMITATIONS

PREFLIGHT

Takeoff is prohibited with any frost, ice, snow, or slush adhering to the wings, horizontal stabilizer, vertical stabilizer, control surfaces, propeller blades, and/or engine inlets.

WARNING

Even small amounts of frost, ice, snow or slush on the wing may adversely change lift and drag. Failure to remove these contaminants will degrade airplane performance and will prevent a safe takeoff and climb.

VISUAL AND TACTILE CHECK

If the outside air temperature (OAT) is below $10^{\circ}C$ ($50^{\circ}F$) a tactile check of the wing leading edge and upper surface per Section 4 of the POH/AFM is required in addition to a visual inspection. During ground icing conditions, takeoff must be accomplished within five minutes of completing the tactile inspection unless the airplane is operated per 14 CFR 135.227(b)(3).

Ground icing conditions are defined as:

- 1. The OAT is 2°C (36°F) or below and visible moisture is present (i.e. rain, drizzle, sleet, snow, fog, water is present on the wing, etc.), or,
- 2. The OAT is 5°C (41°F) or below and conditions are conducive to active frost formation (e.g. clear night with a dew point temperature/OAT difference of 3°C (5°F) or less).

Takeoff is prohibited if frost, ice or snow may reasonably be expected to adhere to the airplane between the tactile check and takeoff (e.g. snow near freezing temperature with no deicing/anti-ice fluid application).

Refer to the preflight procedures in Section 4 of this POH/AFM.

WEIGHT LIMITS

Maximum Ramp Weight	8785 Pounds
Maximum Takeoff Weight	8750 Pounds
Maximum Landing Weight	8500 Pounds

NOTE

Refer to Section 6 of this POH/AFM for recommended loading arrangements in the Standard 208B (Passenger and Cargo Version).

CENTER OF GRAVITY LIMITS

Center of Gravity Range:

- Forward: 179.60 inches (3.06% MAC) aft of datum at 5500 pounds or less, with straight line variation to 193.37 inches (23.80% MAC) aft of datum at 8000 pounds, and straight line variation to 199.15 inches (32.50% MAC) aft of datum at 8750 pounds.
- Aft: 204.35 inches (40.33% MAC) aft of datum at all weights up to 8750 pounds.

Reference Datum: 100 inches forward of front face of firewall.

Mean Aerodynamic Chord (MAC):

The leading edge of the MAC is 177.57 inches aft of the datum. The MAC length is 66.40 inches.

MANEUVER LIMITS

This airplane is certificated in the normal category. The normal category is applicable to aircraft intended for non-aerobatic operations. These include any maneuvers incidental to normal flying, stalls (except whip stalls), lazy eights, chandelles, and turns in which the angle of bank is not more than 60°.

Aerobatic maneuvers, including spins, are not approved.

FLIGHT LOAD FACTOR LIMITS

Flight Load Factors: (Maximum Takeoff Weight - 8750 pounds)

*Flaps UP+3.8g, -1.52g
*Flaps Down (All Settings)+2.4g
*The design load factors are 150% of the above, and in all
cases, the structure meets or exceeds design loads.

FLIGHT CREW LIMITS

One pilot required in left seat.

KINDS OF OPERATIONS EQUIPMENT LIST

The Cessna 208B with Garmin G1000 is equipped for day or night VFR or IFR operations and flight into known icing conditions when appropriate equipment is installed. The operating limitation placard reflects the limits applicable at the time of Airworthiness Certificate issuance.

The following equipment lists identify the systems and equipment upon which type certification for each kind of operation was predicated. These systems and equipment items must be installed and operable unless:

1. The airplane is approved to be operated in accordance with a current Minimum Equipment List (MEL) issued by the FAA.

Or;

2. An alternate procedure is provided in the basic FAA Approved Airplane Flight Manual for the inoperative state of the listed equipment and all limitations are complied with.

NOTE

The following systems and equipment list does not included all equipment required by the 14 CFR Parts 91 and 135 Operating Requirements. It also does not include components obviously required for the airplane to be airworthy such as wings, primary flight controls, empennage, engine, etc.

CESSNA MODEL 208B G1000

SECTION 2 LIMITATIONS

OF OPERATIONS EQUIPMENT LIST KINDS

(Continued)

	(KII OPE	ND (RA		1	
SYSTEM AND/ OR COMPONENT	V F R D A Y	VFR N-GHT	I F D A Y	I F R N I G H T	I C I N G	COMMENTS
PLACARDS AND MARKIN 208B POH/AFM	1	1	1	1	1	Accessible to pilot in flight.
Garmin G1000 [™] Cockpit Reference Guide	1	1	1	1	1	Accessible to pilot in flight.
 AIR CONDITIONING 1. Deck Skin Fans (2) 2. PFD Fans (2) 3. MFD Fan 4. Cockpit Temperature Control System 5. Cabin Temperature Control System 6. Ventillations Fans (2) 7. Air Conditioning System 8. Cabin Heat Firewall Shutoff System 	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 1	0 0 0 0 0 0	0 0 1 1 0 0	
COMMUNICATIONS 1. Communication	0*	0*	1*	1*	1*	* Or as required by operating
Systems (VHF) (2) 2. Audio Control Panel	1	1	1	1	1	regulation.
3. Static Wicks (22) 4. Hand Microphone	17* 0*	17* 0*	17* 1	17*	17*	* One may be missing from any control surface. Static wick on stinger can not be missing.

			ND (
	(OPE	RA	ΓΙΟΝ	1							
	V F R	V F R	l F R	I F R	I C							
SYSTEM AND/ OR	D A Y	N – G H	D A Y	N – G H	I N G							
COMPONENT		Т		Т								
ELECTRICAL POWER												
1. DC Generator	1	1	1	1	1							
2. DC Generator VOLTS Display**	1	1	1	1	1							
 DC Generator AMPS Display** 	1	1	1	1	1							
4. Main Battery	1	1	1	1	1							
5. Battery AMPS Display**	1	1	1	1	1							
6. Battery Temperature Monitoring System	1*	1*	1*	1*	1*	* Required only with NiCad battery option.						
7. Standby Electrical System	0	0	0*	0*	1	* Or as required by operating regulation.						
EQUIPMENT AND FURN	SHI	NGS	S									
1. Passenger Seat Belts	0*	0*	0*	0*	0*	* One per occupied seat.						
2. Crewmember Seat Belts (2)	1*	1*	1*	1*	1*	* One per occupied seat. Left side required.						
3. Aircraft Emergency Locator Transmitter (ELT)	0*	0*	0*	0*	0*	* Or as required by operating regulation.						
FIRE PROTECTION						r						
1. Engine Fire Detection System (1)	1	1	1	1	1							
** Displayed as part of the	Enç	gine	Indi	catio	on S	ystem (EIS).						

RINDS OF OF ERATIONS						
	OPERATION					
	v	V F		F		
	F	R	F	R	I	
	R		R		Ċ	
		Ν		Ν	Ĭ	
	D	Ι	D	Ι	Ν	
	Α	G	А	G	G	
SYSTEM AND/ OR	Y	Н	Y	Н		
COMPONENT		Т		Т		COMMENTS
FIRE PROTECTION (Con	tinue	ed)				
2. Portable Fire	2	2	2	2	2	
Extinguisher (2)			-	-	-	
FLIGHT CONTROLS						
1. Primary Flap System	1*	1*	1*	1*	1*	* May be inoperative provided standby flap system is operative
2. Standby Flap System	1*	1*	1*	1*	1*	* May be inoperative provided primary flap system is operative
3. Flap Position Indicator	1	1	1	1	1	
4. Trim Systems - Elevator, Aileron, Rudder (3)	3	3	3	3	3	
5. Trim Position Indicator Systems - Elevator, Aileron, Rudder (3)	3	З	З	З	З	
ICE AND RAIN PROTECT	ION					
 Wing and Wing Strut Leading Edge Porous Panels (2) 	0	0	0	0	2	
2. Horizontal Stabilizers Leading Edge Porous Panels (2)	0	0	0	0	2	

	(nii SPE	ND (RA1		J	
						1
	V	F	Ι	F		
	F	R	F	R	I	
	R		R		С	
	_	Ν	_	Ν		
	D		D		N	
	A Y	G H	A Y	G H	G	
SYSTEM AND/ OR COMPONENT	T	T	T	Т		COMMENTS
ICE AND RAIN PROTECT		•	ontin		L)	
3. Vertical Stabilizer					,	
Leading Edge Porous Panel	0	0	0	0	1	
4. Propeller Fluid Slinger Assembly	0	0	0	0	1	
5. TKS Equipment Pack	0	0	0	0	1	
6. Windshield Spray Bar	0	0	0	0	1	
7. Heated Lift Detector (Stall Warning) Vane	0	0	0	0	1	
8. Alternate Static Source	0	0	1	1	1	
9. Pitot/ Static Tube Heat System (Left Side)	0	0	1	1	1	
10. Wing Ice Inspection Light	0	0	0	0	1	
11. Engine Inertial Separator	0*	0*	0*	0*	0*	* May be inoperative provided separator doors are secured in the BYPASS position.
12. Heater and Defroster	0	0	0	0	1	
13. McCauley TKS Propeller	0	0	0	0	1	

KINDS OF OPERATIONS						
		KII OPE	ND (RAT		J	
		V		I	-	
	V	F	Ι	F		
	F	R	F	R		
	R	NI	R	NI	C	
	D	N	D	N	I N	
	A	G	A	G	G	
SYSTEM AND/ OR	Y	Ч Н Т	Y	ы Н Т	5	COMMENTS
COMPONENT		•	ontin	•)	COMMENTS
14. Cargo Pod			0	0	, 1	
INDICATING/ RECORDIN	-	-	-			1
1. Stall Warning System	1	1	1	1	1	
2. Aural Warning Systems	*	*	*	*	*	* All audio warnings must be operational.
3. Crew Alerting System Messages	*	*	*	*	*	* All CAS messages must be operational.
LANDING GEAR						•
1. Parking Brake	0	0	0	0	0	
LIGHTS						
1. Anti-Collision Light System (Wing Strobes) (2)	0	2	0	2	0	
2. Flashing Beacon Light	1	1	1	1	1	
 Position Lights System 	0	1	0	1	0	
 Taxi/ Recognition Lights (2) 	0	0	0	0	0	
5. Landing Lights (2)	0	1*	0	1*	0	* May be inoperative provide one taxi light is operative
6. Fasten Seat Belt Sign	1*	1*	1*	1*	1*	* May be inoperative only if no passengers carried in cabin.
7. Cabin Lights	0	2*	0	2*	0	* One light each by cabin door and emergency exit.

(Continued Next Page)

			ND (
		OPE	RA		J	
	V F R	V F R	l F R	I F R	I C	
SYSTEM AND/ OR	D A Y	N – G H	D A Y	N – G H	I N G	
		Т		Т		COMMENTS
LIGHTS (Continued) 8. Cockpit and Instrument Lighting System	0	1	0	1	0	
9. Windshield Ice Detection Light	0	0	0	1*	1*	* Required for night ice detection.
10. Wing Ice Detection Light	0	0	0	1*	1	* Required for night ice detection.
NAVIGATION						
1. Primary Flight Display (PFD) (2)	1*	1*	1*	1*	1*	*Refer to Note 1
2. Multi-Function Display (MFD)	0*	0*	0*	0*	0*	* May be inoperative provided one PFD is operative. Refer to Note 2
3. Air Data Computers (ADC) (2)	1	1	1	1	1	
4. Attitude/ Heading Reference System (AHRS) (2)	1	1	1	1	1	
5. Standby Airspeed Indicator	0	0	1	1	1	
6. Standby Attitude Indicator	0	0	1	1	1	
7. Standby Altimeter	0	0	1	1	1	
8. Magnetic Compass	1	1	1	1	1	

			ND (RAT		J	
	v	F		F		
	F	R	F	R	I	
	R		R		Ċ	
		Ν		Ν	Ι	
	D	Ι	D	Τ	Ν	
	А	G	А	G	G	
SYSTEM AND/ OR	Y	Н	Y	Н		
		Т		Т		COMMENTS
NAVIGATION (Continued))					
9. ATC Transponder (2)	0*	0*	1*	1*	1*	* Or as required by operating regulation.
10. VHF Nav Receivers (2)	0*	0*	1*	1*	1*	* Or as required by operating regulation.
11. GPS Receivers (2)	0*	0*	1*	1*	1*	* Or as required by operating regulation.
12. Automatic Direction Finder (ADF) (Opt)	0*	0*	0*	0*	0*	* Or as required by operating regulation.
13. Distance Measuring Equipment (DME) (Opt)	0*	0*	0*	0*	0*	* Or as required by operating regulation.
14. Marker Beacon Receivers	0*	0*	0*	0*	0*	* Or as required by operating regulation.
15. TAWS (Opt)	0*	0*	0*	0*	0*	* Or as required by operating regulation.
16. Weather Radar (Opt)	0	0	0	0	0	
17. XM Datalink Weather (Opt)	0	0	0	0	0	
18. TAS (Opt)	0	0	0	0	0	
OXYGEN						
1. Oxygen System Including Pressure Gage	0*	0*	0*	0*	0*	* Or as required by operating regulation.

		KI	ND (
	(OPE	RA	ΓΙΟΝ	J					
	V F R	> F R Z	I F R	I F R Z	- 0 -					
SYSTEM AND/ OR COMPONENT	D A Y	N – G H F	D A Y	z – G H F	л G	COMMENTS				
OXYGEN (Continued)										
2. Passenger Oxygen System	*	*	*	*	*	* If any passenger seat is occupied, the number of installed masks must equal the number of passenger seats plus one.				
3. Crew Oxygen Masks (2)	0*	0*	0*	0*	0*	* Or as required by operating regulation.				
VACUUM										
1. Engine-Driven Vacuum Pump	0	0	1	1	1					
ENGINE FUEL AND CON	TRC)L								
 Fuel Boost Pump Fuel Quantity Indications** (2) 	1 2	1 2	1 2	1 2	1 2					
3. Fuel Flow Indication**	1	1	1	1	1					
4. Fuel Firewall Shutoff System	1	1	1	1	1					
5. Engine-Driven Fuel Pump	1	1	1	1	1					
6. Dual Igniter System	1	1	1	1	1					
** Displayed as part of the	* Displayed as part of the Engine Indication Sys									

	(KII OPE			J	
	V	F	Ι	F		
	F	R	F	R	Ι	
	R		R		С	
		Ν		Ν	I	
	D		D	I	Ν	
	Α	G	Α	G	G	
SYSTEM AND/ OR	Y	H	Y	H		
) o int	T	<u>م</u>)	COMMENTS
ENGINE FUEL AND CON	IRC		Joni	inue	ia)	
 Engine Indications (TQ, ITT, Ng, 	1	1	1	1	1	
Oil Press, Oil Temp)**	•		•	•		
8. Standby Torque	0	0	1	1	1	
Indicator	-	Ŭ	I	I	I	
MISCELLANEOUS EQUIF	PME	NT				
1. Passenger Briefing	*	*	*	*	*	* One for each occupied
Cards						passenger seat.
** Displayed as part of the	Enç	gine	Indi	catio	on S	ystem (EIS).

NOTE

- 1. PFD backlighting is required for day VFR flight if MFD backlighting has failed. Display backup mode must be active so engine indicators are shown.
- 2. MFD backlighting is required for day VFR flight if PFD backlighting has failed. Display backup mode must be active so flight instruments are shown.

SECTION 2 LIMITATIONS

FUEL LIMITATIONS

Total Fuel	Both Tanks	335.6 U.S. gallons
TOLAT TUE	Each Tank	167.8 U.S. gallons
Usable Fuel	Both Tanks ON	332.0 U.S. gallons
USADIE I UEI	Single Tank ON	165.0 U.S. gallons
Unusable Fuel	Both Tanks ON	3.6 U.S. gallons
Unusable i uei	Single Tank ON	2.8 U.S. gallons

NOTE

To achieve full capacity, fill fuel tank to the top of the filler neck. Filling fuel tanks to the bottom of the fuel filler collar (level with flapper valve) allows space for thermal expansion and results in a decrease in fuel capacity of four gallons per side (eight gallons total).

With low fuel quantity (FUEL LOW CAS MSG(s) ON), continuous uncoordinated flight is prohibited. Unusable fuel quantity increases when more severe sideslip is maintained.

Due to possible fuel starvation, maximum full rudder sideslip duration time is three minutes.

Maximum fuel unbalance in flight is 200 pounds.

Fuel Grade (Specification) and Fuel Additives:

CAUTION

Aviation gasoline is restricted to emergency use and shall not be used for more than 150 hours in one overhaul period; a mixture of one part aviation gasoline and three parts of Jet A, Jet A-1, JP-1, or JP-5 may be used for emergency purposes for a maximum of 450 hours per overhaul period.

FUEL LIMITATIONS (Continued)

Fuel Grade Specification and Fuel Additives

FUEL GRADE	FUEL SPECIFICATION (1)	MINIMUM FUEL TEMPERATURE FOR TAKEOFF ℃ (2)(3)	SPECIFIC WEIGHT (POUNDS PER US GALLON AT 15 ℃)	COLOR
Jet A	ASTM-D1655	-35 ℃	6.7	Colorless
Jet A-1	ASTM-D1655	-40 ℃	6.7	Colorless
Jet B	ASTM-D1655	-45 ℃	6.5	Colorless
JP-1	MIL-L-5616	-35 ℃	6.7	Colorless
JP-4	MIL-T-5624	-54 ℃	6.5	Colorless
JP-5	MIL-T-5624	-40 ℃	6.8	Colorless
JP-8	MIL-T-83133	-40 ℃	6.7	Colorless
Av Gas (All Grades) (4)	MIL-G-5572 ASTM-D910	-54 °C	6.0	80/87 Red 100LL Blue 100/130 Green

NOTE

- 1. Fuel used must contain anti-icing fuel additive in compliance with MIL-I-27686 (EGME), or MIL-I-85470 (DIEGME).
- Minimum starting temperature is that given or the minimum allowable oil temperature (-40°C), whichever is warmer. Starts may be attempted with fuel at lower temperatures providing other specified engine limitations are not exceeded.
- 3. It is assumed that the fuel temperature is the same as the outside air temperature.
- 4. When using aviation gasoline, the maximum fuel and the outside air temperature for takeoff is +29 ℃ (85 °F) and the maximum operating altitude is 9000 feet. The boost pump must be ON for all flight operations.

Figure 2-7

Refer to Section 8 for additional approved additives and concentrations.

MAXIMUM OPERATING ALTITUDE LIMIT

Certificated Maximum Operating Altitudes:

Non-Icing Conditions	25,000 Feet
Icing Conditions (if so equipped)	20,000 Feet
Any conditions with any ice on the airplane	20,000 Feet

OUTSIDE AIR TEMPERATURE LIMITS

Ground Operations.....+53°C from Sea Level to 5000 Feet ISA +37°C above 5000 Feet

Flight Operations ISA +35°C from Sea Level to 25,000 Feet

Refer to ISA Conversion and Operating Temperature Limits chart in Section 5, for a graphical presentation of the operating air temperature limits.

NOTE

- With both deck skin fans inoperative, ground operations are limited to 46°C for 30 minutes.
- Ground operations up to 38°C are not time limited with both deck skin fans inoperative.

MAXIMUM PASSENGER SEATING LIMITS

In the Cargo Version, a maximum of one seat may be installed to the right of the pilot's seat for use by a second crew member or a passenger. In the Passenger Version, up to eleven seats may be installed. the right front seat may be occupied by either a second crew member or passenger. When the right front seat is occupied by a passenger, only eight seats in the aft cabin can be occupied. Refer to Section 6 for seat locations.

OTHER LIMITATIONS

FLAP LIMITATIONS

Approved Takeoff Range	UP to 20°
Approved Landing Range	UP to FULL
Approved Landing Range in Icing Conditions	UP to 20°

CESSNA MODEL 208B G1000

TYPE II, TYPE III OR TYPE IV ANTI-ICE FLUID TAKEOFF LIMITATIONS

FLAP LIMITATIONS

Takeoff Flaps SettingUP

AIRSPEED LIMITATIONS

Takeoff Rotation Speed	Takeoff Rotation	Speed		83 KIAS
------------------------	------------------	-------	--	---------

FLIGHT IN KNOWN ICING VISUAL CUES

As Required by AD 96-09-15, Paragraph (a) (1)

WARNING

Severe icing may result from environmental conditions outside of those for which the airplane is certificated. Flight in freezing rain, freezing drizzle, or mixed icing conditions (supercooled liquid water and ice crystals) may result in ice build-up on protected surfaces exceeding the capability of the ice protection system, or may result in ice forming aft of the protected surfaces. This ice may not be shed using the ice protection systems, and may seriously degrade the performance and controllability of the airplane.

During flight, severe icing conditions that exceed those for which the airplane is certificated shall be determined by the following visual cues. If one or more of these visual cues exists, immediately request priority handling from Air Traffic Control to facilitate a route or an altitude change to exit the icing conditions.

- 1. Unusually extensive ice is accreted on the airframe in areas not normally observed to collect ice.
- 2. Accumulation of ice on the upper or lower surface of the wing aft of the protected area.
- 3. Heavy ice accumulations on the windshield, or when ice forms aft of the curved sections on the windshield.
- 4. Ice forms aft of the protected surfaces of the wing struts.

NOTE

This supersedes any relief provided by the Master Minimum Equipment List (MMEL), or the Kinds of Equipment Limits (KOEL).

FAA APPROVED 208BPHBUS-00

2 - 27

G1000 LIMITATIONS

The current Garmin G1000 Cockpit Reference Guide (CRG) Part Number and System Software Version that must be available to the pilot during flight are displayed on the MFD AUX group, SYSTEM STATUS page.

GPS based IFR enroute, oceanic and terminal navigation is prohibited unless the pilot verifies the currency of the database or verifies each selected waypoint for accuracy by reference to current approved data.

RNAV/GPS instrument approaches must be accomplished in accordance with approved instrument approach procedures that are retrieved from the G1000 navigation database. The G1000 database must incorporate the current update cycle.

Use of the NAVIGATION MAP page for pilotage navigation is prohibited. The Navigation Map is intended only to enhance situational awareness. Navigation is to be conducted using only current charts, data and authorized navigation facilities.

Use of the TERRAIN PROXIMITY information for primary terrain avoidance is prohibited. The Terrain Proximity map is intended only to enhance situational awareness. It is the pilot's responsibility to provide terrain clearance at all times.

Navigation using the G1000 is not authorized north of 70° North latitude or south of 70° South latitude due to unsuitability of the magnetic fields near the Earth's poles. In addition, operations are not authorized in the following two regions:

- 1. North of 65° North latitude between longitude 75° W and 120° W (Northern Canada).
- 2. South of 55° South latitude between longitude 120° E and 165° E (region south of Australia and New Zealand).

G1000 LIMITATIONS (Continued)

The COM 1/2 (split COM) function of the Audio Panel is not approved for use. During COM 1/2 operation, transmission by one crew member inhibits reception by the other crew member.

The fuel quantity, fuel used and fuel remaining functions of the G1000 are advisory information only and must be verified by the pilot.

Dispatch with GIA1, 2, PFD, or MFD cooling advisory message is prohibited.

OPERATIONAL APPROVALS

The Garmin G1000 GPS receivers are approved under TSO C145a Class 3. The Garmin G1000 system has been demonstrated capable of, and has been shown to meet the accuracy requirements for, the following operations provided it is receiving usable navigation data. These do not constitute operational approvals.

- 1. Enroute, terminal, non-precision instrument approach operations using GPS and WAAS (including "GPS", "or GPS", and "RNAV" approaches), and approach procedures with vertical guidance (including "LNAV/VNAV", "LNAV + V", and "LPV") within the U.S. National Airspace System in accordance with AC 20-138A.
- 2. As a required Long Range Navigation (LRN) system for use in the following types of airspace when used in conjunction with Garmin WAAS Fault Detection/Exclusion Prediction Program, part number 006-A0154-01 or later approved version:
 - a. Oceanic/Remote RNP-10 (per FAA AC 20-138A, FAA Notice 8110-60, FAA Order 8400-12A, and FAA Order 8700-1). Both GPS receivers are required to be operating and receiving usable signals except for routes requiring only one Long Range Navigation (LRN) sensor.

NOTE

Each display computes an independent navigation solution based on the on-side GPS sensor. However, either display will automatically revert to the cross-side sensor if the onside sensor fails or if the cross-side sensor is determined to be more accurate. A "BOTH ON GPS1" or "BOTH ON GPS2" message does not necessarily mean that one GPS has failed. Refer to the MFD AUX-GPS STATUS page to determine the status of the unused GPS.

(Continued Next Page)

2 - 29

OPERATIONAL APPROVALS (Continued)

- b. North Atlantic (NAT) Minimum Navigational Performance Specifications (MNPS) Airspace per AC 91-49 and AC 120-33. Both GPS receivers are required to be operating and receiving usable signals except for routes requiring only one Long Range Navigation sensor.
- c. Enroute and Terminal including RNP5/BRNAV and PRNAV (RNP-1) In accordance with JAA TGL-10, ACJ 20X4, AC 90-96A, and AC 90-100A, provided the FMS is receiving usable navigation information from one or more GPS receivers.

GARMIN GFC 700 AUTOMATED FLIGHT CONTROL SYSTEM (AFCS)

- 1. The GFC 700 AFCS preflight test must be successfully completed prior to use of the autopilot, flight director or manual electric trim.
- 2. A pilot, with the seat belt fastened, must occupy the left pilot's seat during all autopilot operations.
- 3. The autopilot and yaw damper must be off during all takeoff and landings.
- 5. The autopilot must be disengaged below 200 feet AGL during approach operations and below 800 feet AGL during all other operations.
- 6. ILS approaches using the autopilot/flight director are limited to Category I approaches only.
- 7. Raw data ILS approaches below 400 feet AGL are prohibited.
- 8. Use of the autopilot is prohibited when the audio panel is inoperative (since the aural alert will not be provided when autopilot is disengaged).
- 9. Use of the autopilot is prohibited when conducting missed approach procedures until an established rate of climb that ensures all altitude requirements of the procedure will be met.

L3 COMMUNICATIONS WX 500 STORMSCOPE (if installed)

Use of the WEATHER MAP (WX-500 Stormscope) for hazardous weather (thunderstorm) penetration is prohibited. LTNG information on the NAVIGATION MAP or WEATHER MAP is approved only as an aid to hazardous weather avoidance, not penetration.

User's guide should be available to the pilot in flight.

U.S.

TRAFFIC ADVISORY SYSTEM (TAS) (if installed)

Use of the TRAFFIC MAP to maneuver the airplane to avoid traffic is prohibited. TAS is intended for advisory use only. TAS is intended only to help the pilot to visually locate traffic. It is the responsibility of the pilot to see and maneuver to avoid traffic.

TAS is unable to detect any intruding aircraft without an operating transponder. TAS can detect and track aircraft with either an ATCRBS (operating in Mode A or C) or Mode S transponders.

ATC procedures and the "see and avoid concept" will continue to be the primary means of aircraft separation. However, if communication is lost with ATC, TAS adds a significant backup for collision avoidance.

TERRAIN AWARENESS AND WARNING SYSTEM (TAWS-B) (if installed)

Use of the Terrain Awareness and Warning System (TAWS-B) to navigate to avoid terrain or obstacles is prohibited. TAWS-B is only approved as an aid to help the pilot to see-and-avoid terrain or obstacles.

TAWS-B must be inhibited when landing at a location not included in the airport database.

Use of TAWS-B is prohibited when operating using the QFE altimeter setting (altimeter indicates 0 feet altitude when the airplane is on the runway).

The pilot is authorized to deviate from the current ATC clearance only to the extent necessary to comply with TAWS-B warnings.

The geographic area of the TAWS-B database must match the geographic area in which the airplane is being operated.

OPTIONAL EQUIPMENT USER'S GUIDE

The pilot is responsible for ensuring the appropriate user's guide(s) for all optional equipment installed in the aircraft is accessible to the pilot in flight.

PLACARDS

WARNING

The following information must be displayed in the form of composite or individual placards. As a minimum, the exact wording of these placards is required as specified in this section. Placard wording can be from part numbered placards obtained from Cessna Aircraft Company or equivalent placards installed by an approved repair station in accordance with normal maintenance practices/procedures.

1. In full view of the pilot on the sunvisor or windshield trim strip on airplanes equipped for flight into known icing:

A38999

The markings and placards installed in this airplane contain operating limitations which must be complied with when operating this airplane in the Normal Category. Other operating limitations which must be complied with when operating this airplane in this category are contained in the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual. No acrobatic maneuvers, including spins, approved. This airplane is approved for flights into icing conditions if the proper optional equipment is installed and operational. See POH for weight and altitude restrictions relating to ice. This airplane is certified for the following flight operations as of date of original airworthiness certificate: DAY - NIGHT - VFR - IFR

In full view of the pilot on the sunvisor or windshield trim strip on airplanes not equipped for flight into known icing:

A39000

The markings and placards installed in this airplane contain operating limitations which must be complied with when operating this airplane in the Normal Category. Other operating limitations which must be complied with when operating this airplane in this category are contained in the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual.

No acrobatic maneuvers, including spins, approved. Flight into known or forecast icing conditions prohibited.

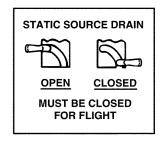
This airplane is certified for the following flight operations as of date of original airworthiness certificate:

DAY - NIGHT - VFR - IFR

2. In full view of the pilot on the sunvisor or windshield trim on airplanes not equipped for flight into known icing and on airplanes equipped for flight into known icing not incorporating SK208-175:

THIS AIRPLANE IS PROHIBITED FROM FLIGHT IN KNOWN OR FORECAST ICING

3. On pedestal:


DO NOT TAKEOFF WITH ICE/FROST/SNOW ON THE AIRCRAFT

4. On control lock:

CAUTION CONTROL LOCK REMOVE BEFORE STARTING ENGINE

5. On left sidewall below and forward of instrument panel and (when right flight instrument panel is installed) on right sidewall below and forward of instrument panel:

A39001

6. On sunvisor or windshield trim-strip:

A39002

ALTERNATE STATIC SOURCE CORRECTION

CLIMBS & APPROACHES: NO CORRECTION REQUIRED.

<u>CRUISE:</u> CORRECTIONS VARY WITH VENTS OPEN OR CLOSED. REFER TO SECTION 5 OF PILOT'S OPERATING HANDBOOK.

7. Above Pilot PFD:

MAX WT. MANEUVER SPEED 148 KIAS SEE POH FOR OTHER WEIGHTS

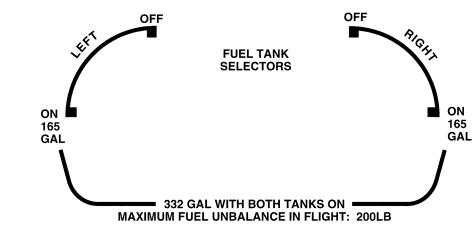
(Continued Next Page)

FAA APPROVED 208BPHBUS-01

SECTION 2 LIMITATIONS

PLACARDS (Continued)

- 8. A calibration card must be provided to indicate the accuracy of the magnetic compass in 30° increments.
- 9. Near wing flap position indicator:


UP to 10°	175 KIAS	(partial flap range with dark blue color code; also mechanical detent at 10°)
10° to 20°	150 KIAS	(light blue code; also mechanical detent at 20°)
20° to FULL	125 KIAS	(white color code)

10. Below power lever:

11. On fuel tank selector:

A39003

12. Adjacent to each outboard fuel tank filler cap:

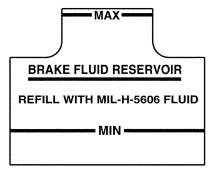
13. Adjacent to each inboard fuel tank filler cap (when installed):

SECTION 2 LIMITATIONS

PLACARDS (Continued)

14. Adjacent to fuel filter:

A39006	FUEL FILTER DRAIN DAILY	


15. Adjacent to fuel drain can:

A39007

16. On the brake fluid reservoir:

A39008

17. Adjacent to oil dipstick/filler cap (on inertial separator duct):

A39009

ENGINE OIL

TOTAL CAPACITY 14 U.S. QUARTS DRAIN & FILL 9.5 U.S. QUARTS

TYPE: SEE PILOT'S OPERATING HANDBOOK FOR APPROVED OILS. DO NOT MIX BRANDS.

SERVICED WITH: _

18. On side of inertial separator duct:

A39010

19. On firewall above battery tray:

A39011

CAUTION 24 VOLTS D.C.

THIS AIRCRAFT IS EQUIPPED WITH GENERATOR AND A NEGATIVE GROUND SYSTEM

OBSERVE PROPER POLARITY

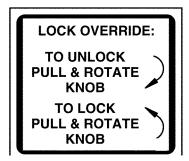
REVERSE POLARITY WILL DAMAGE ELECTRICAL COMPONENTS

20. Near ground service plug receptacle:

EXTERNAL POWER 28 VOLTS D.C. NOMINAL 800 AMP STARTING CAPACITY MIN. DO NOT EXCEED 1700 AMPS

21. On access panel on bottom of both wings just forward of aileron:

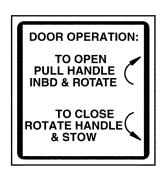
FLUX VALVE USE NON-MAGNETIC TOOLS AND SCREWS


22. On each side of nose strut fairing near tow limit marking (rudder lock placard required when rudder lock installed):

WARNING	
MAXIMUM	
TOW	
LIMIT	

23. Adjacent to left crew door inside door handle:

A39014


24. Adjacent to upper passenger door outside pushbutton and door handle (Passenger version only):

A39015

25. Adjacent to upper passenger door inside door handle (Passenger version only):

A39016

26. At center of lower passenger door on inside and outside (Passenger Version only):

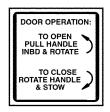
A39017

WARNING

OUTSIDE PROXIMITY OF LOWER DOOR MUST BE CLEAR BEFORE OPENING

(Continued Next Page)

2 - 39


27. Adjacent to upper cargo door outside pushbutton and door handle:

A39018

28. Adjacent to upper cargo door inside door handle (Passenger Version only):

A39019

29. On right sidewall of lower passenger door (Passenger Version only):

A39020

PLACARDS (Continued)

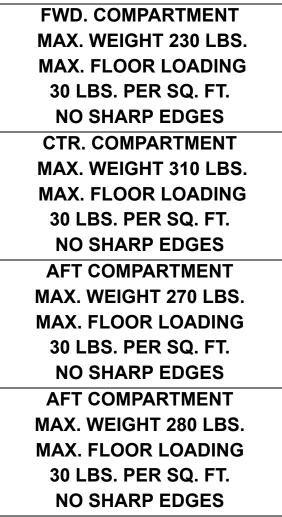
30. On left and right sides of aft cargo barrier (Cargo Version/ Passenger Version with cargo barrier installed):

> MAX LOAD BEHIND BARRIER 3400 LBS TOTAL ZONES FWD OF LAST LOADED ZONE MUST BE AT LEAST 75% FULL BY VOLUME. SEE POH FOR EXCEPTIONS. -CHECK WEIGHT AND BALANCE-

31. On inside of lower cargo door (Cargo Version only)

MAX LOAD BEHIND BARRIER 3400 LBS TOTAL ZONES FWD OF LAST LOADED ZONE MUST BE AT LEAST 75% FULL BY VOLUME. SEE POH FOR EXCEPTIONS. -CHECK WEIGHT AND BALANCE-LOAD MUST BE PROTECTED FROM SHIFTING - SEE POH -

32. On right sidewall adjacent to Zone 5 (Cargo Version only):


IF LOAD IN ZONE 5 EXCEEDS 400 LBS A PARTITION NET IS REQD AFT OR LOAD MUST BE SECURED TO FLOOR

33. On left and right sides of cabin in appropriate zones (Cargo Version only):

ZONE 1
MAX LOAD 1780 LBS
ZONE 2
MAX LOAD 3100 LBS
ZONE 3
MAX LOAD 1900 LBS
ZONE 4
MAX LOAD 1380 LBS
ZONE 5
MAX LOAD 1270 LBS
ZONE 6
MAX LOAD 320 LBS

34. On inside of cargo pod doors (if installed):

35. At each sidewall and ceiling anchor plate (except heavy duty anchor plates with additional structural support) and at anchor plate at center of lower cargo door (Cargo Version only):

A39021

SECTION 3 EMERGENCY PROCEDURES

TABLE OF CONTENTS I Introduction	
Operating Procedures - General	. 3-6
Engine Failures Engine Failure During Takeoff Roll Engine Failure Immediately After Takeoff Engine Failure During Flight Engine Flameout During Flight	3-8 3-8 3-8
Airstart	3-10
Forced Landings Emergency Landing without Engine Power Precautionary Landing with Engine Power Ditching	.3-13 .3-13
Smoke and Fire . Engine Fire in Flight (Red ENGINE FIRE CAS MSG). Electrical Fire in Flight. Cabin Fire . Wing Fire. Cabin Fire During Ground Operations . Engine Fire During Start on Ground (Red ENGINE FIRE CAS MSG).	3-14 .3-15 .3-16 .3-17 .3-17
Ice and Rain Protection The Following Weather Conditions can be Conducive to Severe In-flight Icing - as Required by AD 96-09-15, Paragraph (a) (2) Procedures For Exiting the Severe Icing Environment - as Required by AD 96-09-15, Paragraph (a) (2) Inadvertent Icing Encounter	.3-19 .3-19
(Continued Next Page)	

SECTION 3 EMERGENCY PROCEDURES	CESSNA MODEL 208B G1000
TABLE OF CONTENTS Avionics/Autopilot Pitch Trim Failure (Red PTRIM on PFD) Yaw Damper Inoperative (Red AFCS or YAW)	
Electrical Failures Generator Failure (Amber GENERATOR OFF Voltage High (Red VOLTAGE HIGH CAS MSC Voltage Low (Red VOLTAGE LOW CAS MSG	CAS MSG) 3-23 G) 3-25
Engine Malfunctions Loss of Oil Pressure (Red OIL	
PRESSURE LOW CAS MSG)	
Governor Sections (Engine Power Rolls Ba Emergency Power Lever not Stowed	ack to Idle) 3-27
(Red EMERG PWR LVR CAS MSG)	
Fuel System	
(Red RSVR FUEL LOW CAS MSG) Fuel Tank Selector OFF During Engine Start (Red FUEL SELECT OFF CAS MSG	3-28
and Both Fuel Selector Warning Horns Act Fuel Level Low and Single Fuel Selector Off (Red FUEL SELECT OFF and Amber L L-R FUEL LOW CAS MSG(s)) and or Both Fuel Tank Selectors Off (Red FUEL SELECT OFF CAS MSG and One Fuel Wa	-, R, arning
Horn Activated)	

EXPANDED EMERGENCY

Engine Failure	0
Maximum Glide Chart 3-3	
Forced Landings	4
Ditching	4
Landing without Elevator Control	5
Smoke and Fire	5

SECTION 3 EMERGENCY PROCEDURES

TABLE OF CONTENTS

Page

Emergency Operation in Clouds Executing a 180° Turn in Clouds (AHRS Failure) Emergency Descent Through Clouds (AHRS Failure) Recovery from Spiral Dive in the Clouds (AHRS Failure)	3-36 3-37 3-37 3-38
Spins	3-39
Engine Malfunctions Loss of Oil Pressure Fuel Control Unit Malfunctions in the Pneumatic	3-40 3-40
or Governor Sections	
Flow Interruption Procedures	3-42
Electrical Failures	
Emergency Exits Emergency Exits Figure	3-45 3-46

SECTION 3 EMERGENCY PROCEDURES

CESSNA MODEL 208B G1000

FAA APPROVED

SECTION 3 EMERGENCY PROCEDURES

INTRODUCTION

Section 3 provides checklist and amplified procedures for coping with emergencies that can occur. Emergencies caused by airplane or engine malfunctions are extremely rare if proper preflight inspections and maintenance are practiced. Enroute weather emergencies can be minimized or eliminated by careful flight planning and good judgment when unexpected weather is encountered. However, should an emergency arise, the basic guidelines described in this section should be considered and applied as necessary to correct the problem. Emergency procedures associated with standard avionics, the ELT, or any optional systems can be found in Section 9.

WARNING

There is no substitute for correct and complete preflight planning habits and continual review to minimize emergencies. Be thoroughly knowledgeable of hazards and conditions which represent potential dangers. Also be aware of the capabilities and limitations of the airplane.

AIRSPEEDS FOR EMERGENCY OPERATION

Engine Failure After Take	off:	
WING FLAPS Handle	UP	100 KIAS
WING FLAPS Handle	FULL	80 KIAS
Maneuvering Speed:		
8750 lbs		148 KIAS
7500 lbs		137 KIAS
6250 lbs		125 KIAS
5000 lbs		112 KIAS
Maximum Glide:	With Cargo Pod	Without Cargo Pod
8750 lbs	95 KIAS	97 KIAS
7500 lbs	87 KIAS	90 KIAS
6250 lbs	79 KIAS	82 KIAS
5000 lbs	71 KIAS	74 KIAS
Precautionary Landing (E	ngine Power/Flaps FULL) 80 KIAS
Landing Without Engine F		
WING FLAPS Handle	UP	100 KIAS
WING FLAPS Handle	FULL	80 KIAS

U.S. 3-5

GENERAL

OPERATING PROCEDURES - GENERAL

The operating procedures contained in this manual have been developed and recommended by Cessna Aircraft Company and are approved for use in the operation of this airplane.

This section contains the Emergency and Abnormal Procedures for your airplane. For your convenience, definitions of these terms are listed in Section I. Operating procedures in this airplane flight manual are organized into Emergency, Abnormal, and Normal Procedures.

Normal procedures are those recommended for routine day-to-day preflight, flight, and postflight operation and include expanded systems information and procedures. Some checks, as noted in the Limitations Section of this airplane flight manual, are required to assure proper system integrity.

The Garmin G1000 Integrated Avionics System monitors most of the airplane systems for faults or failures and displays this information to the crew as messages in the Crew Alerting System (CAS) portion of the Primary Flight Display (PFD) in front of each pilot. Some Garmin G1000 faults are also displayed as messages in the Primary Flight Display (PFD) or Multi Function Display (MFD). These messages are listed within the appropriate portion of the Emergency and Abnormal procedures sections of the FAA Approved POH/AFM or appropriate Garmin Cockpit Reference Guide for the 208 series aircraft.

Emergency procedures are generally associated with Red CAS MSG(s) or Garmin G1000 messages. Some procedures, such as Maximum Glide/Emergency Landing, are not associated with any particular message, but can involve one or more messages. All emergency procedures are organized by appropriate systems and include each Red CAS or Garmin message if applicable exactly as it appears on the PFD, or MFD. Emergency Procedures require immediate pilot recognition and corrective action by the crew. Red CAS MSG(s) will flash and pressing the WARNING softkey will silence the repeating chime and change the CAS MSG to steady.

OPERATING PROCEDURES - GENERAL (Continued)

Some emergency situations require immediate memorized corrective action. These numbered steps are printed in boxes within the emergency procedures and should be accomplished without the aid of the checklist.

Abnormal Procedures are general procedures that can be associated with one or more Amber CAS, or Garmin G1000 messages. Some procedures are not associated with any particular CAS or Garmin G1000 message but can involve one or more messages. These procedures are organized by related systems.

An Abnormal Procedure is one requiring the use of special systems and/or the alternate use of regular systems that will maintain an acceptable level of airworthiness. These procedures require immediate pilot awareness and subsequent crew action may be required. Amber CAS MSG(s) will initially flash. Pressing the CAUTION softkey will change the CAS message to a steady state.

NOTE

- White CAS MSG(s) provide general information, indicate the need for additional crew awareness and the possible necessity of future pilot action.
- In order to avoid confusion due to multiple messages, at critical times, some CAS MSG(s) are inhibited when a Line Replaceable Unit (LRU), such as the GEA-71 (Garmin Engine Airframe Computer), has failed.
- Generally, the following Emergency and Abnormal Procedures do not direct the pilot to check/reset circuit breakers. This is considered basic airmanship and can be accomplished at the pilot's discretion.
- Except where specific action is required, these procedures do not specify action when on the ground. Conditions resulting in a Red or Amber message should be corrected prior to flight. Reasons for White CAS MSG(s) should be determined prior to flight.
- If a Red or Amber CAS MSG occurs in flight, consideration should be given to landing at an airport where corrective maintenance can be performed.

ENGINE FAILURES

ENGINE FAILURE DURING TAKEOFF ROLL

	POWER Lever BETA RANGE Brakes APPLY
3.	WING FLAPS Handle
IF AIF	RPLANE CANNOT BE STOPPED ON REMAINING RUNWAY:
4.	FUEL CONDITION Lever CUTOFF
5.	FUEL SHUTOFF Knob PULL OFF
6.	FUEL TANK SELECTORS OFF (warning horn will sound)
7.	BATTERY Switch OFF

ENGINE FAILURE IMMEDIATELY AFTER TAKEOFF

1.	Airspeed
2.	PROP RPM Lever FEATHER
3.	WING FLAPS Handle AS REQUIRED (20° recommended)
4.	FUEL CONDITION Lever CUTOFF
5.	FUEL SHUTOFF Knob PULL OFF
6.	FUEL TANK SELECTORS OFF (warning horn will sound)
7.	BATTERY Switch OFF

ENGINE FAILURE DURING FLIGHT

1.	Airspeed
2.	POWER Lever
3.	PROP RPM Lever
4.	FUEL CONDITION Lever CUTOFF
5.	WING FLAPS Handle
6.	FUEL BOOST Switch OFF
7.	FUEL SHUTOFF Knob PULL OFF
8.	IGNITION Switch NORM

ENGINE FAILURE DURING FLIGHT (Continued)

9.	ST	BY ALT PWR Switch OFF
10.	Ele	ctrical Load REDUCE
	a.	AVIONICS STBY PWR Switch OFF
	b.	AVIONICS BUS TIE Switch OFF
	C.	PRIMARY Switch (if installed) NORM

NOTE

TKS Ice Protection System PRIMARY switch must be kept in NORM in order to keep the electrical load within limits on BATTERY power ONLY.

d.	PROP HEAT Switch (if installed)	OFF
e.	CABIN Lights	OFF
f.	STROBE lights	OFF
g.	LDG and TAXI/RECOG lights	OFF

NOTE

Keep LDG and TAXI/RECOG lights OFF until required for approach and landing. Prior to landing, only turn the LEFT LDG light ON to keep electrical load below limit.

h.	VENT AIR FANS OFF
i.	AIR CONDITIONING (if installed) OFF
j.	GEN CONT and GEN FIELD Circuit Breakers PULL
	(top row, last two breakers on forward end)
k.	RIGHT PITOT HEAT Circuit Breaker PULL
	(second row, third breaker from aft end)
Ι.	RDNG LIGHT Circuit Breaker PULL
	(third row, second breaker from aft end)
m.	RADAR R/T Circuit Breaker PULL
	(AVN BUS 1, second row, sixth breaker from left side)
n.	AVIONICS No. 2 Switch OFF
11. BA	TT AMPS 45 AMPS
12. FL	IGHTas possible)
	(as described in Emergency Landing Without Engine Power)

SECTION 3 EMERGENCY PROCEDURES

ENGINE FLAMEOUT DURING FLIGHT

IF GA	AS GENERATOR SP	PEED (N _G)	S AB	OVE 50%	b :		
1.	POWER Lever						IDLE
2.	IGNITION Switch						ON
	R SATISFACTORY ND N _a .	RELIGHT	AS E	EVIDENC	ED B	Y NOI	RMAL

	3.	POWER Lever		 				A	S DESIRED
4	4.	IGNITION Switch		 					NORM
			/: f -	 f	£1	1	In	la	

	(il cause of hameout has been corrected.)
IF GAS GENERATOR SPE	ED (N _c) IS BELOW 50%:

_			()	
5.	FUEL	CONDITION	Lever	 CUTOFF

6. Refer to Airstart checklists for engine restart

AIRSTART

STARTER ASSIST (Preferred Procedure)

1.	BATTERY Switch	ON
2.	AVIONICS No. 1 Switch	ON
3.	Electrical Load	EDUCE
	a. STBY ALT PWR Switch	OFF
	b. AVIONICS Bus 2 Switch	OFF
	c. IGNITION Switch	NORM
	d. Left LIGHTS Panel Switches (9 total)	OFF
	e. POWER OUTLET Switch	. OFF
	f. VENT AIR FANS	OFF
	g. AIR CONDITIONING (if installed)	OFF
	h. BLEED AIR HEAT Switch	
4.	EMERGENCY POWER Lever	ORMAL
5.	POWER Lever.	. IDLE
6.	PROP RPM Lever	IN RPM
7.		UTOFF
8.	FUEL SHUTOFF Knob ON (push in)
9.	FUEL TANK SELECTORS BO	
10.	. FUEL BOOST Switch	ON
11.	. Altitude 20,000 FEET MA	XIMUM

STARTER ASSIST (Preferred Procedure) (Continued)

12. STARTER Switch	
b. Engine Oil Pressure Indication	
c. N _g 13. FUEL CONDITION Lever LC	12% MINIMUM
13. FUEL CONDITION Lever LO	WIDLE and OBSERVE
a. FFLOW PPH	90-140 pph
b. ITT	
c. N _a	52% MINIMUM
c. N _g	OFF

WARNING

If conditions exist such as heavy precipitation or nearly empty fuel tanks, turn the IGNITION Switch ON.

15.	FUEL BOOST Switch NORM	
	(unless it cycles on and off; then leave ON)
16.	FUEL CONDITION Lever HIGH IDLE	-
17.	PROP RPM Lever SET	Γ
18.	POWER Lever SET	Γ
19.	STBY ALT PWR Switch ON	
20.	AVIONICS No. 2 Switch ON	
21.	Electrical equipment AS REQUIRED)

NO STARTER ASSIST

BATTERY Switch	ON
GENERATOR Switch	TRIP
a. STBY ALT PWR Switch	OFF
b. AVIONICS Bus 2 Switch.	OFF
c. Left LIGHTS Panel Switches (9 total)	OFF
d. POWER OUTLET Switch	OFF
e. VENT AIR FANS	OFF
f. AIR CONDITIONING (if installed)	OFF
g. BLEED AIR HEAT Switch.	OFF
EMERGENCY POWER Lever I	NORMAL
POWER Lever	IDLE
PROP RPM Lever	MIN RPM
	GENERATOR Switcha. STBY ALT PWR Switchb. AVIONICS Bus 2 Switchc. Left LIGHTS Panel Switches (9 total)d. POWER OUTLET Switche. VENT AIR FANSf. AIR CONDITIONING (if installed)g. BLEED AIR HEAT SwitchEMERGENCY POWER LeverPOWER Lever

SECTION 3 EMERGENCY PROCEDURES

NO STARTER ASSIST (Continued)

6.	FUEL CONDITION Lever	CUTOFF
7.	FUEL SHUTOFF Knob	. ON (push in)
8.	FUEL TANK SELECTORS	BOTH ON
9.	FUEL BOOST Switch	ON
10.	. IGNITION Switch.	ON
11.	. Airspeed 100 K	(IAS MINIMUM
	(140 KIAS if propell	er is feathered)
12.	. Altitude 20,000 f	eet MAXIMUM
	(15,000 feet if propell	er is feathered)

CAUTION

Do not attempt a restart without starter assist if $\rm N_g$ indications indicates zero RPM.

13. N _g Indicator	13.
14. FUEL CONDITION Lever LOW IDLE and OBSERVE	14.
a. FFLOW PPH 90-140 pph	
b. ITT MONITOR (1090°C maximum)	
c. N _g	
15. IGNITION Switch NORM (N _g 52% or above)	15.
c. N _g	

WARNING

If conditions exist, such as heavy precipitation or nearly empty fuel tanks, turn the IGNITION Switch ON.

16.	FUEL BOOST Switch	NORM
	(unless it cycles on and off;	then leave ON)
17.	FUEL CONDITION Lever	HIGH IDLE
18.	PROP RPM Lever	SET
19.	POWER Lever.	SET
20.	GENERATOR Switch	RESET
21.	STBY ALT PWR Switch.	ON
22.	AVIONICS No. 2	ON

FORCED LANDINGS

EMERGENCY LANDING WITHOUT ENGINE POWER

	1. 2.	Seats, Seat Belts, Shoulder Ha Airspeed	rnesses
	3.		80 KIAS (flaps FULL)
	3. 4.		IDLE
	- . 5.		CUTOFF
	6.		OFF
	7.		NORM
	8.		OFF
	9.	Nonessential Equipment	OFF
			PULL OFF
			OFF (warning horn will sound)
			EQUIRED (FULL recommended)
			ATCH PRIOR TO TOUCHDOWN
			. OFF (when landing is assured)
			SLIGHTLY TAIL LOW
	11.		
PI	REC	CAUTIONARY LANDING W	ITH ENGINE POWER
PI	1.	CAUTIONARY LANDING W Seats, Seat Belts, Shoulder Ha	ITH ENGINE POWER
PI	1. 2.	CAUTIONARY LANDING W Seats, Seat Belts, Shoulder Ha WING FLAPS Handle	ITH ENGINE POWER
PI	1. 2. 3.	CAUTIONARY LANDING W Seats, Seat Belts, Shoulder Ha WING FLAPS Handle Airspeed	ITH ENGINE POWER Innesses
PI	1. 2.	CAUTIONARY LANDING W Seats, Seat Belts, Shoulder Ha WING FLAPS Handle Airspeed	ITH ENGINE POWER Innesses
PI	1. 2. 3. 4.	CAUTIONARY LANDING W Seats, Seat Belts, Shoulder Ha WING FLAPS Handle Airspeed Selected Field	ITH ENGINE POWER Innesses
PI	1. 2. 3.	CAUTIONARY LANDING W Seats, Seat Belts, Shoulder Ha WING FLAPS Handle Airspeed	TH ENGINE POWER rnesses
PI	1. 2. 3. 4. 5.	CAUTIONARY LANDING W Seats, Seat Belts, Shoulder Ha WING FLAPS Handle Airspeed Selected Field Nonesential Equipment (except BATTERY, GENER	ITH ENGINE POWER Innesses SECURE 10° 90 KIAS 90 KIAS FLY OVER (noting terrain and obstructions) ATOR and STBY ALT) OFF
PI	1. 2. 3. 4. 5.	CAUTIONARY LANDING W Seats, Seat Belts, Shoulder Ha WING FLAPS Handle Airspeed Selected Field	ITH ENGINE POWER Innesses SECURE 10° 90 KIAS 90 KIAS FLY OVER (noting terrain and obstructions) ATOR and STBY ALT). OFF FULL DOWN (on final approach)
PI	1. 2. 3. 4. 5.	CAUTIONARY LANDING W Seats, Seat Belts, Shoulder Ha WING FLAPS Handle Airspeed Selected Field Nonesential Equipment (except BATTERY, GENER WING FLAPS Handle Airspeed	ITH ENGINE POWER Innesses SECURE 10° 90 KIAS 90 KIAS FLY OVER (noting terrain and obstructions) ATOR and STBY ALT) OFF
PI	1. 2. 3. 4. 5. 6. 7.	CAUTIONARY LANDING W Seats, Seat Belts, Shoulder Ha WING FLAPS Handle Airspeed Selected Field	TH ENGINE POWER rnesses
PI	1. 2. 3. 4. 5. 6. 7. 8. 9.	CAUTIONARY LANDING W Seats, Seat Belts, Shoulder Ha WING FLAPS Handle Airspeed Selected Field Nonesential Equipment (except BATTERY, GENER WING FLAPS Handle Airspeed	ITH ENGINE POWER Innesses SECURE 10° 90 KIAS 90 KIAS FLY OVER (noting terrain and obstructions) FLY OVER ATOR and STBY ALT) OFF FULL DOWN (on final approach) 80 KIAS ATCH PRIOR TO TOUCHDOWN 80 KIAS
PI	 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 	CAUTIONARY LANDING W Seats, Seat Belts, Shoulder Ha WING FLAPS Handle Airspeed Selected Field Nonesential Equipment (except BATTERY, GENER WING FLAPS Handle Airspeed	TH ENGINE POWER The set of the s
PI	 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 	CAUTIONARY LANDING W Seats, Seat Belts, Shoulder Ha WING FLAPS Handle Airspeed Selected Field Nonesential Equipment (except BATTERY, GENER WING FLAPS Handle Airspeed Crew Doors STBY ALT PWR Switch GENERATOR Switch BATTERY Switch	TH ENGINE POWER Innesses SECURE 10° 90 KIAS FLY OVER (noting terrain and obstructions) ATOR and STBY ALT). OFF FULL DOWN (on final approach) 80 KIAS ATCH PRIOR TO TOUCHDOWN 0FF TRIP 0FF SLIGHTLY TAIL LOW
PI	 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 	CAUTIONARY LANDING W Seats, Seat Belts, Shoulder Ha WING FLAPS Handle Airspeed Selected Field Selected Field Nonesential Equipment (except BATTERY, GENER WING FLAPS Handle Airspeed	TH ENGINE POWER rnesses SECURE 10° 90 KIAS FLY OVER (noting terrain and obstructions) ATOR and STBY ALT). OFF FULL DOWN (on final approach) 80 KIAS ATCH PRIOR TO TOUCHDOWN 0FF TRIP 0FF SLIGHTLY TAIL LOW BETA RANGE
PI	 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 	CAUTIONARY LANDING W Seats, Seat Belts, Shoulder Ha WING FLAPS Handle Airspeed Selected Field Nonesential Equipment (except BATTERY, GENER WING FLAPS Handle Airspeed Crew Doors STBY ALT PWR Switch GENERATOR Switch BATTERY Switch POWER Lever FUEL CONDITION Lever	TH ENGINE POWER SECURE 10° 90 KIAS FLY OVER (noting terrain and obstructions) ATOR and STBY ALT). OFF FULL DOWN (on final approach) 80 KIAS ATCH PRIOR TO TOUCHDOWN 0FF TRIP 0FF SLIGHTLY TAIL LOW

SECTION 3 EMERGENCY PROCEDURES

DITCHING

1.	Radio TRANSMIT MAYDAY (on 121.5 MHz) Give location, intentions and SQUAWK 7700 if transponder is installed.
2.	Heavy Objects in Cabin SECURE
	(if passenger is available to assist)
3.	Seats, Seat Belts, Shoulder Harnesses SECURE
4.	WING FLAPS Handle FULL DOWN
5.	POWER ESTABLISH 300 FT/MIN DESCENT AT 80 KIAS
6.	Approach
	a. High Winds INTO THE WIND
	b. Light Winds, Heavy Swells PARALLEL TO SWELLS
7.	Face CUSHION at TOUCHDOWN
	(with folded coat or similar object)
8.	Touchdown NO FLARE (maintain descent attitude)
9.	Airplane EVACUATE
10.	Life Vests and Raft INFLATE (when outside cabin)

WARNING

The airplane has not been flight tested in actual ditchings, thus the above recommended procedure is based entirely on the best judgment of Cessna Aircraft Company.

SMOKE AND FIRE

ENGINE FIRE IN FLIGHT (Red ENGINE FIRE CAS MSG)

IDLE	1. POWER Lever
. FEATHER	2. PROP RPM Lever
CUTOFF	3. FUEL CONDITION Lever
PULL OFF	4. FUEL SHUTOFF Knob
PULL OFF	5. CABIN HEAT FIREWALL SHUTOFF CONTROL
CLOSE	6. Forward Side Vents
OPEN	7. Overhead Vents.
ON	8. VENT AIR FANS
. 20° - FULL	9. WING FLAPS Handle
80 - 85 KIAS	10. Airspeed
. EXECUTE	11. Forced Landing
ngine Power)	(as described in Emergency Landing Without Er

ELECTRICAL FIRE IN FLIGHT

1.	STBY ALT PWR Switch	OFF
2.	GENERATOR Switch	TRIP
3.	BATTERY Switch	OFF

WARNING

Without electrical power all electrically operated flight and engine indications, fuel boost pump, CAS messages, WING FLAPS Handle and all navigation and communications will be inoperative. All standby instruments, including torque indicator and vacuum-driven standby attitude indicator, will be operative.

4.	Vents (to avoid drafts)
	a. Forward Side Vents CLOSE
	b. Overhead Vents CLOSE
	c. VENT AIR FANS
5.	BLEED AIR HEAT Switch OFF
6.	Fire Extinguisher USE

WARNING

Occupants should use oxygen masks (if installed) until smoke clears. After discharging an extinguisher within a closed cabin, ventilate the cabin.

7. AVIONICS Power Switches OFF

WARNING

With AVIONICS No. 1 and No. 2 OFF, use standby flight instruments.

8. All Other Electrical Switches OFF	•
IF FIRE APPEARS OUT AND ELECTRICAL POWER IS NECESSARY FOR CONTINUANCE OF FLIGHT:)
9. BATTERY Switch	
10. GENERATOR Switch RESET	•
11. STBY ALT PWR Switch ON	
12. Circuit Breakers CHECK (for faulty circuit; do not reset))
13. AVIONICS No. 1 Switch ON	I
(Continued Next Page)	
FAA APPROVED	

208BPHBUS-00

ELECTRICAL FIRE IN FLIGHT (Continued)

14. Electrical Switches ON
Turn switches on one at a time, with a delay after each until short circuit is localized.
15. Vents
(when it is verified that fire is completely extinguished)
a. Forward Side Vents OPEN
b. Overhead Vents OPEN
c. VENT AIR FANS ON
16. BLEED AIR HEAT ON (as desired)

CABIN FIRE

1.	STBY ALT PWR Switch	OFF
2.	GENERATOR Switch	TRIP
3.	BATTERY Switch	OFF

WARNING

Without electrical power all electrically operated flight and engine indications, fuel boost pump, CAS messages, WING FLAPS Handle and all navigation and communications will be inoperative. All standby instruments, including torque indicator and vacuum-driven standby attitude indicator, will be operative.

4.	Vents
	a. Forward Side Vents CLOSE
	b. Overhead Vents CLOSE
	c. VENT AIR FANS OFF
5.	BLEED AIR HEAT Switch OFF
6.	Fire Extinguisher ACTIVATE (if available)

WARNING

Occupants should use oxygen masks (if installed) until smoke clears. After discharging an extinguisher within a closed cabin, ventilate the cabin.

7. Flight **TERMINATE** (as soon as possible)

WING FIRE

1.	PITOT/STATIC HEAT Switch)FF
2.	STALL HEAT Switch)FF
3.	STROBE Switch)FF
4.	NAV Switch)FF
5.	LDG and TAXI/ RECOG Switches)FF
6.	FUEL QUANTITY Circuit Breakers)FF
	(second row, third breaker from fi	ront
	and third row third breaker from fro	ont)
7.	and third row third breaker from fro RADAR R/T Circuit Breaker (if installed)	,
7.		JLĹ
	RADAR R/T Circuit Breaker (if installed) Pl	JLĹ ide)

WARNING

Perform a sideslip as required to keep flames away from the fuel tank and cabin. Land as soon as possible.

CABIN FIRE DURING GROUND OPERATIONS

1.	POWER Lever
2.	Brakes AS REQUIRED
3.	PROP RPM Lever FEATHER
4.	FUEL CONDITION Lever CUTOFF
5.	BATTERY Switch OFF
6.	Airplane EVACUATE
7.	Fire

ENGINE FIRE DURING START ON GROUND (Red ENGINE FIRE CAS MSG)

1.	FUEL CONDITION Lever	CUTOFF
2.	FUEL BOOST Switch	OFF
3.	STARTER Switch	. MOTOR

WARNING

It is possible to have an engine fire without an accompanying Red ENGINE FIRE CAS MSG.

CAUTION

- Do not exceed the starting cycle limitations. Refer to Section 2, limitations.
- Should the fire persist, as indicated by sustained interstage turbine temperature, immediately close the fuel shutoff and continue motoring.

4.	STARTER Switch OFF
5.	FUEL SHUTOFF Knob PULL OFF
6.	BATTERY Switch OFF
7.	Airplane EVACUATE
8.	Fire EXTINGUISH

ICE AND RAIN PROTECTION

THE FOLLOWING WEATHER CONDITIONS CAN BE CONDUCIVE TO SEVERE IN-FLIGHT ICING - As Required by AD 96-09-15, Paragraph (a) (2):

- 1. Visible rain at temperatures below 0°C (32°F) ambient air temperature.
- Droplets that splash or splatter on impact at temperatures below 0°C (32°F) ambient air temperature.

PROCEDURES FOR EXITING THE SEVERE ICING ENVIRONMENT - As Required by AD 96-09-15, Paragraph (a) (2):

These procedures are applicable to all flight phases from takeoff to landing. Monitor the ambient air temperature. While severe icing can form at temperatures as cold as -18° C (0°F), increased vigilance is warranted at temperatures around freezing with visible moisture present. If the visual cues specified in Section 2, Limitations for identifying severe icing conditions are observed, accomplish the following:

- 1. Immediately request priority handling from Air Traffic Control to facilitate a route or an altitude change to exit the severe icing conditions in order to avoid extended exposure to flight conditions more severe than those for which the airplane has been certificated.
- 2. Avoid abrupt and excessive maneuvering that can exacerbate control difficulties.
- 3. Do not engage the autopilot.
- 4. If the autopilot is engaged, hold the control wheel firmly and disengage the autopilot.
- 5. If an unusual roll response or uncommanded roll control movement is observed, reduce the angle-of-attack.
- 6. If the flaps are extended, do not retract them until the airframe is clear of ice.
- 7. Report these weather conditions to Air Traffic Control.

U.S. 3-19

SECTION 3 EMERGENCY PROCEDURES

INADVERTENT ICING ENCOUNTER

1. IGNITION Switch ON
2. INERTIAL SEPARATOR BYPASS
3. PITOT/STATIC HEAT Switch ON
4. STALL HEAT Switch ON
5. PROP HEAT Switch (if installed) AUTO
IF ABOVE 20,000 FEET:
6. Airspeed
7. Altitude DESCEND TO 20,000 FEET OR BELOW
(as soon as practical)
Turn back or change altitude to obtain an outside air temperature that
is less conducive to icing.
8. IGNITION Switch OFF (after 5 minutes operation)
9. BLEED AIR HEAT Switch ON
10. TEMP Control ADJUST
Push FWD CABIN HEAT control full in and pull defrost control full out to
obtain maximum windshield defroster effectiveness.
11. PROP RPM Lever 1900 RPM

(to minimize ice build-up)

NOTE

If BYPASS is used at any point during flight or aircraft operation due to suspected or actual icing conditions, do not return it to NORMAL until the separator has been visually inspected and verified that the separator and its door are free of ice and water.

CAUTION

If excessive vibration is noted, momentarily reduce propeller RPM to 1600 with the PROP RPM Lever, then rapidly move the control full forward. Cycling the RPM flexes the propeller blades and high RPM increases centrifugal force, causing ice to shed more readily.

If icing conditions are unavoidable, plan a landing at the nearest airport. With an extremely rapid ice build-up, select a suitable off airport landing site.

INADVERTENT ICING ENCOUNTER (Continued)

With an ice accumulation of 1/4 inch or more on the wing leading edges, be prepared for a significantly higher power requirement, approach speed, stall speed, and longer landing roll.

If necessary, set up a forward slip for visibility through the left portion of the windshield during the landing approach.

Use approach speed of 120 KIAS with flaps at 20°. With ice suspected on the airframe, or operating at 5°C (41°F) or less in visible moisture, do not extend flaps beyond 20° for landing.

12. Landing Distance MULTIPLY PC	DH/AFM DISTANCE BY:
	2.2 - FLAPS UP
	2.1 - FLAPS 10°
13. Minimum Approach Airspeed	AT OR ABOVE:
	120 KIAS - Flaps UP
	110 KIAS - Flaps 10°

WARNING

With heavy ice accumulations on the horizontal stabilizer leading edge, do not extend flaps while enroute or holding. When landing is assured, select the minimum flap setting required, not to exceed 20°, and maintain extra airspeed consistent with available field length. Do not retract the flaps once they have been extended, unless required for go-around. Then retract flaps in increments while maintaining 5 to 10 knots extra airspeed.

NOTE

- Land on the main wheels first, avoiding a slow and high flare.
- Missed approaches should be avoided whenever possible because of severely reduced climb capability. However, if a go-around is mandatory, make the decision much earlier in the approach than normal. Apply takeoff power and maintain 95 to 110 KIAS while retracting the flaps slowly in small increments.

AVIONICS/AUTOPILOT

PITCH TRIM FAILURE (Red PTRM ON PFD)

- 1. Control Wheel GRIP FIRMLY
- 2. AP/TRIM DISC Button..... PRESS

(high elevator control forces possible)

3. ELEVATOR TRIM RETRIM (using manual trim wheel)

NOTE

Actuate each half of the pilot and copilot Manual Electric Pitch Trim Switches separately to make sure trim does not actuate with only one half switch.

IF Red PTRIM CAS MESSAGE CLEARS

Procedure complete

IF Red PTRM MESSAGE REMAINS

4. Autopilot DO NOT RE-ENGAGE

YAW DAMPER INOPERATIVE (Red AFCS OR YAW CAS MSG)

1. AFCS Circuit Breaker (circuit breaker panel) CHECK

IF STILL INOPERATIVE

2. Autopilot will be inoperative.

ELECTRICAL FAILURES

GENERATOR FAILURE (Amber GENERATOR OFF CAS MSG)
1. BUS VOLTS CHECK
Monitor voltage and generator output. 2. STBY ALT PWR VERIFY ON
IF BUS VOLTS IS LESS THAN 28.5:
3. GEN AMPS CHECK
IF GEN AMPS IS ZERO:
a. GEN CONT and GEN FIELD Circuit Breakers PUSH IN (top row last 2 breakers on forward end)
b. GENERATOR Switch
IF GENERATOR OUTPUT RESUMES:
c. BUS VOLTS MONITOR (and monitor GEN AMPS)
If BUS VOLTS increases past 32.5, expect the generator to trip offline again. If this occurs, complete the Generator Failure checklists beginning with step 3d.

GENERATOR FAILURE (Amber GENERATOR OFF CAS MSG) (Continued)

IF GEN AMPS IS STILL ZERO:

d.	GENERATOR Switch	TRIP
e.	AVIONICS BUS TIE Switch	ON
f.	AVIONICS STBY PWR Switch	ON

NOTE

AVIONICS No. 1 and No. 2 Switches must remain ON in order for the battery to power the avionics buses.

g.	Eleo	ctrical Load REDUCE
•	(1)	CABIN Switch OFF
		POWER OUTLETS Switch OFF
		STROBE Switch OFF
		LDG and TAXI/ RECOG Switches OFF
	. ,	NOTE

Keep LDG and TAXI/ RECOG OFF until required for approach and landing. Prior to landing, only turn LEFT LDG light ON to keep electrical load below limit.

	(5) VENT AIR FANS OFF
	(6) AIR CONDITIONING (if installed) OFF
	(7) GEN CONT and GEN FIELD Circuit Breakers PULL
	(top row, last two breakers on forward end)
	(8) RIGHT PITOT HEAT Circuit Breaker PULL
	(second row, third breaker from aft end)
	(9) RDNG LIGHT Circuit Breaker PULL
	(third row, second breaker from aft end)
	(10) RADAR R/T Circuit Breaker PULL
	(AVN BUS 1, second row, sixth breaker from left side)
	(11) HF RCVR and HF AMP Circuit Breakers PULL
	(AVN BUS 2, second row, fifth and
	sixth breakers from left side)
h.	ALT AMPS VERIFY BELOW 75 AMPS
	(continue shedding if not below 75 amps)
i.	Flight CONTINUE
	NOTE

With Standby Alternator powering the electrical system, the flight can continue to destination airport with the Amber GENERATOR OFF CAS message displayed. Monitor alternator load using ENGINE SYSTEM page.

VOLTAGE HIGH (Red VOLTAGE HIGH CAS MSG)

IF THE GENERATOR DOES NOT TRIP AUTOMATICALLY ABOVE 32.5 VDC:

2. GENERATOR Switch **TRIP** Complete the GENERATOR FAILURE checklist beginning with step 3d.

VOLTAGE LOW (Red VOLTAGE LOW CAS MSG)

1. BUS VOLTS	CHECK
--------------	-------

CAUTION

A Red VOLTAGE LOW CAS MSG followed by a BUS 1, BUS 2 or STBY PWR Circuit Breaker tripping can indicate a feeder fault that has isolated itself. Do not reset the tripped breaker. The Red VOLTAGE LOW CAS MSG should disappear.

2. STBY ALT PWR VERIFY ON IF VOLTAGE IS LESS THAN 24.5, Amber GENERATOR OFF AND Amber STBY PWR INOP CAS MSG(s) ON:

3.	GEN CONT and GEN FIELD Circuit Breakers	PUSH IN
4.	GENERATOR Switch	RESET
5.	STBY ALT PWR Switch OFF;	THEN ON

IF BUS VOLTS IS STILL LESS THAN 24.5:

6.	GENERATOR Switch	TRIP
7.	STBY ALT PWR Switch	OFF

SECTION 3 EMERGENCY PROCEDURES

VOLTAGE LOW (Red VOLTAGE LOW CAS MSG) (Continued)			
8.	Ele	ectrical Load REDUC	É
	a.	AVIONICS STBY PWR Switch OF	F
	b.	AVIONICS BUS TIE Switch OF	F
	C.	ANTI-ICE PRIMARY Switch NORI	Μ

NOTE

TKS Ice Protection System PRIMARY switch must be kept in NORM in order to keep the electrical load within limits on BATTERY power ONLY.

d.	PROP HEAT Switch (if installed)	OFF
e.	CABIN Lights	OFF
f.	STROBE lights	OFF
g.	LDG and TAXI/RECOG lights	OFF

NOTE

Keep LDG and TAXI/RECOG lights OFF until required for approach and landing. Prior to landing, only turn the LEFT LDG light ON to keep electrical load below limit.

	h.	VENT AIR FANS.
	i.	AIR CONDITIONING (if installed) OFF
	J.	GEN CONT and GEN FIELD Circuit Breakers PULL
		(top row, last two breakers on forward end)
	k.	RIGHT PITOT HEAT Circuit Breaker PULL
		(second row, third breaker from aft end)
	Ι.	RDNG LIGHT Circuit Breaker PULL
		(third row, second breaker from aft end)
	m.	RADAR R/T Circuit Breaker
		(AVN BUS 1, second row, sixth breaker from left side)
	n.	AVIONICS No. 2 Switch OFF
9.	BA	TT AMPS 45 AMPS
10.	FLI	GHT TERMINATE (as soon as possible) (refer to the appropriate FORCED LANDINGS procedure in this Section)

ENGINE MALFUNCTIONS

LOSS OF OIL PRESSURE (Red OIL PRESS LOW CAS MSG)

1. Oil Pressure Indication MONITOR

CAUTION

If oil pressure indications confirm warning CAS MSG, proceed in accordance with Engine Failures checklists or at the discretion of the pilot and consistent with safety, continue engine operation in preparation for an emergency landing as soon as possible.

FUEL CONTROL UNIT MALFUNCTION IN THE PNEUMATIC OR GOVERNOR SECTIONS (Engine Power Rolls Back To Idle)

1.	POWER Lever	E.
2.	EMERGENCY POWER Lever	E
	(maintain 65% N _g minimum during fligh	ıt)

CAUTION

The EMERGENCY POWER lever overrides normal fuel control functions and results in the direct operation of the fuel metering valve. Utilize slow and smooth movement of the EMERGENCY POWER lever to avoid engine surges, and/or exceeding ITT, N_g, and torque limits.

EMERGENCY POWER LEVER NOT STOWED (Red EMERG PWR LVR CAS MSG)

1. EMERGENCY POWER Lever VERIFY NORMAL

FUEL SYSTEM

FUEL FLOW INTERRUPTION TO FUEL RESERVOIR (Red RSVR FUEL LOW CAS MSG)

1.	FUEL TANK SELECTORS	BOTH	ON
2.	IGNITION Switch.		ON
3.	FUEL BOOST Switch		ON

- 4. If Red RSVR FUEL LOW CAS MSG remains and there is usable fuel in the wing tanks:
 - a. Carefully monitor engine indications and Amber FUEL PRESS LOW CAS MSG for signs of fuel starvation.
 - b. Land as soon as possible and determine cause of Red RSVR FUEL LOW warning.

WARNING

If there are signs of fuel starvation, prepare for a forced landing (as described in Emergency Landing Without Engine Power).

FUEL TANK SELECTOR OFF DURING ENGINE START (Red FUEL SELECT OFF CAS MSG And Both Fuel Selector Warning Horns Activated)

1. FUEL TANK SELECTORS BOTH ON

FUEL LEVEL LOW AND SINGLE FUEL SELECTOR OFF (Red FUEL SELECT OFF and Amber L, R, OR L-R FUEL LOW CAS MSG(s)) and/or BOTH FUEL TANK SELECTORS OFF (Red FUEL SELECT OFF CAS MSG AND ONE FUEL WARNING HORN ACTIVATED)

START CONT AND/OR FUEL SELECT WARN CIRCUIT BREAKER(S) TRIPPED (Red FUEL SELECT OFF CAS MSG)

NOTE

With either the START CONT or FUEL SELECT WARN Circuit Breaker tripped, the Red FUEL SELECT OFF CAS MSG will be displayed and the FUEL SELECT WARNING HORNS will be inoperative.

CAUTION

Do not reset circuit breakers more than once and only after a 2 minute cool off period.

EXPANDED EMERGENCY

ENGINE FAILURE

If an engine failure occurs during the takeoff roll, the most important thing to do is stop the airplane on the remaining runway. Those extra items on the checklist will provide added safety after a failure of this type.

Prompt lowering of the nose to maintain airspeed and establish a glide attitude is the first response to an engine failure after takeoff. Feathering the propeller substantially reduces drag, thereby providing increased glide distance. In most cases, the landing should be planned straight ahead with only small changes in direction to avoid obstructions. Altitude and airspeed are seldom sufficient to execute a 180° gliding turn necessary to return to the runway. The checklist procedures assume that adequate time exists to secure the fuel and electrical systems prior to touchdown.

After an engine failure in flight, the best glide speed, as shown in Figure 3-1, should be established as quickly as possible. Propeller feathering is dependent on existing circumstances and is at the discretion of the pilot. Maximum RPM selection will provide increased gas generator windmilling speed for emergency restarts in the event of a starter failure. On the other hand, to obtain the maximum glide, the propeller must be feathered.

ENGINE FAILURE (Continued)

While gliding toward a suitable landing area, an effort should be made to identify the cause of the power loss. An engine failure might be identified by abnormal temperatures, mechanical noises or high vibration levels in conjunction with the power loss. A flameout will be noticed by a drop in ITT, torque and% N_{q} .

CAUTION

Do not attempt to restart an engine that is definitely known to have failed.

A flameout can result from the engine running out of fuel, or by unstable engine operation. Unstable engine operation such as a compressor surge (possible due to a bleed valve malfunction) can be identifiable by an audible popping noise just before flameout. Once the fuel supply has been restored to the engine or cause of unstable engine operation eliminated, the engine can be restarted.

The best airstart technique is to initiate the relight procedure immediately after a flameout occurs, provided the pilot is certain that the flameout was not the result of some malfunction that might make it hazardous to attempt a relight.

Regardless of airspeed or altitude, there is always the possibility that the engine can light up successfully just as soon as the ignition is turned on. In an emergency, turn on the ignition just as soon as possible after flameout, provided the gas generator speed has not dropped below 50%. Under these circumstances, it is not necessary to shut off the fuel or feather the propeller. The POWER lever, however, should be retarded to IDLE position.

CAUTION

The pilot should determine the reason for power loss before attempting an airstart.

If a flameout has occurred and the gas generator speed has dropped below 50%, the FUEL CONDITION lever should be moved to the CUTOFF position before an airstart is attempted.

SECTION 3 EMERGENCY PROCEDURES

GROUND DISTANCE - NAUTICAL MILES

Figure 3-1

Propeller feathering is dependent on circumstances and is at the discretion of the pilot. However, if engine oil pressure drops below 15 psi, the propeller should be feathered.

If an airstart is to be attempted, follow the checklist procedures. The Starter Assist procedure is preferred since it results in cooler engine starts. Successful airstarts (with starter assist) can be achieved at all airspeeds normally flown and up to an altitude of 14,000 feet. However, above 14,000 feet, or with the gas generator RPM below 10%, starting temperatures tend to be higher and caution is required.

(Continued Next Page)

3-32

ENGINE FAILURE (Continued)

CAUTION

The FUEL CONDITION Lever can be moved momentarily to CUTOFF and then back to LOW IDLE if overtemperature tendencies are encountered. This reduces the flow of fuel to the combustion chamber.

If the engine starter is inoperative, follow the No Starter Assist checklist procedures for an airstart.

CAUTION

- If a rise in N_g and ITT are not indicated within 10 seconds, place FUEL CONDITION lever to cutoff and abort start. Refer to Emergency Procedures Engine Failure During Flight and Emergency Landing Without Engine Power.
- Emergency airstarts can be attempted below 10% N_g and outside the normal airspeed envelope, but ITT should be closely monitored. the FUEL CONDITION lever can be moved alternately to cutoff and then back to low idle if overtemperature tendencies are encountered.
- Do not attempt an airstart without starter assist with 0% $N_g.$

FORCED LANDINGS

If all attempts to restart the engine fail and a forced landing is imminent, select a suitable field and prepare for the landing as discussed under the Emergency Landing Without Engine Power checklist.

Before attempting an off-airport landing with engine power available, one should fly over the landing area at a safe but low altitude to inspect the terrain for obstructions and surface conditions, proceeding as discussed in the Precautionary Landing With Engine Power checklist.

NOTE

The overhead fuel tank selectors control shutoff valves at the wing fuel tank outlets. To minimize the possibility of a fire, these selectors can be set to the OFF position during the final phase of an approach to an "off-airport" landing. With the selectors turned OFF, there is adequate fuel in the fuel reservoir tank for 3 minutes of maximum continuous power operation or approximately 9 minutes idle power operation. A warning horn will sound with both fuel selectors turned OFF. If the noise of the warning horn is too distracting, it can be silenced by pulling the START CONT circuit breaker.

WARNING

If the precautionary landing is aborted, turn the fuel tank selectors to the on position after initiating the balked landing.

DITCHING

Prepare for ditching by securing or jettisoning heavy objects located in the baggage area and collect folded coats for protection of occupants' faces at touchdown. Transmit Mayday message on 121.5 MHz giving location and intentions and squawk 7700. Avoid a landing flare because of difficulty in judging height over a water surface.

LANDING WITHOUT ELEVATOR CONTROL

Using power lever and elevator trim control, trim for approximately 500 fpm descent with 20° flaps at 85 KIAS. Then control the glide angle by adjusting power. If required, make small trim changes to maintain approximately 85 KIAS as power is adjusted during the approach.

The landing flare can be accomplished by a gentle power reduction accompanied by nose up trim. At forward C.G. loadings, it can be necessary to make a small power increase in the final flare stage to bring the nose up and prevent touchdown on the nose first. After touchdown, move the POWER lever to idle.

SMOKE AND FIRE

In the event a fire is encountered, the following information will be helpful in dealing with the emergency as quickly and safely as possible.

The preflight checklist in Section 4 is provided to aid the pilot in detecting conditions which could contribute to an airplane fire. As a fire requires a combustible material, oxygen and a source of ignition, close preflight inspection should be given to the engine compartment and the underside of the wing and fuselage. Leaks in the fuel or oil systems can lead to a ground or in-flight fire.

WARNING

Flight should not be attempted with known fuel or oil leaks. The presence of fuel or unusual oil stains can be an indication of system leaks and should be corrected prior to flight.

Probable causes of an engine fire are a malfunction of the fuel control unit and improper starting procedures. Improper procedures such as starting with the EMERGENCY POWER Lever out of NORMAL position or introducing fuel into the engine when gas generator speed is below 10% RPM will cause a hot start which can result in an engine fire. In the event that this occurs, proceed in accordance with the Engine Fire During Start On Ground checklist.

If an airplane fire is discovered on the ground or during takeoff, but prior to committed flight, the airplane should be stopped and evacuated as soon as practical.

(Continued Next Page)

U.S. 3-35

SMOKE AND FIRE (Continued)

Engine fires originating in flight must be controlled as quickly as possible in an attempt to prevent major structural damage. Immediately shut off all fuel to the engine and shut down the engine. Close the cabin heat firewall shutoff control and forward side vents to avoid drawing fire into the cabin, open the overhead vents, extend 20° to FULL flaps and slow down to 80-85 KIAS. This provides a positive cabin pressure in relation to the engine compartment. An engine restart should not be attempted.

An open foul weather window produces a low pressure in the cabin. To avoid drawing the fire into the cabin, the foul weather window should be kept closed.

A fire or smoke in the cabin should be controlled by identifying and shutting down the faulty system. Smoke can be removed by opening the cabin ventilation controls. When the smoke is intense, the pilot can choose to expel the smoke through the foul weather window. The foul weather window should be closed immediately if the fire becomes more intense when the window is opened.

The initial indication of an electrical fire is usually the odor of burning insulation. The checklist for this problem should result in elimination of the fire.

EMERGENCY OPERATION IN CLOUDS

If the vacuum pump fails in flight, the standby attitude indicator will not be accurate. The pilot must rely on the attitude and heading information (from the AHRS) shown on the PFD indicators. With valid HDG or GPS/ NAV inputs, autopilot operation will not be affected.

If a single AHRS unit fails in flight (red X's shown through the PFD attitude and heading indicators), the pilot must rely on the cros-side AHRS for attitude and heading information.

The autopilot will not operate if a single AHRS unit fails. The pilot must manually fly the airplane with crosside AHRS input. Refer to Section 7, Airplane and Systems Description, for additional details on autopilot operations.

The following instructions assume a dual AHRS failure and that the pilot is not very proficient at instrument flying.

EXECUTING A 180° TURN IN CLOUDS (AHRS FAILURE)

Upon inadvertently entering the clouds, an immediate turn to reverse course and return to VFR conditions should be made as follows:

DUAL AHRS FAILURE

- 1. Note the non-stabilized magnetic compass heading.
- 2. Set rudder trim to the neutral position.
- 3. Using the standby attitude indicator, initiate a 15° bank left turn. Keep feet off rudder pedals. Maintain altitude and 15° bank angle. Continue the turn for 60 seconds, then roll back to level flight.
- 4. When the compass card becomes sufficiently stable, check the accuracy of the turn by verifying that the compass heading approximates the reciprocal of the original heading.
- 5. If necessary, adjust the heading by keeping the wings level and using the rudder to make skidding turns (the compass will read more accurately) to complete the course reversal.
- 6. Maintain altitude and airspeed by cautious application of elevator control. Keep the roll pointer and index aligned and steer only with rudder.

EMERGENCY DESCENT THROUGH CLOUDS (AHRS FAILURE)

When returning to VFR flight after a 180° turn is not practical, a descent through the clouds to VFR conditions below can be appropriate. If possible, obtain an ATC clearance for an emergency descent through the clouds.

DUAL AHRS FAILURE

Choose an easterly or westerly heading to minimize non-stabilized magnetic compass card sensitivity. Occasionally check the compass heading and make minor corrections to hold an approximate course. The autopilot will not operate if the AHRS unit fails. The pilot must manually fly the airplane without AHRS input.

DUAL AHRS FAILURE (Continued)

Before descending into the clouds, prepare for a stabilized descent as follows:

- 1. Set rudder trim to neutral position.
- 2. Turn pitot heat on.
- 3. Set power for a 500 to 800 feet per minute rate of descent.
- 4. Set the elevator trim for a stabilized descent at 115 KIAS.
- 5. Use the standby attitude indicator roll pointer and index to keep wings level.
- 6. Check trend of compass card movement and make cautious corrections with rudder to stop the turn.
- 7. Upon breaking out of clouds, resume normal cruising flight.

RECOVERY FROM SPIRAL DIVE IN THE CLOUDS (AHRS FAILURE)

DUAL AHRS FAILURE

If a spiral is entered while in the clouds, continue as follows:

- 1. Retard POWER lever to idle position.
- 2. Remove feet from rudder pedals.
- 3. Stop turn by carefully leveling the wings using aileron control to align the roll index and roll pointer of the standby attitude indicator.
- 4. Cautiously apply elevator back pressure to slowly reduce the airspeed to 115 KIAS.
- 5. Adjust the elevator trim control to maintain an 115 KIAS glide.
- 6. Set rudder trim to neutral position.
- 7. Use aileron control to maintain wings level (keep roll pointer and index aligned) and constant heading.
- 8. Resume EMERGENCY DESCENT THROUGH THE CLOUDS procedure.
- 9. Upon breaking out of clouds, resume normal cruising flight.

SPINS

Intentional spins are prohibited in this airplane. Should an inadvertent spin occur, the following recovery technique can be used.

- 1. RETARD POWER LEVER TO IDLE POSITION.
- 2. PLACE AILERONS IN NEUTRAL POSITION.
- 3. APPLY AND HOLD FULL RUDDER OPPOSITE TO THE DIRECTION OF ROTATION.
- 4. IMMEDIATELY AFTER THE RUDDER REACHES THE STOP, MOVE THE CONTROL WHEEL BRISKLY FORWARD FAR ENOUGH TO BREAK THE STALL. Full down elevator will be required at aft center of gravity loadings to assure optimum recoveries.
- 5. HOLD THESE CONTROL INPUTS UNTIL ROTATION STOPS. Premature relaxation of the control inputs can extend the recovery.
- 6. AS ROTATION STOPS, NEUTRALIZE RUDDER AND MAKE A SMOOTH RECOVERY FROM THE RESULTING DIVE.

ENGINE MALFUNCTIONS

LOSS OF OIL PRESSURE

The complete loss of oil pressure, as evidenced by the Red OIL PRESS LOW CAS MSG and confirmed by the oil pressure indication reading, implies that the pilot will eventually lose control of the propeller as the propeller springs and counterweights drive the propeller blades into feather. Also, the engine will eventually seize. Therefore, if the pilot elects to continue to operate the engine after loss of oil pressure, engine and propeller operation should be closely monitored for indication of the onset of propeller feathering or engine seizure and the engine failure checklist should be completed at that time.

Operation of the engine at a reduced power setting (preferably at the minimum power required for the desired flight regime) will generally prolong the time to loss of engine/propeller thrust.

Operation of the engine with the oil pressure in the yellow band is not considered critical, but is a cause for concern and should be tolerated only for the completion of the flight. Continued monitoring of the oil pressure gauge will provide an early indication of dropping oil pressure due to insufficient oil supply or a malfunctioning oil pump, and will give the pilot additional time to divert to a suitable emergency landing area with the engine operating.

FUEL CONTROL UNIT MALFUNCTION IN THE PNEUMATIC OR GOVERNOR SECTIONS

A malfunction in the pneumatic or governor sections of the fuel control unit can cause engine power to decrease to minimum flow idle. Symptoms of this type failure would be an ITT indication in the typical idle range of 500°C to 600°C, N_g of 48% or above (increases with altitude), and no engine response to POWER lever movement. If this type of malfunction has occurred, the EMERGENCY POWER lever (fuel control manual override) can be used to restore engine power. To use the manual override system, place the POWER lever at its IDLE position and move the EMERGENCY POWER lever forward of its IDLE gate and advance as required.

CAUTION

When using the fuel control manual override system, engine response can be more rapid than when using the POWER lever. Utilize slow and smooth movement of the EMERGENCY POWER lever to avoid engine surges, and/or exceeding ITT, N_a , and torque limits.

NOTE

- When using EMERGENCY POWER lever, monitor gas generator RPM when reducing power near idle, to keep it from decreasing below 65% in flight.
- The EMERGENCY POWER lever can have a dead band, such that no engine response is observed during the initial forward travel from the IDLE position.

EMERGENCY POWER LEVER NOT STOWED

The Red EMERG PWR LVR CAS message was designed to alert the pilot of the Emergency Power Lever position prior to and during the engine start sequence. If the Emergency Power Lever is moved from the NORMAL position at any time with the engine running, no CAS message will be displayed.

FUEL SYSTEM MALFUNCTION/INADVERTENT FUEL FLOW INTERRUPTION PROCEDURES

Fuel flows by gravity from the wing tanks, through fuel tank shutoff valves at the inboard end of each wing tank, and on to the reservoir located under the center cabin floorboard. After engine start, the main ejector pump (located in the reservoir) provides fuel to the enginedriven fuel pump at approximately 10 psi.

If the main ejector pump should malfunction, a pressure switch will activate the Amber FUEL PRESS LOW CAS MSG as well as turn on the auxiliary boost pump (when the FUEL BOOST Switch is in the NORM position) anytime the fuel pressure drops below approximately 4.75 psi.

Anytime the level of fuel in the reservoir drops to approximately one half full, the Red RSVR FUEL LOW CAS MSG will illuminate. If this occurs, the pilot should immediately verify that both FUEL TANK SELECTORS (located in the overhead panel) are ON and turn on the ignition and FUEL BOOST Switches.

WARNING

There is only enough fuel in the reservoir for approximately 1-1/2 minutes of engine operation at maximum continuous power after illumination of the Red RESERVOIR FUEL LOW CAS MSG.

If the FUEL TANK SELECTORS have been left off, turning them on will quickly fill the reservoir and extinguish the Red RSVR FUEL LOW CAS MSG. Once the cause of the Red RSVR FUEL LOW condition has been determined and corrected (CAS MSG extinguished), the ignition and FUEL BOOST Switches can be returned to their NORM positions.

A fuel selector off warning system advises the pilot if both fuel tank selectors are in the OFF position before engine start, if either fuel tank selector is OFF during engine start, or if one FUEL TANK SELECTOR is OFF and the fuel level in the tank being used drops below approximately 25 gallons. The warning system includes a Red CAS MSG labeled FUEL SELECT OFF and two warning horns. If the FUEL SELECT WARN circuit breaker has popped or the START CONT circuit breaker has been pulled (possibly for ground maintenance), the Red FUEL SELECT OFF CAS MSG will be illuminated even with both FUEL TANK SELECTORS in the ON position. This is a warning to the pilot that the fuel selector off warning system has been deactivated. See Section 7 for further details on the fuel selector off warning system.

ELECTRICAL FAILURES

GENERATOR OR MAIN BUS MALFUNCTIONS

Illumination of the VOLTAGE LOW CAS MSG is a warning that the power distribution bus voltage is low enough to start discharging the battery. BUS VOLTS reading is used to verify the low bus voltage. A low or zero reading of the GEN AMPS confirms that the charge is insufficient or generator output current is zero. If the GENERATOR OFF CAS MSG is illuminated, it indicates that the generator contactor has disconnected the generator from the power distribution bus. The most likely causes of a generator trip (disconnection) are line surges, tripped circuit breakers or accidental switch operation. In these cases, follow the checklist procedures to restore generator operation.

The airplane is equipped with two starter contactors. One is used for starts on external power and the other for battery starts. If either contactor does not open after reaching approximately 46% N_g , the amber STARTER ON CAS MSG will remain illuminated. In most cases when this occurs, the generator will not transfer to the generator mode, and the GENERATOR OFF CAS MSG will remain illuminated. Under these conditions, it will be necessary to shut down the engine using checklist procedures and correct the malfunction prior to flight.

Illumination of the Amber GENERATOR AMPS CAS MSG indicates 1 of 2 conditions:

- 1. The current load on the generator is above its rated value for that flight condition. The pilot should reduce the electrical load, or change flight conditions as noted in the 300 Amp Starter Generator supplement.
- 2. The reverse current protection of the GCU has failed. If the GEN AMPS is below -10 amps the pilot should disconnect the generator from the electrical system by tripping the GENERATOR Switch.

The electrical power distribution system consists of a primary power distribution bus in the engine compartment which receives power from the battery and the generator, and two (No. 1 and No. 2) main power buses located in the circuit breaker panel. The main buses are each connected to the power distribution bus by three feeder cables. Each feeder cable is protected by a fuse link and a circuit breaker. This multiple feeder system provides automatic isolation of a feeder cable ground fault. If one of the three 30-amp feeder circuit breakers on either bus opens, it should be assumed that a feeder cable ground fault has been isolated, and attempted resetting of these breakers prior to troubleshooting is not recommended. The electrical load on the affected bus should be maintained below the remaining 60-ampere capacity.

LOSS OF ELECTRICAL POWER

The design of the electrical power system, due to the self-exciting feature of the generator and the multiple protected busing system, minimizes the possibility of a complete electrical power loss. However, a fault to ground (airframe) on the generator or battery cables can be identified by one or more of the following: illumination of the GENERATOR OFF CAS MSG, sudden dimming of lights, contactor chattering, circuit breaker tripping, or arching noises. Monitoring GEN AMPS, ALT AMPS, BAT AMPS, and BUS VOLTS on the ELECTRICAL section of the EIS Systems page will provide further information concerning the location of the fault, or the system affected by the fault. In the event of the above indications, the portion of the system containing the fault should be isolated. Following the checklist procedures for Generator Failure should result in restoration of electrical power to the distribution buses. The electrical section of the EIS Systems page should be monitored to assure that ground fault currents have been shut off and the capacity of the remaining power source(s) is not exceeded.

PARTIAL AVIONICS POWER FAILURE

Avionics power is supplied to the No. 1 and No. 2 avionics buses from the power distribution bus in the engine compartment through separate protected feeder cables. In the event of a feeder cable failure, both avionics buses can be connected to the remaining feeder by closing the guarded AVIONICS BUS TIE Switch. If a ground fault has occurred on one feeder, it will be necessary to verify the avionics power switch/ breaker associated with the affected feeder is off before the AVIONICS BUS TIE Switch will restore power to both avionics buses. The maximum avionics load with one feeder should be limited to 30 amperes. Nonessential avionics equipment should be turned off.

STANDBY ELECTRICAL SYSTEM MALFUNCTIONS

An operational check of the standby electrical system is performed by following the Normal Procedures, Before Takeoff checklist. With the generator supplying the electrical load and the STBY ALT PWR Switch ON, both the Amber STBY PWR ON CAS MSG and STBY PWR INOP CAS MSG, should be extinguished.

The ALT AMPS should indicate zero amps. If the STBY PWR INOP CAS MSG is illuminated, it indicates that the alternator has no output. If a line voltage surge or temporary condition has tripped the ACU (alternator control unit), then cycling the STBY ALT PWR Switch to OFF, then back ON, can reset the ACU and restore standby power.

STANDBY ELECTRICAL SYSTEM MALFUNCTIONS

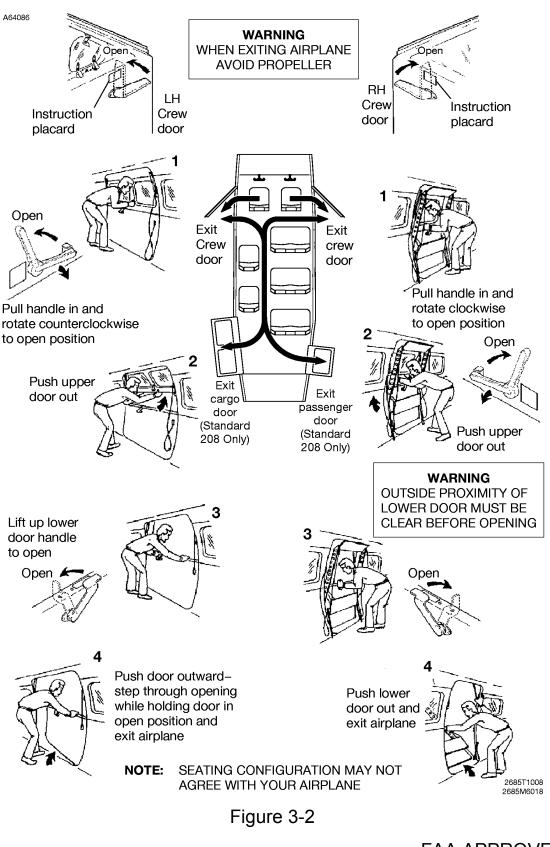
(Continued)

If, due to a power system malfunction, the standby electrical system is carrying part of the electrical load (more than 10 amps), the STBY PWR ON CAS MSG will be illuminated and the ALT AMPS in the EIS Systems page will indicate the amount of current being supplied by the standby electrical system.

To attempt to restore main power, refer to the Section 3 emergency procedures for Generator Failure. If this attempt is successful, the standby electrical system will revert to its normal no-load condition and the STBY PWR ON CAS MSG will extinguish. If main electrical power cannot be restored, reduce nonessential loads as necessary to remain within the 75-amp capability of the standby electrical system. Loads in excess of this capability will be indicated by an Amber ALTNR AMPS CAS MSG.

If the reverse current protection of the ACU fails, an Amber ALTNR AMPS CAS MSG will display when the reverse current is detected to be less than -8 amps. The pilot should disconnect the standby alternator by turning the STBY ALT PWR Switch OFF.

EMERGENCY EXITS


Use of the crew entry doors, the passenger entry doors, and the cargo doors for emergency ground egress from the Standard 208B is illustrated in Emergency Exit chart. Emergency ground egress from the Cargomaster is accomplished by exiting the airplane through the left and right crew entry doors as shown in Figure 3-2.

WARNING

- Do not attempt to exit the Cargomaster through the cargo doors. Since the inside of the upper door has no handle, exit from the airplane through these doors is not possible.
- When exiting the airplane, avoid the propeller area.

EMERGENCY EXITS (TYPICAL)

U.S.

SECTION 3 ABNORMAL PROCEDURES

Abnormal Landing	3-51
Avionics/Autopilot	3-52 3-52
(Amber ALT MISCOMP INDICATION PFD) Airspeed Miscompare	3-53
(Amber IAS MISCOMP INDICATION PFD)) Pitch/Roll/Heading Miscompare	3-55
(Amber PIT/ROL/HDG MISCOMP INDICATION PFD) Display Unit Failure Dual GPS Failure	
(Amber "DR" or "LOI" on HSI INDICATION PFD)Audio Panel FailureLoss of Radio Tuning FunctionsTransponder FailureFailed Airspeed, Altitude, and/or Vertical Speed	3-60 3-60
(Red "X" on PFD Airspeed, Altitude, and/or Vertical Speed Indicators) Failed Attitude and/or Heading (Attitude Fail	3-60
and/or Red "X" over Heading Display on PDF)Loss of Navigation Data (Lateral Deviation Bar	3-62
not Present and/or Glideslope Index Clears) Inaccurate Overspeed Warning Inaccurate Flight Director Display BOTH ON ADC1/2	3-64 3-65
BOTH ON AHRS 1/2	

SECTION 3 CESSNA ABNORMAL PROCEDURES MODEL 208B G1000 Table of Contents (Continued) Multi-Function Display Fan Failed (White MFD FAN Fail CAS MSG) 3-67 Primary Flight Display 1 Fan Failed Primary Flight Display 2 Fan Failed Upper Half of Cargo Door or Upper Half of Passenger Airstair Door Open (Amber DOOR UNLATCHED CAS MSG)..... 3-67 Right or Left Crew Doors Open 3-68 Cargo Pod Door(s) Open..... 3-68 Starter Contactor Does Not Disengage After Start Generator Load Above Limit (Amber GENERATOR AMPS CAS MSG) 3-68 Altenator Load Above Limit

 (Amber STBY PWR INOP CAS MSG).
 3-69

 Standby Power On
 (White STBY PWR ON CAS MSG).
 3-69

 Engine
 3-70

 Gear Box Contamination (Amber Chip Detect CAS MSG)
 3-70

 Ignition On (White IGNITION ON CAS MSG)
 3-70

 Flight Controls
 3-70

 Asymmetric Flap Extension or Sudden
 3-70

 Flap Retraction on One Side
 3-70

 Standard Controls
 3-70

 In Flap Retraction on One Side
 3-70

 Standard Controls
 3-70

 Stan

(Amber ALT AMPS CAS MSG) 3-68

(Continued Next Page)

3-48

Standby Power Inoperative

Table of Contents (Continued)

Fuel	3-72
Auxilliary Fuel Boost Pump ON	
(Amber FUEL BOOST ON CAS MSG)	3-72
Loss of Fuel Pressure	
(Amber FUEL PRESS LOW CAS MSG)	3-72
Fuel Level Low (Amber L, R, L-R FUEL LOW CAS MSG(s))	3-72
Ice and Rain Protection	3-73
HEAT CAS MSG)	3-73
Stall Heat Failure (Amber STALL HEAT CAS MSG)	3-77
Miscellaneous Emergency Descent Procedures	
	\mathbf{v}

EXPANDED ABNORMAL

78
78
78
78
78
79
79
79
79
30
30
30
30
30

ABNORMAL LANDING

LANDING WITH FLAT MAIN TIRE

		FLY (as desired to lighten fuel load)
2.	FUEL SELECTORS	POSITION ONE SIDE OFF
	(to ligh	ten load on side of flat tire maximum
		fuel unbalance of 200 pounds)
3.	Approach	NORMAL (FLAPS FULL)
4.	Touchdown	INFLATED TIRE FIRST
		Hold airplane off flat tire as long as
		possible with aileron control.
5.	Directional Control	MAINTAIN
	(using brake or	n wheel with inflated tire as required)

LANDING WITH FLAT NOSE TIRE

1.	Passengers and Baggage	MOVE AFT (if practical)
	Re	main within approved C.G. envelope.
2.	Approach	NORMAL (FLAPS FULL)
3.	Touchdown	NOSE HIGH
	Hold nose whe	eel off as long as possible during roll.
4.	Brakes	MINIMUM NECESSARY

AVIONICS/AUTOPILOT

AILERON MISTRIM (←AIL OR AIL→ INDICATION PFD)

1.	Control Wheel GRIP FIRMLY
2.	AP/TRIM DISC Button PRESS
	(high aileron control forces possible)

NOTE

The YAW DAMPER does not need to be disconnected for this procedure. Therefore it is permissible to use the LEFT half of either Manual Electric Pitch Trim Switch or 1 press of the AP button on the Autopilot Mode Control panel to disconnect the autopilot.

3.	AILERON TRIM	RETRIM
4.	Autopilot	ENGAGE (as desired)

SECTION 3 ABNORMAL PROCEDURES

CESSNA MODEL 208B G1000

ELEVATOR MISTRIM (\uparrow ELE OR \downarrow ELE INDICATION PFD)

1.	Control Wheel		 	 	GRIP	FIRMLY
2.	AP/TRIM DISC Button		 	 		PRESS
		<i>/</i> · ·			~	

(high elevator control forces possible)

NOTE

The yaw damper does not need to be disconnected for this procedure. Therefore it is permissible to use the LEFT half of either Manual Electric Pitch Trim Switch or one press of the AP button on the Autopilot Mode Control panel to disconnect the autopilot.

3.	Elevator Trim Switch	AS	S REQUIRED
4.	Autopilot	ENGAGE	(as desired)

RUDDER MISTRIM (\leftarrow RUD OR RUD \rightarrow INDICATION PFD)

HOLD FIRMLY	Rudder Pedals	1.
PRESS	AP/TRIM DISC Button	2.
(high rudder control forces possible)		
AS REQUIRED	RUDDER TRIM	3.

4. Autopilot and Yaw Damper ENGAGE (as desired)

ALTITUDE MISCOMPARE (Amber ALT MISCOMP INDICATION PFD)

1. Altimeter Settings VERIFY (both pilot and copilot have the correct altimeter setting)

IF ANNUNCIATION DOES NOT CLEAR

(with Standby Altimeter)

WARNING

The Standby Altimeter uses the same static sources as the pilot's side air data computer (ADC1). Do not use Standby Altimeter as sole source in determining correct altitude.

IF COPILOT PFD AND STANDBY ALTIMETER AGREE (PILOT PFD DIFFERS)

3.	SENSOR Softkey (pilot PFD) PRESS
4.	ADC2 Softkey PRESS
5.	PFD ADI Displays CONFIRM
	("BOTH ON ADC2" is displayed on both PFDs)

IF PILOT PFD AND STANDBY ALTIMETER AGREE (COPILOT PFD DIFFERS)

6.	Autopilot	DISENGAGE	(altitude hold mode)
7.	ALT STATIC		PULL FULL ON

NOTE

The alternate static source is connected to the left PFD and standby instruments only. Refer to Section 5, Performance for airspeed and altimeter corrections.

ALTITUDE MISCOMPARE (Amber ALT MISCOMP INDICATION PFD) (Continued)

IF PILOT PFD AND STANDBY ALTIMETER AGREE (COPILOT PFD STILL DIFFERS)

6. Compare indicated altitude to GPS altitude on MFD AUX-GPS STATUS page to aid in determining which primary system is most accurate.

NOTE

- When comparing indicated altitude to GPS altitude, deviations from standard temperature or pressure can cause indicated altitude to deviate from GPS altitude. These errors are largest at high altitude and can amount to over 2,500 feet under some conditions. However, below 10,000 feet with the correct local altimeter setting set, GPS altitude will usually be within 600 feet or better of the correct indicated altitude. Use the following guidelines to help estimate correct altitude for non-standard conditions:
- Temperatures WARMER than standard can cause GPS altitude to read HIGHER than indicated altitude.
- Pressures LOWER than standard can cause GPS altitude to read HIGHER than indicated altitude.

IF ABLE TO IDENTIFY ACCURATE ALTITUDE SOURCE

- 5. Use SENSOR REVERSION to select most accurate ADC on both PFDs.
- 6. Land as soon as practical.

IF UNABLE TO IDENTIFY ACCURATE ALTITUDE SOURCE

- 5. Land as soon as practical. Consider diversion to visual conditions.
- 6. Maintain altitudes based on LOWEST indicated altitude.
- 7. ATC ADVISE (of inability to verify correct altitude)
- 8. If unable to descend into visual conditions, plan ILS approach with course intercept well outside the Final Approach Fix (FAF).
- 9. Once glideslope is captured, determine most accurate altitude source when crossing FAF.

ALTITUDE MISCOMPARE (Amber ALT MISCOMP INDICATION PFD) (Continued)

10. Reference ILS Decision Height to most accurate altimeter based on FAF crossing.

WARNING

TAWS alerts are based on GPS altitude and position information and are independent of ADC data. If a TAWS alert is received, it should be considered valid and appropriate terrain avoidance action should be taken.

AIRSPEED MISCOMPARE (Amber IAS MISCOMP INDICATION PFD)

1. Pilot and Copilot Airspeed COMPARE

(with Standby Airspeed Indicator)

WARNING

The Standby Airspeed Indicator uses the same Pitot-Static sources as the pilot's side air data computer (ADC1). Do not use Standby Airspeed Indicator as sole source in determining correct airspeed.

SECTION 3 ABNORMAL PROCEDURES

AIRSPEED MISCOMPARE (Amber IAS MISCOMP INDICATION PFD) (Continued)

IF STANDBY AIRSPEED AND COPILOT PFD AGREE (PILOT PFD DIFFERS)

2.	SENSOR Softkey (pilot PFD) PRESS
3.	ADC2 Softkey PRESS
4.	PFD ADI Displays CONFIRM
	("BOTH ON ADC2" is displayed on both PFDs)

IF PILOT PFD AND STANDBY AIRSPEED AGREE (COPILOT PFD DIFFERS)

2. Pilot and Copilot ALTITUDE NOTE

IF ALTITUDES AGREE

- 3. Airspeed 120 KIAS MINIMUM (on slowest indicator)
- 4. Monitor all three airspeed indicators during changes in power setting or altitude to determine which indicators are inaccurate. Indications of inaccurate airspeed include:
 - a. No change in indicated airspeed when power changed and altitude maintained.
 - b. Indicated airspeed increases when climbing or decreases when descending.
- 5. Use SENSOR REVERSION to select most accurate ADC on the affected PFD.
- 6. Airspeed RESUME NORMAL SPEEDS

IF ALTITUDES DO NOT AGREE

3. Refer to Abnormal Procedures, ALT MISCOMP procedure to determine most accurate ADC.

PITCH/ROLL/HEADING MISCOMPARE (Amber PIT/ROLL/ HDG MISCOMP INDICATION PFD)

This message is displayed when the G1000 detects a difference between the pilot's and copilot's attitude or heading information (displayed in the upper right of the PFD). Refer to GARMIN G1000 Cockpit Reference Guide for additional information.

PITCH OR ROLL MISCOMP INDICATION

- 1. Refer to STANDBY ATTITUDE indicator to determine which AHRS is providing the most accurate data.
- 2. Use SENSOR REVERSION to select the most accurate AHRS on the affected PFD.

HEADING MISCOMP

- 1. Refer to Magnetic Compass to determine which AHRS is providing the most accurate heading information.
- 2. Use SENSOR REVERSION to select the most accurate AHRS on the affected PFD.

NOTE

The magnetic compass is influenced by air conditioning. It must be turned OFF prior to referencing magnetic compass heading then may be reselected ON.

SECTION 3 ABNORMAL PROCEDURES

DISPLAY UNIT FAILURE

This is indicated by a complete loss of image on a display. If only individual elements of the display are failed, refer to appropriate procedures for the individual failures.

IF PFD

1. DISPLAY BACKUP Button **PRESS** (if required) Flight and EICAS information are displayed on the MFD.

NOTE

The PFD CDI SYNC and BARO SYNC settings must be ON to allow the copilot's PFD controls to affect settings on the MFD. These settings are accessible using the PFD MENU button.

Flight Director TRANSFER
((XFR button) to operating PFD)
FD Modes/AUTOPILOT RESELECT and REENGAGE
(as required)
Transponder SWITCH (to operating transponder)
COM and NAV Radios
(to operating Com and Nav radios)
PFD Controls USE OPERATING PFD
(for required data entry (Com, Nav, Baro setting, etc.)

IF MFD

1. Either DISPLAY BACKUP Button PRESS (EIS info will be displayed on PFDs)

DUAL GPS FAILURE (Amber "DR" OR "LOI" ON HSI INDICATION PFD)

IF ALTERNATE NAVIGATION SOURCES (ILS, LOC, VOR, DME, ADF) ARE AVAILABLE

1. Navigation..... USE ALTERNATE SOURCES

IF NO ALTERNATE NAVIGATION SOURCES ARE AVAILABLE

Dead reckoning (DR) mode active when the airplane is greater than 30 nautical miles from the destination airport.

1. Navigation..... USE (the airplane symbol and magenta course line on the map display)

WARNING

- All information normally derived from GPS turns amber. All of this information will become more inaccurate over time.
- TAWS is inoperative.

NOTE

- DR mode uses heading, airspeed, and the last known GPS position to estimate the airplane's current position.
- All maps with an airplane symbol show a ghosted airplane and a "DR" label.

DUAL GPS FAILURE (Amber "DR" OR "LOI" ON HSI INDICATION PFD) (Continued)

Loss of integrity (LOI) mode - active when the airplane is within 30 nautical miles of the destination airport (as calculated from the previous GPS or DR position).

1. Navigation FLY

(towards known visual conditions or available terminal navigation sources) Use ATC or other information sources as possible.

NOTE

- All information derived from GPS or DR is removed from the displays.
- The airplane symbol is removed from all maps. The map will remain centered at the last known position. "NO GPS POSITION" is shown in the center of the map.
- TAWS are inoperative.

AUDIO PANEL FAILURE

Audio panel failure may be indicated by a GMA FAIL Garmin System Message or the inability to communicate using the audio panel. This failure may also be accompanied by the loss of some aural warnings such as Altitude Alert, Autopilot Disconnect, TAWS, and Traffic alerts.

- 1. AUDIO Circuit Breaker PULL
- 2. COM Radio USE COM1 FOR COMMUNICATION

NOTE

In the event of an audio panel failure, a fail-safe circuit connects the pilot's headset directly to the COM 1 radio. The speakers will be inoperative.

LOSS OF RADIO TUNING FUNCTIONS

1. COM Frequency Toggle Button (affected PFD) PRESS AND HOLD (for 2 seconds)

NOTE

This procedure will tune the active COM field to the emergency frequency 121.5. Certain failures of the tuning system will automatically tune 121.5 without pilot action.

TRANSPONDER FAILURE

1.	TRANSPONDER SELECT OPPOSITE
	a. PFD XPDR Softkey PRESS
	b. XPDR1 or XPDR2 Softkey PRESS
	(to select opposite transponder)
2.	XPDR1 or XPDR2 Circuit Breaker (affected side) PULL

NOTE

The second transponder is an option on the 208.

FAILED AIRSPEED, ALTITUDE, AND/OR VERTICAL SPEED (Red "X" ON PFD AIRSPEED, ALTITUDE, AND/OR VERTICAL SPEED INDICATORS)

This indicates a loss of valid air data system information to the respective system.

IF BOTH SIDES

1. Airspeed and Attitude MONITOR

(using standby instruments)

2. Land as soon as practical.

FAILED AIRSPEED, ALTITUDE, AND/OR VERTICAL SPEED (Red "X" ON PFD AIRSPEED, ALTITUDE, AND/OR VERTICAL SPEED INDICATORS) (Continued)

IF ONE SIDE ONLY

- 1. Affected PFD SENSOR Softkey PRESS
- 2. Affected PFD ADC1/2 Softkey . . SELECT (opposite side ADC)
- 3. PFD ADI Displays CONFIRM (BOTH ON ADC1 or 2 is displayed on both PFDs)

FAILED ATTITUDE AND/OR HEADING (ATTITUDE FAIL AND/OR RED "X" OVER HEADING DISPLAY ON PFD)

IF BOTH SIDES

1. Attitude MONITOR (using standby attitude gyro)

NOTE

Turn off air conditioner to reference Magnetic Compass.

2. Heading..... MONITOR

(using magnetic compass)

3. Land as soon as practical.

FAILED ATTITUDE AND/OR HEADING (ATTITUDE FAIL AND/OR Red "X" OVER HEADING DISPLAY ON PFD) (Continued)

NOTE

- The autopilot will disconnect and may not be reengaged.
- Reference the GPS track on MFD/PFD map to improve situational awareness. GPS will continue to display correct GPS based map, position, and track.
- Air conditioner will affect the magnetic compass.

IF ONE SIDE ONLY

1.	Standby Attitude Gyro MONITOR
2.	Affected PFD SENSOR softkey PRESS
	Affected PFD AHRS 1/2 softkey SELECT OPPOSITE
	SIDE AHRS
4.	PFD ADI Displays CONFIRM
	("BOTH ON AHRS 1 or 2" is displayed on both PFDs)

NOTE

The autopilot will disconnect and may not be re-engaged.

LOSS OF NAVIGATION DATA (LATERAL DEVIATION BAR NOT PRESENT AND/OR GLIDESLOPE INDEX CLEARS)

This indicates a loss of data from the selected NAV source. Refer to GARMIN G1000 Cockpit Reference Guide for additional information.

- (LOC1/LOC2" or "VOR1/VOR2 is displayed on both PFDs)

INACCURATE OVERSPEED WARNING

Indicated by overspeed warning tone sounding when airspeed is below the limit speed.

 AIRSPEED CROSS CHECK (with opposite PFD)
 AIRSPEED REDUCE (as required)

IF BOTH AIRSPEEDS INDICATE BELOW V_{MO} and tone still sounds

- 3. AIR SPEED Circuit Breaker PULL (fifth row, eighth breaker from aft)
- 4. Land as soon as practical.

IF AIRSPEEDS DO NOT AGREE

3. Refer to IAS MISCOMP procedure.

INACCURATE FLIGHT DIRECTOR DISPLAY

Indicated by one or both flight directors commanding attitude contrary to intended flight path.

NOTE

If continued use of the flight director is desired, it is recommended that only basic modes (i.e., ROL and PIT) be selected initially. If this proves satisfactory, HDG and ALT may then be selected. Make sure navigation systems are set up correctly prior to attempting to engage NAV mode.

4. Autopilot ENGAGE AS DESIRED (if flight director commands are appropriate)

BOTH ON ADC1/2

1.	PFD SENSOR softkey PRESS on PFD
	(displaying data from opposite side ADC)
2.	PFD ADC1/2 softkey SELECT ON-SIDE ADC
	(ADC1 for Pilot PFD, ADC2 for copilot PFD)
3.	PFD Displays CONFIRM
	("BOTH ON ADC1 or 2" message clears on both PFDs)

CESSNA MODEL 208B G1000

BOTH ON AHRS 1/2

- 1. PFD SENSOR softkey. PRESS on PFD (displaying data from opposite side AHRS)
- PFD AHRS 1/2 softkey SELECT ON-SIDE AHRS 2. (AHRS 1 for Pilot PFD, AHRS2 for copilot PFD)
- 3. PFD Displays..... CONFIRM ("BOTH ON AHRS 1 or 2" message clears on both PFDs)

BOTH ON GPS1/2

- 1. GPS Status CHECK
 - a. Select MFD..... AUX-GPS STATUS PAGE
 - Select GPS1 then GPS2 softkeys and verify sufficient b. satellite reception.

XSIDE ADC

1.	Either PFD SENSOR softkey PRESS	
2.	PFD ADC1/2 softkey SELECT ON-SIDE ADC	
	(ADC1 for Pilot PFD, ADC2 for copilot PFD)	
3.	PFD Displays CONFIRM	
	("BOTH ON ADC1 or 2" message displays on both PFDs)	
4.	Repeat procedure on opposite PFD.	
5.	PFD Displays CONFIRM	
	("BOTH ON ADC1 or 2" message clears on both PFDs)	
(SIDE AHRS		

XSIDE AHRS

1.	Either PFD SENSOR softkey PRESS
	PFD AHRS 1/2 softkey SELECT ON-SIDE AHRS
	(AHRS 1 for Pilot PFD, AHRS2 for copilot PFD)
3.	PFD Displays CONFIRM
	("BOTH ON AHRS 1 or 2" message displays on both PFDs)
4.	Repeat procedure on opposite PFD.
5.	PFD Displays CONFIRM
	("BOTH ON AHRS 1 or 2" message clears on both PFDs)

MULTI-FUNCTION DISPLAY FAN FAILED (White MFD FAN FAIL CAS MSG)

1. DECK SKIN FAN Circuit Breaker CHECK IN

PRIMARY FLIGHT DISPLAY 1 FAN FAILED (White PFD1 FAN FAIL CAS MSG)

1. DECK SKIN FAN Circuit Breaker CHECK IN

PRIMARY FLIGHT DISPLAY 2 FAN FAILED (White PFD 2 FAN FAIL CAS MSG)

1. DECK SKIN FAN Circuit Breaker CHECK IN

DOORS

UPPER HALF OF CARGO DOOR OR UPPER HALF OF PASSENGER AIRSTAIR DOOR OPEN (Amber DOOR UNLATCHED CAS MSG)

1.	Airspeed MAINTAIN LESS THAN 100 KIAS
2.	WING FLAPS FULL
	Wing downwash with flaps extended will move the doors near their normally closed position.
3.	If available or practical, have a second crew member go aft to close and latch door.
4.	SEAT BELT/NO SMOKE Light ON
5.	If landing is required with door open:

a. Approach and Landing NC	ORMAL
----------------------------	-------

LOWER HALF OF PASSENGER AIRSTAIR DOOR OPEN

- 3. WING FLAPS FULL
- 5. Landing SLIGHTLY TAIL LOW (avoid nose high flare)

RIGHT OR LEFT CREW DOORS OPEN

- 1. Airspeed MAINTAIN LESS THAN 125 KIAS
- 2. Door PULL CLOSED and LATCH

CARGO POD DOOR(S) OPEN

1.	Airspeed	MAINTAIN LESS THAN 125 KIAS
2.	Land	AS SOON AS PRACTICAL
	a. Approach	NORMAL
	b. Landing	AVOID A NOSE HIGH FLARE

ELECTRICAL

STARTER CONTACTOR DOES NOT DISENGAGE AFTER START (Amber STARTER ON CAS MSG)

1.	Battery Switch OFF
2.	External Power Unit OFF, then DISENGAGE
3.	Fuel Condition Lever
4.	Engine Shutdown

GENERATOR LOAD ABOVE LIMIT (Amber GENERATOR AMPS CAS MSG)

1. GEN AMPS CHECK

If amperes are above limit:

2.	lectrical Load.	REDUCE
----	-----------------	--------

ALTERNATOR LOAD ABOVE LIMIT (Amber ALTNR AMPS CAS MSG)

1. ALT AMPS..... CHECK

If amperes are above limit:

2.	Electrical Load	REDUCE
----	-----------------	--------

CESSNA SECTION 3 MODEL 208B G1000 ABNORMAL PROCEDURES

STANDBY POWER INOPERATIVE (Amber STBY PWR INOP CAS MSG)

1. STBY ALT PWR Switch CHECK ON

IF CAS MESSAGE REMAINS:

2. STBY ALT PWR Switch OFF, THEN ON

NOTE

If the STBY ALT PWR CAS MSG remains, the alternator system may still be operational. A bus voltage surge may have temporarily tripped the ACU (alternator control unit). The ACU can be restored by cycling the STBY ALT PWR Switch.

IF CAS MESSAGE STILL REMAINS:

3. STBY ALT PWR Switch OFF Complete flight using generator power only. Avoid icing conditions.

STANDBY POWER ON (White STBY PWR ON CAS MSG)

NOTE

- During ground operations with CONDITION Lever at LOW IDLE, it is possible that a generator underspeed condition may occur allowing the standby alternator to automatically assist with the electrical load. In this case advance the CONDITION Lever to HIGH IDLE to increase engine speed and bring the generator online.
- The Standby Alternator Power may have automaticaly turned on due to a failure of antoher system. Address any Red or Amber CAS MSGs that are present.

ENGINE

GEAR BOX CONTAMINATION (Amber CHIP DETECT CAS MSG)

1. Engine Indications..... CAREFULLY MONITOR

(for abnormal oil pressure, oil temperature or power indications)

CAUTION

- If engine indications are normal, proceed to destination and determine cause of Amber CHIP DETECT CAS MSG prior to next flight.
- If engine indications confirm Amber CHIP DETECT CAS MSG, proceed in accordance with Engine Failures checklists or at the discretion of the pilot and consistent with safety, continue engine operation in preparation for an emergency landing as soon as possible.

IGNITION ON (White IGNITION ON CAS MSG)

1.	IGNITION Switch	CHECK
----	-----------------	-------

IF CONDITIONS WARRANT:

2. IGNITION Switch..... NORM

FLIGHT CONTROLS

ASYMMETRIC FLAP EXTENSION OR SUDDEN FLAP RETRACTION ON ONE SIDE

- 1. Apply aileron and rudder to stop the roll.
- 2. WING FLAPS UP
- 3. Airspeed SLOW to 100 KIAS (or less)
- 4. If both flaps retract to a symmetrical setting:
 - a. Plan a flaps up landing.
 - b. Refer to Section 5 (notes above landing performance tables) for increase in approach speed and landing distance.
- 5. If both flaps cannot be retracted to a symmetrical setting:
 - a. Land as soon as practical.
 - b. Maintain a minimum airspeed of 90 KIAS on the approach and avoid a nose high flare on landing.

FLAPS FAIL TO EXTEND OR RETRACT

- 1. FLAP MOTOR and STBY FLAP MOTOR Circuit Breakers CHECK IN
- 2. If flaps still fail to extend or retract:
 - a. Guarded and Safetied STBY FLAP MOTOR Switch (Overhead) MOVE GUARD, BREAKING SAFETY WIRE, AND POSITION SWITCH TO STBY
 - b. Guarded and Safetied STBY FLAP MOTOR UP/ DOWN Switch (Overhead...... MOVE GUARD,

BREAKING SAFETY WIRE, AND POSITION SWITCH UP OR DOWN

Hold switch until flaps reach desired position, except release switch before flaps reach full up or full down travel.

CAUTION

With the standby flap system in use, limit switches which normally shut off the primary flap motor when reaching the flap travel limits are electrically inactivated. Therefore, the pilot must release the standby flap motor up/down switch before the flaps reach their travel limit to prevent overloading and damage to the flap system.

3. Guarded STBY FLAP MOTOR Switch **LEAVE in STBY** (until maintenance action can be accomplished)

FUEL

AUXILIARY FUEL BOOST PUMP ON (Amber FUEL BOOST ON CAS MSG)

1.	FUEL BOOST Switch	 CHECK ON

IF CONDITIONS DO NOT WARRANT ITS USE:

2. FUEL BOOST Switch NORM

LOSS OF FUEL PRESSURE (Amber FUEL PRESS LOW CAS MSG)

1.	FUEL TANK SELECTORS	BOTH	ON
2.	FUEL BOOST Switch.		ON
3.	IGNITION Switch.		ON

4. If FUEL PRESS LOW CAS MSG extinguishes:

- a. Carefully monitor fuel quantity and cabin odor for evidence of a fuel leak.
- b. Land as soon as practical and determine cause for motive flow failure before next flight.
- 5. If FUEL PRESS LOW CAS MSG and FUEL BOOST ON CAS MSG are illuminated:
 - a. Carefully monitor engine indications for sign of fuel starvation.
 - b. Land as soon as possible.

FUEL LEVEL LOW (Amber L, R, L-R FUEL LOW CAS MSG(S))

1.	FÜEL TANK SELECTORS	BOTH ON
2.	Fuel Balance	MONITOR

Maximum 200 pounds imbalance.

ICE AND RAIN PROTECTION

PITOT/ STATIC HEAT FAILURE (Amber L, R OR L-R P/S HEAT CAS MSG)

1. PITOT HEAT Circuit Breakers (L and R) CHECK IN If ice begins to form near the static port of the left pitot/static tube (from compensation ring to aft end of tube) or if amber IAS MISCOMP and/ or ALT MISCOMP CAS messages are displayed on the pilot's PFDs:

2. Pilot and Copilot Airspeed COMPARE (with Standby Airspeed Indicator)

WARNING

The Standby Airspeed Indicator uses the same pitot-static sources as the pilot's side air data computer (ADC1). Do not use Standby Airspeed Indicator as sole source in determining correct airspeed.

3.	Autopilot	. DISENGAGE (altitude hold mode)
4.	ALT STATIC AIR	PULL FULL ON

NOTE

The alternate static source is connected to the left PFD and standby instruments only. Refer to Section 5, Performance for airspeed and altimeter corrections.

IF STANDBY AIRSPEED AND COPILOT PFD AGREE (PILOT PFD DIFFERS)

2. SENSOR Softkey (pilot PFD) PRESS
3. ADC2 Softkey PRESS
4. PFD ADI Displays CONFIRM
("BOTH ON ADC2" is displayed on both PFDs)

If ice begins to form near the pitot port (forward end) of the pitot/ static tube:

IF PILOT PFD AND STANDBY AIRSPEED AGREE (COPILOT PFD DIFFERS)

2. Pilot and Copilot Altitude NOTE

(Continued Next Page)

U.S. 3-73

PITOT STATIC HEATER FAILURE (Amber L, R OR L-R P/S

HEATER CAS MSG) (Continued)

IF ALTITUDES AGREE

- 1. Airspeed 120 KIAS MINIMUM (on slowest indicator)
- Monitor all three airspeed indicators during changes in power setting or altitude to determine which indicators are inaccurate. Indications of inaccurate airspeed include:
 - a. No change in indicated airspeed when power changed and altitude maintained.
 - b. Indicated airspeed increases when climbing or decreases when descending.
- 3. Use SENSOR REVERSION to select most accurate ADC on the affected PFD.
- 4. Airspeed RESUME NORMAL SPEEDS

IF ALTITUDES DO NOT AGREE (Amber ALT MISCOMP INDICATION PFD)

1. Altimeter Settings VERIFY (both pilot and copilot have the correct altimeter setting)

IF ANNUNCIATION DOES NOT CLEAR

2. Pilot and Copilot Altitude COMPARE (with Standby Altimeter)

WARNING

The Standby Altimeter uses the same static sources as the pilot's side air data computer (ADC1). Do not use Standby Altimeter as sole source in determining correct altitude.

IF COPILOT PFD AND STANDBY ALTIMETER AGREE (PILOT PFD DIFFERS)

3.	SENSOR Softkey (pilot PFD) PRESS
4.	ADC2 Softkey PRESS
5.	PFD ADI Displays CONFIRM
	("BOTH ON ADC2" is displayed on both PFDs)

PITOT STATIC HEATER FAILURE (Amber L, R OR L-R P/S HEATER CAS MSG) (Continued)

IF PILOT PFD AND STANDBY ALTIMETER AGREE (COPILOT PFD DIFFERS)

- 1. Autopilot DISENGAGE (altitude hold mode)
- 2. ALT STATIC AIR PULL FULL ON

NOTE

The alternate static source is connected to the left PFD and standby instruments only. Refer to Section 5, Performance for airspeed and altimeter corrections.

IF PILOT PFD AND STANDBY ALTIMETER AGREE (COPILOT PFD STILL DIFFERS)

- 3. Compare indicated altitude to GPS altitude on MFD AUX-GPS STATUS page to aid in determining which primary system is most accurate.
 - When comparing indicated altitude to GPS altitude, deviations from standard temperature or pressure can cause indicated altitude to deviate from GPS altitude. These errors are largest at high altitude and can amount to over 2,500 feet under some conditions. However, below 10,000 feet with the correct local altimeter setting set, GPS altitude will usually be within 600 feet or better of the correct indicated altitude. Use the following guidelines to help estimate correct altitude for nonstandard conditions:
 - Temperatures WARMER than standard can cause GPS altitude to read HIGHER than indicated altitude.
 - Pressures LOWER than standard can cause GPS altitude to read HIGHER than indicated altitude.

IF ABLE TO IDENTIFY ACCURATE ALTITUDE SOURCE

4. Use SENSOR REVERSION to select most accurate ADC on both PFDs.

Land as soon as practical.

PITOT STATIC HEATER FAILURE (Amber L, R OR L-R P/S HEATER CAS MSG) (Continued)

IF UNABLE TO IDENTIFY ACCURATE ALTITUDE SOURCE

- 1. Land as soon as practical. Consider diversion to visual conditions.
- 2. Maintain altitudes based on LOWEST indicated altitude.
- 3. ATC ADVISE

(of inability to verify correct altitude)

- 4. If unable to descend into visual conditions, plan ILS approach with course intercept well outside the Final Approach Fix (FAF).
- 5. Once glideslope is captured, determine most accurate altitude source when crossing FAF.
- 6. Reference ILS Decision Height to most accurate altimeter based on FAF crossing.

WARNING

TAWS alerts are based on GPS altitude and position information and are independent of ADC data. If a TAWS alert is received, it should be considered valid and appropriate terrain avoidance action should be taken.

STALL HEAT FAILURE (Amber STALL HEAT CAS MSG)

If ice is observed forming on the stall warning vane or its mounting plate:

1. STALL WARN Circuit Breaker CHECK (verify circuit breaker is IN)

CAUTION

With continued ice buildup, expect no stall warning horn during slow speed operation. The autopilot will not automatically disconnect during a stall with out the stall warning vane working properly.

2.	Airspeed	MONITOR
----	----------	---------

NOTE

Do not rely on the stall warning system. Maintain airspeed in accordance with the minimum speed for icing conditions in Section 2, Limitations of this supplement.

MISCELLANEOUS

EMERGENCY DESCENT PROCEDURES

ROUGH AIR

	-	
1.	Seats, Seat Belts, Shoulder Harnesses	SECURE
2.	POWER Lever	IDLE
3.	PROP RPM Lever	MAX (full forward)
	WING FLAPS	, , , , , , , , , , , , , , , , , , ,
5.	Weights and Airspeed:	
	8750 Pounds	148 KIAS
	7500 Pounds	137 KIAS
	6250 Pounds	125 KIAS
	5000 Pounds	112 KIAS

SMOOTH AIR

1.	Seats, Seat Belts, Shoulder Harnesses SECURE
2.	POWER Lever
3.	PROP RPM Lever MAX (full forward)
4.	WING FLAPS 10°
5.	Airspeed

EXPANDED ABNORMAL

ELEVATOR MISTRIM

Indicates a mistrim of the elevator while the autopilot is engaged. The autopilot will normally trim automatically as required. However, during rapid acceleration, deceleration, or configuration changes, momentary illumination of this message may occur accompanied by minor fluctuations in the flight path. If the autopilot is disconnected while this message is displayed, high elevator control forces are possible. In the event of a sustained illumination, the following procedure should be followed:

ALTITUDE MISCOMPARE

This message is displayed when the G1000 detects a difference of 200 feet or greater between the pilot's and copilot's altitude information (displayed in the upper right of the PFD). Refer to GARMIN G1000 Cockpit Reference Guide for additional information.

AIRSPEED MISCOMPARE

This message is displayed when the G1000 detects a difference of 7 KIAS or greater between the pilot's and copilot's airspeed information (10 KIAS difference during takeoff or landing roll). Refer to GARMIN G1000 Cockpit Reference Guide for additional information.

DUAL GPS FAILURE

When both GPS receivers are inoperative, the G1000 system will enter one of two modes: Dead Reckoning mode (DR) or Loss Of Integrity mode (LOI). The mode is indicated on the HSI by an amber "DR" or "LOI". Which mode is active depends on the distance from the destination airport in the active flight plan.

TRANSPONDER FAILURE

Transponder failure may be indicated by a red "X" across the transponder display or failure of the transponder to accept codes or mode changes from the PFD.

FAILED ATTITUDE AND/OR HEADING

This message indicates a loss of pitch, roll, and/or heading information from AHRS. Refer to GARMIN G1000 Cockpit Reference Guide for additional information. Interference from GPS repeaters operating inside nearby hangars can cause an intermittent loss of attitude and heading displays while the aircraft is on the ground. This is usually accompanied by a BOTH ON GPS1/2 message. Moving the aircraft more than 100 yards away from the source of the interference should alleviate the condition.

BOTH ON ADC1/2

This message is displayed on both PFDs and indicates that both pilot's and copilot's PFDs are displaying data from the same Air Data Computer. Normally the pilot's side displays ADC1 and the copilot's side displays ADC 2. Refer to GARMIN G1000 Cockpit Reference Guide for additional information.

BOTH ON AHRS 1/2

This message is displayed on both PFDs and indicates that both pilot's and copilot's PFDs are displaying data from the same Attitude Heading Reference System. Normally the pilot's side displays AHRS 1 and the copilot's side displays AHRS 2. Refer to GARMIN G1000 Cockpit Reference Guide for additional information.

XSIDE ADC

This message is displayed on both PFDs and indicates that both PFDs are displaying data from the opposite side Air Data Computer. Normally the pilot's side displays ADC1 and the copilot's side displays ADC 2. Refer to GARMIN G1000 Cockpit Reference Guide for additional information.

CESSNA MODEL 208B G1000

XSIDE AHRS

This message is displayed on both PFDs and indicates that both PFDs are displaying data from the opposite side Attitude Heading Reference System. Normally the pilot's side displays ADC1 and the copilot's side displays ADC 2. Refer to GARMIN G1000 Cockpit Reference Guide for additional information.

MULTI-FUNCTION DISPLAY FAN FAILED

An overheat condition may arise in the associated display. In this case, screen brightness will be reduced automatically by 50% to lower internal temperature. Use reversionary capabilities, if necessary.

PRIMARY FLIGHT DISPLAY 1 FAN FAILED

An overheat condition may arise in the associated display. In this case, screen brightness will be reduced automatically by 50% to lower internal temperature. Use reversionary capabilities, if necessary.

PRIMARY FLIGHT DISPLAY 2 FAN FAILED

An overheat condition may arise in the associated display. In this case, screen brightness will be reduced automatically by 50% to lower internal temperature. Use reversionary capabilities, if necessary.

INADVERTENT OPENING OF AIRPLANE DOORS IN FLIGHT

If any of the airplane doors should inadvertently open in flight, the airplane should be slowed to 125 KIAS or less to reduce buffeting of the doors. If the upper cargo door is open, slow to 100 KIAS or less and lower flaps to full down so that wing downwash will move the door towards its normally closed position. Closing the upper cargo door (or upper half of the passenger door on the Standard 208B) can be accomplished after airspeed has been reduced by pulling the door forcefully closed and latching the door. If the door cannot be closed in flight, a landing should be made as soon as practical in accordance with the checklist procedures. On Cargo Versions, an open cargo door has no handle.

If any cargo pod doors inadvertently open in flight, the airplane should be slowed to 125 KIAS or less and landed as soon as practical. During the landing, avoid a nose-high flare to prevent dragging an open rear cargo pod door on the runway.

3-80

NORMAL PROCEDURES

Table of Contents

P	Page
Introduction	.4-3
Speeds for Normal Operation	.4-3
CHECKLIST PROCEDURES	
Preflight Inspection Warnings	4-5
Preflight Inspection	
Preflight Inspection	
Cabin	
Left Side	
Left Wing, Leading Edge	
Left Wing, Trailing Edge	
Measured Fuel Depth vs. Fuel Quantity	
Empennage	
Right Wing, Trailing Edge	
Right Wing, Leading Edge	
Nose	
Before Starting Engine	
Starting Engine (Battery Start)	
Starting Engine (External Power Start)	
Taxiing	
Before Takeoff	
Takeoff	1-25
Normal Takeoff	1-25
Short Field Takeoff	1-26
Type II, Type III or Type IV Anti-ice Fluid Takeoff	
Enroute Climb	1-26
Cruise Climb	
Maximum Performance Climb	
Cruise	
Descent	
Before Landing	
Landing	
Normal Landing	
Short Field Landing	
Balked Landing	1-30

Table of Contents (Continued)

	Page
After Landing	4-31
Shutdown and Securing Airplane	4-32
AMPLIFIED PROCEDURES	
Preflight Inspection.	4-33
Before Starting Engine	
Starting Engine	
Engine Clearing Procedures (Dry Motoring Run)	4-39
Engine Ignition Procedures	4-40
Engine INERTIAL SEPARATOR Procedures	4-40
Taxiing	
Taxiing Diagram	4-42
Before Takeoff	4-43
Takeoff	4-44
Power Setting	4-44
Wing Flap Settings	
Short Field Takeoff	
Type II, Type III or Type IV Anti-Ice Fluid Takeoff	
Crosswind Takeoff	
Enroute Climb.	
Cruise	
Sample Cruise Performance Table	
Stalls	
Landing.	
Normal Landing	
Short Field Landing	
Crosswind Landing	
Balked Landing	
After Shutdown	
Cold Weather Operation.	
High Altitude Operation	
Engine Compressor Stalls	
Noise Characteristics	4-54

INTRODUCTION

Section 4 provides checklist and amplified procedures for the conduct of normal operation. Normal procedures associated with optional systems can be found in Section 9.

WARNING

There is no substitute for proper and complete preflight planning habits and their continual review in minimizing emergencies. Become knowledgeable of hazards and conditions which represent potential dangers, and be aware of the capabilities and limitations of the airplane.

AIRSPEEDS FOR NORMAL OPERATION

Unless otherwise noted, the following speeds are based on a maximum weight of 8750 pounds for takeoff and 8500 pounds for landing and may be used for any lesser weight. However, to achieve the performance specified in Section 5 for takeoff distance, climb performance, and landing distance, the speed appropriate to the particular weight must be used.

TAKEOFF:

Normal Climb, Flaps 20°	85-95 KIAS
Short Field Takeoff, Flaps 20°, Speed at 50 Feet	83 KIAS
Type II, Type III or Type IV Anti-ice Fluid Takeoff (Flaps	UP)83 KIAS

ENROUTE CLIMB, FLAPS UP:

Cruise Climb	0-120 KIAS
Best Rate of Climb, Sea Level to 10,000 Feet	. 104 KIAS
Best Rate of Climb, 20,000 Feet	87 KIAS
Best Angle of Climb, Sea Level to 20,000 Feet	72 KIAS

LANDING APPROACH:

Normal Approach, Flaps UP	100-115 KIAS
Normal Approach, Flaps FULL	75-85 KIAS
Short Field Approach, Flaps FULL	78 KIAS

SECTION 4 NORMAL PROCEDURES	CESSNA MODEL 208B G1000
AIRSPEEDS FOR NORMAL OP	ERATION (Continued)
BALKED LANDING: Takeoff Power, Flaps 20°	80 KIAS
MAXIMUM RECOMMENDED PENETRATION SPEED:	TURBULENT AIR
8750 Pounds	
7500 Pounds	
6250 Pounds	125 KIAS
5000 Pounds	112 KIAS
MAXIMUM DEMONSTRATED CROS	SWIND VELOCITY
Takooff or Landing	

MAXIMUM DEMONSTRATED CROSSWIND VELOCITY:	
Takeoff or Landing 20 KNOTS	

PREFLIGHT INSPECTION WARNINGS

WARNING

- Visually check airplane for general condition during walk-around inspection and remove any inlet, exit or exhaust covers. If cargo pod is installed, check its installation for security during the walk-around inspection. Use of a ladder will be necessary to gain access to the wing for visual checks, refueling operations, checks of the stall warning and pitot heat, and to reach outboard fuel tank sump drains.
- It is the pilot's responsibility to ensure that the airplane's fuel supply is clean before flight. Any traces of solid contaminants such as rust, sand, pebbles, dirt, microbes, and bacterial growth or liquid contamination resulting from water, improper fuel type, or additives that are not compatible with the fuel or fuel system components must be considered hazardous. Carefully sample fuel from all fuel drain locations during each preflight inspection and after every refueling.
- It is essential in cold weather to remove even the smallest accumulations of frost, ice, snow, or slush from the wing, tail, control surfaces, propeller blades, and engine air inlets. Exercise caution to avoid distorting the vortex generators on horizontal stabilizer while deicing. To assure complete removal of contamination, conduct a visual and tactile inspection of all critical surfaces. Also, make sure the control surfaces contain no internal accumulations ice or debris. If these of performed. requirements are not aircraft performance will be degraded to a point where a safe takeoff and climb may not be possible.
- Prior to any flight in known or forecast icing conditions, check that PITOT/ STATIC tube(s) and STALL warning heaters are warm to touch after turning PITOT/STATIC and STALL HEAT switches ON for 30 seconds, then OFF. Make sure the pitot covers are removed prior to turning PITOT/STATIC HEAT ON.
- If a night flight is planned, check operation of all lights, and make sure a flashlight is available and properly stowed.

FAA APPROVED 208BPHBUS-00

4-5

CESSNA MODEL 208B G1000

CHECKLIST PROCEDURES

PREFLIGHT INSPECTION

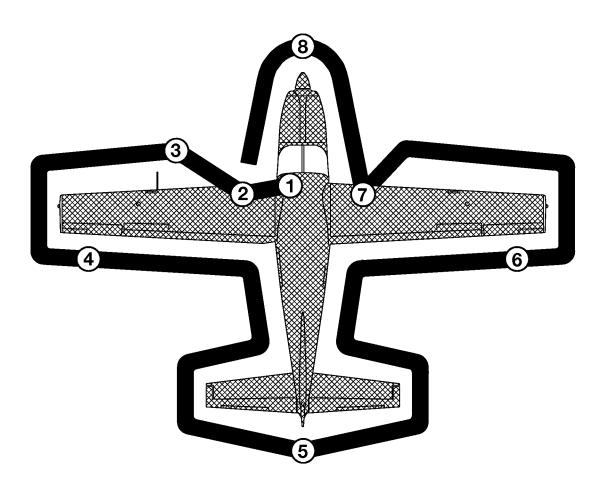


Figure 4-1

1 CABIN

1.	PITOT/ STATIC Tube Covers	REMOVED
2.	Pilot's Operating Handbook	ACCESSIBLE TO PILOT
3.	Garmin G1000 CRG	ACCESSIBLE TO PILOT
4.	Control Locks REMOVE	(disengage RUDDER LOCK)
5.	PARKING BRAKE	SET

CABIN (Continued)

6.	All Switches OFF
7.	Circuit Breakers IN
8.	ALT STATIC AIR OFF
9.	INERTIAL SEPARATOR T-Handle NORMAL
	STBY FLAP MOTOR Switch GUARDED NORM
	OXYGEN SUPPLY PRESSURE (if installed) CHECK
	Oxygen Masks (if installed) CHECK AVAILABLE
13.	FUEL TANK SELECTOR Valves BOTH ON
	(feel against stop)
	VENTILATION FANS/ AIR CONDITIONING (if installed) OFF
	BLEED AIR HEAT Switch OFF (down)
	EMERGENCY POWER Lever NORMAL
	TRIM Controls
	FUEL SHUTOFF Knob ON (push in)
	CABIN HEAT FIREWALL SHUTOFF Control CHECK IN
20.	BATTERY Switch ON
• •	(verify deck skin fans audible and airflow from each fan)
	AVIONICS No. 1 Switch
	PFD 1 CHECK (verify PFD 1 - ON)
23.	AVIONICS No. 2 Switch
	PFD 2 and MFD CHECK (verify PFD2 and MFD - ON)
	ENGINE Softkey SELECT SYSTEM
27.	SYSTEM Softkey RST FUEL (if desired)
	set Fuel Totalizer if desired. Select ENGINE Softkey to return to
	in page.
	WING FLAPS Handle FULL DOWN
29.	PITOT/STATIC and
	STALL HEAT Switches ON FOR 30 SECONDS;
• •	THEN OFF
	AVIONICS No. 1 and No. 2 Switches OFF
31.	BATTERY Switch OFF

② LEFT SIDE

- 1. WING LIGHT..... CHECK (verify condition)
- 2. Fuel Reservoir Drain (bottom of fuselage or left side of cargo pod) **DRAIN** (using fuel sampler) Drain to check for water, sediment, and proper fuel before each flight and after each refueling. If water is observed, take additional samples until clear. Take repeated samples from all fuel drain points (see Section 7, Fuel System Schematic for all nine drain locations) until all contamination has been removed.

NOTE

Properly dispose of samples from all fuel drains. Aviation turbine fuel will deteriorate asphalt surfaces.

- Main Landing Gear CHECK (check proper tire inflation and condition of gear)
 Inboard Fuel Tank Sump and External Sump
 - Quick-Drain Valves **DRAIN** (using fuel sampler) Drain to check for water, sediment, and proper fuel before each flight and after each refueling. If water is observed, take additional samples until clear. Take repeated samples from all fuel drain points until all contamination has been removed.

③ LEFT WING Leading Edge

WARNING

 It is essential in cold weather to remove even the smallest accumulations of frost, ice, snow, or slush from the wing and control surfaces. To assure complete removal of contamination, conduct a visual and tactile inspection up to two feet behind the protected surfaces at one location along the wing span as a minimum. Also, make sure the control surfaces contain no internal accumulations of ice or debris. If these requirements are not performed, aircraft performance will be degraded to a point where a safe takeoff and climb may not be possible.

LEFT WING Leading Edge (Continued)

WARNING

	 Prior to any flight in known or forecast icing conditions, check that PITOT/STATIC tube(s) and STALL warning heaters are warm to touch after turning PITOT/STATIC and STALL HEAT switches ON for 30 seconds, then OFF. Make sure the pitot covers are removed prior to turning PITOT/ STATIC HEAT ON.
1.	Wing Tie-Down DISCONNECT
2.	Stall Warning Vane CHECK
	(verify freedom of movement, audible warning and warmth)
	Ensure the elevator control is off the forward stop in order to
	check audible warning.
3.	PITOT/ STATIC Tube CHECK
	(verify security, openings for stoppage and warmth)
4.	LDG and TAXI/RECOG Lights CHECK
	(verify condition and cleanliness)
5.	Fuel Quantity VISUALLY CHECK
	See Measured Fuel Depth vs. Fuel Quantity chart in Section 4.
6.	Fuel Filler Cap SECURE
7.	Outboard Fuel Tank Sump
	Quick-Drain Valve DRAIN (using fuel sampler)
	Drain to check for water, sediment and proper fuel before each
	flight and after each refueling. If water is observed, take
	additional samples until clear. Take repeated samples from all
0	fuel drain points until all contamination has been removed.
8.	NAV and STROBE Lights CHECK
	(verify condition and cleanliness)

④ LEFT WING Trailing Edge

1.	Fuel Tank Vent	CHECK
2	Aileron and Servo Tab	(verify no obstructions) CHECK
		(verify condition and security)
3.	Static Wicks (4 total)	(verify condition)
4.	Spoiler	СНЕСК
~		(verify condition and security)
5.	Flap Leading Edge Vortex Genera	(verify condition and security)
6	Flap	(J)
0.	ιαρ	(verify condition and security)

MEASURED FUEL DEPTH VS. FUEL QUANTITY

Universal XL	Fuel Q	uantity
Fuel Gage		
Gage Scale	Gallons	Pounds
0.50	87.4	585
0.75	91.1	610
1.00	94.7	634
1.25	98.2	658
1.50	101.8	682
1.75	105.2	705
2.00	108.6	727
2.25	111.9	750
2.50	115.1	771
2.75	118.3	793
3.00	121.5	814
3.25	124.5	834
3.50	127.5	855
3.75	130.5	874
4.00	133.4	894
4.25	136.2	912
4.50	138.9	931
4.75	141.6	949
5.00	144.3	966
5.25	146.8	984
5.50	149.3	1000
5.75	151.8	1017
6.00	154.1	1033
6.25	156.5	1048
6.50	158.7	1063
6.75	160.9	1078
7.00	163.0	1092
7.25	165.0	1106

Generic Fuel Gage-Inches	Fuel Quantity	
Inches	Gallons	Pounds
0.50	88.4	592
0.75	92.6	621
1.00	96.7	648
1.25	100.8	675
1.50	104.7	702
1.75	108.6	727
2.00	112.4	753
2.25	116.1	778
2.50	119.7	802
2.75	123.2	826
3.00	126.7	849
3.25	130.1	871
3.50	133.4	894
3.75	136.6	915
4.00	139.7	936
4.25	142.8	956
4.50	145.7	976
4.75	148.6	996
5.00	151.4	1015
5.25	154.1	1033
5.50	156.8	1050
5.75	159.3	1068
6.00	161.8	1084
6.33	165.0	1105

Figure 4-2

FAA APPROVED 208BPHBUS-00

U.S.

S EMPENNAGE

WARNING

It is essential in cold weather to remove even the smallest accumulations of frost, ice, snow, or slush from the tail and control surfaces. Exercise caution to avoid distorting the vortex generators on horizontal stabilizer while deicing. To assure complete removal of contamination, conduct a visual and tactile inspection of all critical surfaces. Also, make sure the control surfaces contain no internal accumulations of ice or debris. If these requirements are not performed, aircraft performance will be degraded to a point where a safe takeoff and climb may not be possible.

1.	Baggage	CHECK SECURE	(through cargo doc	r)

- 2. Cargo Door CLOSED and LATCHED
- 3. Horizontal Stabilizer Leading Edge CHECK Verify condition, security, and verify 18 vortex generators on the upper side of each horizontal stabilizer.
- Control Surfaces and Elevator Trim Tabs CHECK Verify condition, security, freedom of movement and tab position.
 Static Wicks (14 total) CHECK
- Verify condition and security; verify 4 static wicks per elevator half, 5 on the rudder, and 1 on the stinger.

(condition and security)

4-12

6 RIGHT WING Trailing Edge

 Spoiler	1.	Flap	
 Flap Leading Edge Vortex Generators	2.	Spoiler	(verify condition and security)
 4. Aileron and Trim Tab. 5. Static Wicks (4 total) 6. Fuel Tank Vent 	3.	Flap Leading Edge Vortex Genera	(verify condition and security)
 (verify condition and securit 5. Static Wicks (4 total)			(verify condition and security)
6. Fuel Tank Vent CHEC			(verify condition and security)
			(verify condition)
	0.		(verify no obstructions)

⑦ RIGHT WING Leading Edge

WARNING

- It is essential in cold weather to remove even the smallest accumulations of frost, ice, snow, or slush from the wing and control surfaces. To assure complete removal of contamination, conduct a visual and tactile inspection up to two feet behind the protected surfaces at one location along the wing span as a minimum. Also, make sure the control surfaces contain no internal accumulations of ice or debris. If these requirements are not performed, aircraft performance will be degraded to a point where a safe takeoff and climb may not be possible.
- Prior to any flight in known or forecast icing conditions, check that PITOT/ STATIC tube(s) and STALL warning heaters are warm to touch after turning PITOT/STATIC and STALL HEAT switches ON for 30 seconds, then OFF. Make sure the pitot covers are removed prior to turning PITOT/STATIC HEAT ON.

RIGHT WING Leading Edge (Continued)

1.	NAV and STROBE Lights CHECK
	(verify condition and cleanliness)
2.	Fuel Quantity
	See Measured Fuel Depth vs. Fuel Quantity chart in Section 4.
3.	Fuel Filler Cap SECURE
4.	Outboard Fuel Tank Sump Quick-Drain Valve
••	(if airplane parked with one
	wing low on a sloping ramp) DRAIN (using fuel sampler)
	Drain to check for water, sediment and proper fuel before each
	flight and after each refueling. If water is observed, take
	additional samples until clear. Take repeated samples from all
	fuel drain points until all contamination has been removed.
5.	LND and TAXI/ RECOG Lights CHECK
	(verify condition and cleanliness)
6.	PITOT/ STATIC Tube CHECK
-	(verify security, openings for stoppage and warmth)
7.	Radome (if installed) CHECK
••	(verify condition and security)
8.	Wing Tie-Down DISCONNECT
9.	Inboard Fuel Tank Sump and External Sump
0.	Quick-Drain Valves DRAIN (using fuel sampler)
	Drain to check for water, sediment, and proper fuel before each
	flight and after each refueling. If water is observed, take
	additional samples until clear. Take repeated samples from all
	fuel drain points until all contamination has been removed.
10.	Main Landing Gear CHECK
	(check proper tire inflation and condition of gear)
	(

® NOSE

WARNING

It is essential in cold weather to remove even the smallest accumulations of frost, ice, snow, or slush from the propeller blades and spinner, and the air inlets (starter/generator, oil cooler and engine inlets). To assure complete removal of contamination, conduct a visual and tactile inspection of all critical surfaces. If these requirements are not performed, aircraft performance will be degraded to a point where a safe takeoff and climb may not be possible.

1.	Right Crew Door CLOSED
2.	Exhaust Cover (if installed)
3.	Cowling OPEN
	(right side of upper cowling for access and check condition and security)
4.	Engine (right side)
	(verify general condition, security, fuel and oil leakage and damage to any components)

WARNING

Avoid touching the output connectors or coupling nuts or ignition excitor with bare hands.

5.	Battery CHECK
	(verify condition and power cables security)
6.	Exhaust System CHECK
	(verify condition, security, cracks, distortion and damage)
7.	Cowling CLOSE and LATCH (right side)
8.	Propeller Anchor REMOVE
9.	Air Inlet Covers REMOVE
10.	Air Inlets CHECK
	Check starter/generator blast tube opening and oil cooler inlet
	(right) and engine induction air inlet (left) for condition.
	restrictions, and debris.

NOSE (Continued)

11. Propeller	
and cracks. Also, inspect blades for lightning strike (darken area near tips), boots for security, condition and evidence grease and oil leaks.	ed
12. Propeller Spinner	Ж
(verify condition and securi	
13. Nose Wheel Strut and Tire CHEC	K
Check condition, red over-travel indicator block and cable inta (not fallen into view), and proper inflation of tire.	act
14. Cowling	
(left side of upper cowling for access and check condition a security)	nd
15. Engine (left side) CHEC)K
(verify general condition, security, fuel, no oil leakage, and damage to any components)	no
16. INERTIAL SEPARATOR Bypass Outlet CHECK CLOSE	ED
(verify duct free of debr	
17. Oil Dipstick/Filler Cap CHEC	
Check oil level. Check dipstick/ filler cap SECURE. Fill to with 1 1/2 quarts of MAX HOT or MAX COLD (as appropriate) dipstick. Markings indicate U.S. quarts low if oil is hot.	

WARNING

Make sure the oil dipstick cap is securely latched down. Operating the engine with less than the recommended oil level and with the dipstick cap unlatched will result in excessive oil loss and eventual engine stoppage.

NOSE (Continued)

22. 23. 24.	Brake Fluid Reservoir
BEFC	ORE STARTING ENGINE
1.	
	(verify weight and balance is checked and tail stand is removed and stowed)
2.	
	Cargo door can be locked if no passengers occupy cargo section of airplane.
3.	Passenger Briefing COMPLETE
4.	Cabin Doors LATCHED (check aft doors)
5.	Left Crew Door Lock Override Knob and Right Crew Door Inside Lock UNLOCKED
6.	PARKING BRAKE.
_	(depress brake pedals and pull control out)
7.	Control Lock
8.	Seats, Seat Belts, Shoulder Harnesses ADJUST and SECURE (crew seat lock indicator pin(s) extended)

WARNING

Failure to correctly use seat belts and shoulder harnesses could result in serious or fatal injury in the event of an accident.

9. Switches	OFF
10. IGNITION Switch	NORM
11. Circuit Breakers	. CHECK IN
12. FUEL TANK SELECTORS	. BOTH ON
13. VENTILATION FANS/ AIR CONDITIONING	OFF
14. BLEED AIR HEAT Switch	OFF (down)

BEFORE STARTING ENGINE (Continued)

CAUTION

Leaving the BLEED AIR HEAT Switch ON (up) can result in a hot start or abnormal acceleration to idle.

15. CABIN HEAT MIXING AIR Control	FLT-PUSH
16. EMERGENCY POWER Lever	. NORMAL
17. POWER Lever	IDLE
18. PROP RPM Lever MAX ((full forward)
19. FUEL CONDITION Lever	. CUTOFF
20. FUEL SHUTOFF Knob	ON (push in)
21. BATTERY Switch	ON
22. WING FLAPS Handle	UP
23. NO SMOKE/SEAT BELT Switches (if installed)	ON
	red/ desired)
24. TEST SWITCH PUSH UP (for FIRE DETE	CT warning)
PUSH DOWN (for FUEL SELECTO	OR warning)

STARTING ENGINE (Battery Start)

1.	BATTERY Switch ON
2.	BCN Switch
3.	AVIONICS No. 1 Switch ON
4.	EIS CHECK PARAMETERS (verify no red X's)
5.	BUS VOLTS CHECK (24 volts minimum)
6.	EMERGENCY POWER Lever NORMAL (full aft position)
	(verify EMERG PWR LVR CAS MSG - OFF)

CAUTION

Make sure that the EMERGENCY POWER Lever is in the NORMAL (full aft) position or an over-temperature condition will result during engine start.

STARTING ENGINE (Battery Start) (Continued)

7.	Propeller Area.	CLEAR
8.	FUEL BOOST Switch	ON
	a. FUEL BOOST ON CAS	S MSG ON
	b. FUEL PRESS LOW C/	AS MSG OFF
	c. FFLOW PPH	ZERO
9.	STARTER Switch	START
	a. IGNITION ON CAS MS	G ON
		CHECK
	c. N _a	STABLE (12% minimum)
10.	. FUEL [®] CONDITION Lever .	LOW IDLE
	a. FFLOW PPH	CHECK (for 90 to 140 pph)
	b. ITT	MONITOR
	(10	90°C maximum, limited to 2 seconds)

CAUTION

• If ITT climbs rapidly towards 1090°C, be prepared to return the FUEL CONDITION Lever to CUTOFF.

 Under hot OAT and/or hig conditions, idle ITT can excer limitation of 685°C. Increas accessory load to maintain ITT 	ed maximum idle ITT e N _g and/or reduce
c. N _g	
11. STARTER Switch	OFF
(verify S ⁻	TARTER ON CAS MSG OFF)
12. EIS	CHECK NORMAL
13. GENERATOR	CHECK LOAD
	SENERATOR OFF CAS MSG
	FF and BAT AMPS charging)
14. FUEL BOOST Switch	
	BOOST ON CAS MSG - OFF)
15. AVIONICS No. 2 Switch	
16. NAV LIGHTS	ON
17. Cabin Heating, Ventilating and	
Defrosting Controls	AS DESIRED

STARTING ENGINE (External Power Start)

(24-28 Volt, Minimum 800 Amp and Maximum 1700 Amp Capacity)

	•	• • • •
1.	BATTERY Switch	
2.	AVIONICS No. 1 Switch	
3.	EIS CHECK	PARAMETERS (verify no red X's)
4.	EXTERNAL POWER Switch	OFF
5.	BUS VOLTS	CHECK (20 volts minimum)
6.	AVIONICS No. 1 Switch	OFF
7.	BATTERY Switch	OFF
8.	External Power Unit.	ENGAGE; then ON
9.	EXTERNAL POWER Switch	BUS

CAUTION

Make sure that the EMERGENCY POWER Lever is in the NORMAL position or an over-temperature condition will result during engine start.

10. BATTERY Switch	ON
11. BCN Switch	ON
12. AVIONICS No. 1 Switch	ON
13. BUS VOLTS CHECK (24	-28.5 Volts)
14. EXTERNAL POWER Switch	STARTER
15. EMERGENCY POWER Lever	. NORMAL
(verify EMERG PWR LVR CAS M	ISG - OFF)
16. Propeller Area	CLEAR
17. FUEL BOOST Switch	ON
a. FUEL BOOST ON CAS MSG	ON
b. FUEL PRESS LOW CAS MSG	OFF
c. FFLOW PPH	ZERO

CAUTION

If the external power unit drops off the line, initiate engine shutdown.

18. 3	STA	ARTER Switch			START
â	a.	IGNITION ON	CAS MSG		CHECK ON
k	b.	OIL PSI			CHECK
(C.	N _a		STAI	BLE (12% minimum)

CESSNA SECTION 4 MODEL 208B G1000 NORMAL PROCEDURES
STARTING ENGINE (External Power Start) (Continued) 19. FUEL CONDITION Lever LOW IDLE a. FFLOW PPH CHECK (for 90 to 140 pph) b. ITT MONITOR (1090°C maximum, limited to 2 seconds)
CAUTION
 If ITT climbs rapidly towards 1090°C, be prepared to return the FUEL CONDITION Lever to CUTOFF.
 Under hot OAT and/or high ground elevation conditions, idle ITT can exceed maximum idle ITT limitation of 685°C. Increase N_g and/or reduce accessory load to maintain ITT within limits.
c. N _g
(verify STARTER ON CAS MSG - OFF) 21. EIS
22. EXTERNAL POWER Switch
23. External Power Unit OFF, then DISENGAGE 24. GENERATOR CHECK LOAD (verify GENERATOR OFF CAS MSG)
OFF and BAT AMPS charging) 25. FUEL BOOST Switch NORM (verify FUEL BOOST ON CAS MSG - OFF)
26. AVIONICS No. 2 Switch
28. Cabin Heating, Ventilating and Defrosting Controls AS DESIRED

TAXIING

1. Brakes CH

NOTE

Propeller BETA range can be used during taxi with minimum blade erosion up to the point where N_g increases (against beta range spring) to control taxi speed and improve brake life.

2. Flight Instruments CHECK

BEFORE TAKEOFF

1.	PARKING BRAKE	SET
----	---------------	-----

2. Seats, Seat Belts, Shoulder Harnesses CHECK SECURE

WARNING

Failure to correctly use seat belts and shoulder harnesses can result in serious or fatal injury in the event of an accident.

3.	Flig	ght Controls	d CORRECT
4.	Flig	ght Instruments	CHECK
5.	Alti	meters:	
	a.	PFD 1 and 2 BARO	SET
	b.	Standby Altimeter	SET
6.	AL	T SEL	SET
7.	Sta	Indby Flight Instruments	CHECK
8.		EL BOOST Switch	
9.	FU	EL TANK SELECTORS	. BOTH ON
10.	FU	EL QTY	CHECK
11.	FU	EL SHUTOFF Knob	. FULLY ON
12.	ELI	EVATOR, AILERON, and RUD TRIM Controls	3 SET
			(for takeoff)
13.	PO	WER Lever	400 FT-LBS
	a.	BUS VOLTS	
	b.	INERTIAL SEPARATOR	CHECK
		Turn control counterclockwise, pull to BYPASS	
		check torque drop; move control back to NOR and check that original torque is regained.	MAL position
	C.	EIS	CHECK
	0.	See Section 2, Limitations for minimum oil	
		required for flight.	
		(Continued Next Page)	

BEFORE TAKEOFF (Continued)

14.	Ove	erspeed Governor
		(first flight of the day and after maintenance)
	а.	PROP RPM Lever MAX (full forward)
	b.	OVERSPEED GOVERNOR
		TEST Button PRESS and HOLD
	C.	POWER Lever
		(propeller RPM stabilize at 1750 ±60 RPM)
	d.	POWER Lever IDLE
	e.	OVERSPEED GOVERNOR TEST Button RELEASE
15		adrant Friction Lock
10.	Sla	ndby Power CHECK
		(first flight of the day and before all
		flights into known icing conditions)
	a.	ENGINE Softkey SELECT SYSTEM
	b.	STBY ALT PWR Switch ON
	С.	GEN AMPS LOAD
		(to approximately 30 amps)
		Generator load can be increased by using the TAXI/RECOG
		Lights. Do not exceed 60 amps.
	d.	ALT AMPS VERIFY (alternator output near zero)
	e.	
	f.	ALT AMPS VERIFY LOAD
	g.	BUS VOLTS CHECK
		(for alternator output and voltage approximately
		one volt less than with generator ON)

NOTE

A fully charged battery will carry part of the electrical load when initially switching from generator to standby alternator power because of the generator's higher voltage regulation.

h.	STBY PWR ON CAS MSG CHECK ON
	(verify GENERATOR OFF CAS MSG ON)
i.	GENERATOR Switch RESET
	(verify GENERATOR OFF CAS MSG OFF)
j.	STBY PWR ON CAS MSG CHECK OFF
k.	STBY ALT PWR Switch OFF
	(verify STBY PWR INOP CAS MSG ON)
Ι.	STBY ALT PWR Switch ON

(Continued Next Page)

FAA APPROVED 208BPHBUS-01

U.S.

4-23

BEFORE TAKEOFF (Continued)

- 17. Manual Electric Pitch Trim (MEPT) CHECK and SET
 - a. Push both sides of trim switch NOSE DOWN (verify correct trim wheel and pointer movement). Press AP DISC/TRIM INTER Switch (verify trim wheel stops moving).
 - b. Push both sides of trim switch NOSE UP (verify correct trim wheel and pointer movement). Press AP DISC/TRIM INTER Switch (verify trim wheel stops moving).
 - c. Verify pilot's trim switch command overrides copilot's trim switch command.
 - d. Set trim as required within TAKEOFF band.
- 18. Known Icing System (if installed) ... **PREFLIGHT COMPLETE** (see Systems Checks prior to any flight in icing conditions)

19. Ice Protection (if installed)..... AS REQUIRED

- a. PITOT/STATIC HEAT . ON (when OAT is below 5°C (41°F))

(Continued Next Page)

BEFORE TAKEOFF (Continued)

WARNING

- When ground icing conditions are present, a pretakeoff visual and tactile check should be conducted by the pilot in command within five minutes of takeoff, preferably just prior to taxiing onto the active runway.
- Takeoff is prohibited with any frost, ice, snow, or slush adhering to the wings, tail, control surfaces, propeller blades, or engine air inlets.
- Even small amounts of frost, ice, snow, or slush on the wing can adversely change lift and drag. Failure to remove these contaminants will degrade airplane performance to a point where a safe takeoff and climb may not be possible.
- Make sure that the anti-ice fluid (if applied) is still protecting the airplane.

TAKEOFF

NORMAL TAKEOFF

1.	WING FLAPS Handle
2.	POWER Lever SET FOR TAKEOFF
	(observe Takeoff ITT and N _g limits) Refer to Maximum Engine Torque for Takeoff chart in Section 5.
	Refer to Maximum Engine Torque for Takeoff chart in Section 5.
3.	CAS MSG(s) CHECK
4.	Rotate
	Airspeed
6.	WING FLAPS Handle
	RETRACT to 10° (after reaching 85 KIAS)
	RETRACT to UP (after reaching 95 KIAS)

SHORT FIELD TAKEOFF

1.	WING FLAPS Handle 20°
2.	Brakes
3.	POWER Lever
	(observe Takeoff ITT and N _g limits)
	(observe Takeoff ITT and N _g limits) Refer to Maximum Engine Torque for Takeoff chart in Section 5.
4.	CAS MSG(s) CHECK
5.	Brakes
6.	Rotate
7.	Airspeed
	Refer to Section 5 for speeds at reduced weights.
8.	WING FLAPS Handle
	RETRACT to 10° (after reaching 85 KIAS)
	RETRACT to UP (after reaching 95 KIAS)
TYPE	E II, TYPE III OR TYPE IV ANTI-ICE FLUID TAKEOFF
4	

1.	WING FLAPS Handle UP
2.	Power Lever
	(observe Takeoff ITT and N _g limits) Refer to Maximum Engine Torque for Takeoff chart in Section 5.
	Refer to Maximum Engine Torque for Takeoff chart in Section 5.
3.	CAS MSG(s) CHECK
4.	Rotate
5.	Airspeed 104 KIAS

ENROUTE CLIMB

CRUISE CLIMB

1.	Ice Protection (if installed) AS REQUIRED
	a. PITOT/STATIC HEAT . ON (when OAT is below 5°C (41°F))
	b. STALL HEAT ON (when OAT is below 5°C (41°F))
	c. PROP HEAT ON (when OAT is below 5°C (41°F))
2.	INERTIAL SEPARATOR SET
3.	Airspeed 110-120 KIAS
4.	PROP RPM Lever
5.	INERTIAL SEPARATPOR SET

NOTE

To achieve maximum flat rated horsepower, use a minimum of 1800 RPM.

(Continued Next Page)

CRUISE CLIMB (Continued)

NOTE

Engine operations which exceed 740°C ITT can reduce engine life.

CAUTION

For every 10° below -30°C ambient temperature, reduce maximum allowable N_g by 2.2%.

MAXIMUM PERFORMANCE CLIMB

1.	Ice Protection (if installed) AS REQUIRED
	a. PITOT/STATIC HEAT. ON (when OAT is below 5°C (41°F))
	b. STALL HEAT ON (when OAT is below 5°C (41°F))
	c. PROP HEAT ON (when OAT is below $5^{\circ}C$ (41°F))
2.	INERTIAL SEPARATOR SET
3.	Airspeed 104 KIAS (from sea level to 10,000 feet)
	decreasing to 87 KIAS (at 20,000 feet)
4.	PROP RPM Lever 1900 RPM
5.	POWER Lever
	(observe Maximum Climb ITT and N _a limits)
	Refer to Maximum Engine Torque for Climb chart in Section 5.

CAUTION

- Engine operations which exceed 740°C ITT can reduce engine life.
- For every 10° below -30°C ambient temperature, reduce maximum allowable N_q by 2.2%.

CESSNA MODEL 208B G1000

CRUISE

- 1. Ice Protection (if installed)..... AS REQUIRED
 - a. PITOT/STATIC HEAT . ON (when OAT is below 5°C (41°F))
 - b. STALL HEAT..... ON (when OAT is below 5°C (41°F))
- c. PROP HEAT ON (when OAT is below 5°C (41°F))
- 2. INERTIAL SEPARATOR SET
- 4. POWER Lever..... SET

(observe Maximum Cruise ITT and Ng limits)

Refer to Cruise Performance and/or Cruise Maximum Torque charts in Section 5.

5. Fuel Balance CHECK

(maximum 200 pounds imbalance)

NOTE

Engine operations which exceed 740°C ITT can reduce engine life.

CAUTION

For every 10° below -30°C ambient temperature, reduce maximum allowable N_g by 2.2%.

DESCENT

1.	 Ice Protection (if installed) AS RE a. PITOT/STATIC HEAT . ON (when OAT is below 5°) b. STALL HEAT ON (when OAT is below 5°) c. PROP HEAT ON (when OAT is below 5°) 	C (41°F)) C (41°F))
3. 4.	INERTIAL SEPARATOR	SET ON SET

NOTE

The overspeed warning horn and MAXSPD annunciation will activate when either PFD1 or PFD2 airspeed reaches greater than 175 KIAS. In addition, the overspeed warning horn and MAXSPD annunciation may appear prior to 175 KIAS if the aircraft is accelerating at a rate that will rapidly exceed V_{MO} .

(Continued Next Page)

4-28

DESCENT (Continued)

CAUTION

Set PROP RPM Lever at 1900 RPM prior to beginning any instrument approach procedure.

6. POWER Lever AS REQUIRED

BEFORE LANDING

NOTE

Refer to Landing Distance chart in Section 5 for anticipated ground roll and total distance requirements.

1. Seats, Seat Belts, Shoulder Harnesses SECURE

WARNING

Failure to correctly use seat belts and shoulder harnesses could result in serious or fatal injury in the event of an accident.

2.	FUEL TANK SELECTORS BOTH ON
3.	FUEL CONDITION Lever
4.	PROP RPM Lever MAX (full forward)
5.	Radar STANDBY
6.	AP/YD OFF
	(before 200 feet AGL on approach or 800 feet AGL)
7.	WING FLAPS Handle SET

LANDING

NORMAL LANDING

1.	WING FLAPS Handle	FULL
2.	Airspeed	
3.	Touchdown	MAIN WHEELS FIRST
4.	POWER Lever	BETA RANGE AFTER TOUCHDOWN
5.	Brakes	APPLY

U.S. 4-29

SHORT FIELD LANDING

1.	WING FLAPS Handle	FULL
2.	Airspeed	78 KIAS

Refer to Landing Distance charts in Section 5 for speeds at reduced weights.

- 3. POWER Lever.... **REDUCE to IDLE** (after clearing obstacles)
- 4. Touchdown MAIN WHEELS FIRST
- 5. POWER Lever. BETA RANGE AFTER TOUCHDOWN

NOTE

Use of reverse thrust will reduce the landing roll by approximately 10% (see Section 5).

6.	Brakes	MAXIMUM
		(while holding elevator control full aft)
7.	WING FLAPS Handle	
		(for maximum brake effectiveness)

BALKED LANDING

1.	POWER Lever	ADVANCE (for takeoff power)
2.	WING FLAPS Handle	RETRACT to 20°
3.	Airspeed	
		(until obstacles are cleared)
4.	WING FLAPS Handle	RETRACT
		(after reaching safe altitude and airspeed)

AFTER LANDING

1.	WING FLAPS Handle	. UP
2.	Ice Protection (if installed)	OFF
	a. PITOT/STATIC HEAT	OFF
	b. STALL HEAT	OFF
	c. PROP HEAT	OFF
3.	STBY ALT PWR	OFF
4.	STROBE Lights	OFF
5.	LDG and TAXI/RECOG Lights	SET
6.	FUEL CONDITION Lever LOW	IDLE
	(when clear of the rur	nway)

CAUTION

If the FUEL CONDITION Lever is moved past the LOW IDLE position and the engine N_g falls below 53%, moving the lever back to the LOW IDLE position can cause an ITT over-temperature condition. If the engine has started to shutdown in this situation, allow the engine to complete its shutdown sequence, and proceed to do a normal engine start using the "Starting Engine" checklist.

SHUTDOWN AND SECURING AIRPLANE

1.	PARKING BRAKE SET
2.	BLEED AIR HEAT, VENTILATION FANS/ AIR
	CONDITIONING (if installed) OFF
3.	POWER Lever
4.	ITT STABILIZED
	(at minimum temperature for one minute)
5.	PROP RPM Lever FEATHER
6.	FUEL CONDITION Lever CUTOFF
7.	LIGHTS
8.	FUEL BOOST Switch OFF
9.	AVIONICS No 1 and No 2 Switches OFF
10.	BATTERY Switch OFF
11.	Control Lock INSTALL
	OXYGEN SUPPLY Control Lever (if installed) OFF
13.	FUEL TANK SELECTORS LEFT OFF or RIGHT OFF
	Turn high wing tank off if parked on a sloping surface to prevent crossfeeding.
14.	Tie-Downs and Chocks AS REQUIRED
15.	External Covers INSTALL
16.	Fuel Filter CHECK FUEL FILTER BYPASS FLAG
	(for proper location - flush)
17.	Oil Breather Drain Can DRAIN (until empty)

NOTE

Possible delays of subsequent flights, or even missed flights, are often eliminated by routinely conducting a brief postflight inspection. Usually, a visual check of the airplane for condition, security, leakage, and tire inflation will alert the operator to potential problems, and is therefore recommended.

AMPLIFIED PROCEDURES

PREFLIGHT INSPECTION

The Preflight Inspection, described in Figure 4-1 and adjacent checklist, is recommended. If the airplane has been in extended storage, has had recent major maintenance, or has been operated from rough or unprepared surfaces, an extensive exterior inspection is recommended.

WARNING

Flights at night and in cold weather involve a careful check of other specific areas discussed in this section.

After major maintenance has been performed, the flight controls and trim tabs should be double-checked for free and correct movement and security. The security of all inspection plates on the airplane should be checked following periodic inspections.

If the airplane has been exposed to excessive ground handling in a crowded hangar, it should be checked for dents and scratches on wings, fuselage, and tail surfaces, as well as damage to navigation and anti-collision lights, and avionics antennas. Outside storage in windy or gusty areas, or tie-down adjacent to taxiing airplanes, calls for special attention to control surface stops, hinges, and brackets to detect the presence of wind damage.

If the airplane has been operated from an unimproved runway, check the propeller for nicks and stone damage and the leading edges of the horizontal tail for abrasion. Airplanes that are operated from rough fields, especially at high altitude, are subjected to abnormal landing gear abuse. Frequently check all components of the landing gear, tires, and brakes.

Outside storage can result in water and obstructions in airspeed system lines, condensation in fuel tanks, and dust and dirt in the engine air inlet and exhaust areas. If any water is suspected in the static source system, open both static source drain valves and thoroughly drain all water from the system.

WARNING

If the static source drain valves are opened, assure both valves are completely closed before flight.

(Continued Next Page)

FAA APPROVED 208BPHBUS-00

U.S.

PREFLIGHT INSPECTION (Continued)

If any water is detected in the fuel system, the inboard fuel tank sump and external sump quick-drain valves, fuel reservoir quick-drain valve, and fuel filter quick-drain valve should all be thoroughly drained until there is no evidence of water or sediment contamination. If the airplane is parked with one wing low on a sloping ramp, draining of the outboard fuel tank sump quick-drain valves (if installed) is also recommended.

Prolonged storage of the airplane will result in a water buildup in the fuel which "leaches out" the fuel additive. An indication of this is when an excessive amount of water accumulates in the fuel tank sumps. Refer to Section 8 for fuel additive servicing.

To prevent loss of fuel in flight, make sure the fuel tank filler caps are tightly sealed after any fuel system check or servicing. Fuel system vents should also be inspected for obstructions, ice or water, especially after exposure to cold, wet weather.

The interior inspection will vary according to the planned flight and the optional equipment installed. Prior to high-altitude flights, it is important to check the condition and quantity of oxygen face masks and hose assemblies. The oxygen supply system (if installed) should be functionally checked to ensure that it is in working order and that an adequate supply of oxygen is available.

BEFORE STARTING ENGINE

WARNING

- It is the responsibility of the pilot in command to make sure that the airplane is correctly loaded within the weight and center of gravity limits prior to takeoff.
- Failure to correctly use seat belts and shoulder harnesses could result in serious or fatal injury in the event of an accident.

BEFORE STARTING ENGINE (Continued)

The Before Starting Engine checklist procedures should be followed closely to assure a satisfactory engine start. Most of the checklist items are self-explanatory. Those items that may require further explanation are noted in the following discussion.

When setting electrical switches prior to engine start, only those lighting switches that are necessary for a night-time engine start should be turned on. All other switches, including exterior lights, anti-ice, deice, ventilation fans/ air conditioning (if installed) switches, should be turned off. The BLEED AIR HEAT Switch should be off to prevent excessive compressor bleed during the engine start. Also, the standby power switch should be off during engine starts.

CAUTION

Leaving the BLEED AIR HEAT Switch ON can result in a hot start or abnormal acceleration to idle.

The generator switch is spring-loaded to the ON position. When the starter switch is placed in the START or MOTOR position, the generator control unit (GCU) opens the generator contactor. When the starter switch is returned to the OFF position after an engine start, the GCU closes the generator contactor, thereby placing the generator on the line.

The IGNITION Switch is left in the NORM position for engine starting with the starter motor (non-windmilling start). In this position, the igniters are energized when the starter switch is placed in the START position. Ignition is automatically terminated when the starter switch is turned OFF.

CAUTION

It is especially important to verify that the EMERGENCY POWER Lever is in the NORMAL position (aft of the IDLE gate) during engine starts. With the lever forward of this gate, excessive quantities of fuel will be discharged through the fuel nozzles when the FUEL CONDITION Lever is moved to the LOW IDLE position and a hot start will result.

(Continued Next Page)

4-35

BEFORE STARTING ENGINE (Continued)

Before starting the engine, the POWER Lever is placed at the IDLE position (against the BETA gate), the propeller control lever is moved to the MAX RPM position (full forward), and the FUEL CONDITION Lever is stowed in the CUTOFF position.

CAUTION

The propeller reversing linkage can be damaged if the POWER Lever is moved aft of the IDLE position when the engine is not running and the propeller is feathered.

STARTING ENGINE

The Starting Engine checklist procedures should be followed closely to assure a satisfactory engine start. With the FUEL CONDITION Lever in the CUTOFF position, move the starter switch to the START position; verify that the STARTER ON and IGNITION ON CAS MSG(s) are displayed. Next, check for a positive indication of engine oil pressure. After N_g stabilizes (minimum of 12%), move the FUEL CONDITION Lever to the LOW IDLE position and verify fuel flow in the general range of 90 to 140 pph. After the engine "lights off" and during acceleration to idle (approximately 52% N_g), monitor ITT and N_g. Maximum ITT during engine start is 1090°C, limited to 2 seconds. Typically, the ITT during start is well below this maximum value. After the engine has stabilized at idle, the STARTER ON CAS MSG should be OFF. If this CAS MSG remains ON, it indicates the starter has not been automatically disengaged during the engine starting sequence due to a failed speed sensor.

CAUTION

If no ITT rise is observed within 10 seconds after moving the FUEL CONDITION Lever to the LOW IDLE position, or ITT rapidly approaches 1090°C, move the FUEL CONDITION Lever to CUTOFF and perform the Engine Clearing Procedure in this section.

STARTING ENGINE (Continued)

After the engine reaches stabilized idle (52% N_g or above), return the starter switch to the OFF position. With a cold engine or after making a battery start (high initial generator load into battery), it may be necessary to advance the POWER Lever slightly ahead of the idle detent to maintain a minimum idle of 52% Ng. To assure maintaining the minimum Ng and ITT within limits, advance the POWER Lever to obtain approximately 55% Ng before turning the starter switch OFF (the generator contactor closes when the starter switch is turned OFF).

CAUTION

Under hot OAT and/or high ground elevation conditions, idle ITT can exceed maximum idle ITT limitation of 685°C. Increase Ng and/or reduce accessory load to maintain ITT within limits.

NOTE

If the STARTER ENERGIZED CAS MSG fails to go out after the starter switch has been moved to the OFF position, the start contactor can be closed and the generator will not function. Perform an engine shutdown.

Engine starts can be made with airplane battery power or with an external power unit (EPU). However, it is recommended that an EPU be used when the ambient air temperature is less than $-18^{\circ}C$ (0°F). Refer to Cold Weather Operation in this section when ambient temperature is below $-18^{\circ}C$ (0°F).

CAUTION

 In the event the external power unit drops off the line during engine start, a loss of electrical power to the starter will result which could cause a hot start. Should a loss of external power occur, immediately place the FUEL CONDITION Lever to CUTOFF, monitor ITT, and make sure the engine is shutting down. Turn the external power switch off and place the starter switch to the MOTOR position to aid in reducing ITT if necessary.

STARTING ENGINE (Continued)

 When an external power unit is used, make sure the unit is negatively grounded and regulated to 28 volts DC with a capability of providing a minimum of 800 amperes during the starting cycle. External power units with output exceeding 1700 amperes shall not be used.

Before engine starting with the airplane battery, check the BUS VOLTS for a minimum of 24 volts. Monitor ITT during each engine start to guard against a hot start. The operator must be ready to immediately abort the start if ITT exceeds 1090°C or is rapidly approaching this limit. Usually, hot starts are not a problem if the normal starting procedures are followed.

CAUTION

A minimum battery voltage of 24 volts is not always an indication that the battery is near full charge or in good condition. Therefore, if gas generator acceleration in the initial part of the start is less than normally observed, return the FUEL CONDITION Lever to CUTOFF and discontinue the start. Recharge the battery or use an external power unit before attempting another start.

If the starter accelerates the gas generator rapidly above 20%, suspect gear train decouple. Do not continue start. Rapid acceleration through 35% N_g suggests a start on the secondary nozzles. Anticipate a hot start.

After an aborted start for whatever reason, it is essential before the next start attempt to allow adequate time to drain off unburned fuel. Failure to drain all residual fuel from the engine could lead to a hot start, a hot streak leading to hot section damage, or the torching of burning fuel from engine exhaust on the next successful ignition.

A dry motoring, within starter limitations after confirming that all fuel drainage has stopped, will ensure that no fuel is trapped before the next start.

ENGINE CLEARING MOTORING RUN)

PROCEDURES (DRY

The following procedure is used to clear an engine at any time when it is deemed necessary to remove internally trapped fuel and vapor, or if there is evidence of a fire within the engine. Air passing through the engine serves to purge fuel, vapor, or fire from the combustion section, gas generator turbine, power turbine, and exhaust system.

1.	FUEL CONDITION Lever
2.	IGNITION Switch NORM
3.	BATTERY Switch ON
	(to supply current for the starter motor)
4.	AVIONICS No 1 Switch
5.	FUEL SHUTOFF Knob OPEN (push in)
6.	FUEL BOOST Switch OFF

WARNING

If fire is suspected, leave the FUEL BOOST switch OFF, otherwise turn it ON to provide lubrication for the engine-driven fuel pump elements.

7.	STARTER Switch		. MOTOR
----	----------------	--	---------

CAUTION

- Do not exceed the starting cycle limitations; refer to Section 2.
- Should a fire persist, as indicated by sustained ITT, close the FUEL SHUTOFF Knob and continue motoring the engine.

8.	STARTER Switch	OFF
9.	FUEL BOOST Switch	OFF
10.	AVIONICS No 1 Switch	OFF
11.	FUEL SHUTOFF Knob CLOSED (pull	out)
12.	BATTERY Switch	OFF
	the required cooling period for the starter before any fur	thor

Allow the required cooling period for the starter before any further starting operation is attempted.

ENGINE IGNITION PROCEDURES

For most operations, the IGNITION Switch is left in the NORM position. With the switch in this position, ignition is on only when the starter switch is in the START position.

NOTE

The use of ignition for extended periods of time will reduce ignition system component life.

The IGNITION Switch should be turned ON to provide continuous ignition under the following conditions:

- 1. Emergency engine starts without starter assist (refer to Section 3, AIRSTART).
- 2. Operation on wet or contaminated runways.
- 3. Flight in heavy precipitation.
- 4. Flight in moderate or greater turbulence.
- 5. During inadvertent icing encounters prior to the INERTIAL SEPARATOR being selected to BYPASS.
- 6. When near fuel exhaustion as indicated by Red RSVR FUEL LOW CAS MSG.

Refer to Section 7, Engine Ignition System, for further details regarding the ignition system.

ENGINE INERTIAL SEPARATOR PROCEDURES

An INERTIAL SEPARATOR system is built into the engine air inlet duct to prevent ice buildups on the compressor inlet screen. The INERTIAL SEPARATOR control should be moved to the BYPASS position prior to running the engine during ground or flight operation in visible moisture (clouds, rain, snow or ice crystals) with an OAT of 5°C (41°F) or less.

The BYPASS mode can also be used for ground operations or takeoffs with dusty, sandy field conditions to minimize ingestion of foreign particles into the compressor. Refer to charts in Section 5 for performance changes associated with the INERTIAL SEPARATOR in the BYPASS mode.

The NORMAL mode is used for all other operating conditions, since it provides substantial inlet ram recovery. This results in more efficient engine operation and higher critical altitude for a particular power setting.

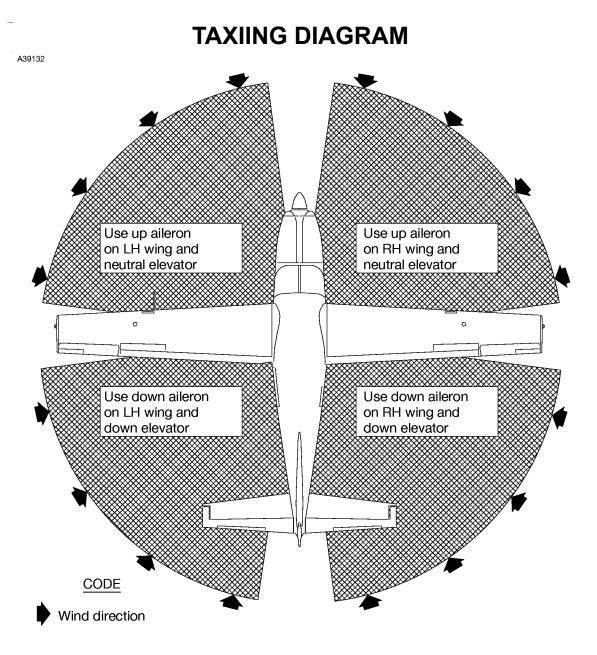
Do not return the INERTIAL SEPARATOR to NORMAL until after engine shutdown and inspection if icing conditions are encountered.

Refer to Section 7, Engine Air Induction System for further details regarding the INERTIAL SEPARATOR.

TAXIING

POWER Lever BETA range can be used during taxi to control taxi speed and improve brake life. A leaf spring is installed in the control quadrant which the POWER Lever contacts and provides the pilot with a noticeable "feel". With the POWER Lever moved to this position in the BETA range, the propeller is near zero thrust in a static, 52% idle condition. Besides acting as a zero thrust reference during taxi, this POWER Lever position (lever against spring) is used after landing to minimize brake wear. POWER Lever movement further aft of the BETA range will result in increased engine power and reverse thrust from the propeller blades.

CAUTION


- The use of reverse thrust should be minimized, especially on unprepared surfaces, to minimize propeller blade erosion and possible damage.
- Do not leave the POWER Lever in the BETA range for extended periods (greater than 30 seconds) when parked with a right crosswind to avoid damage to the cargo pod.

NOTE

During low-speed taxi with a strong tailwind, or when stopped with a strong tailwind, a moderate vibration can occur as a result of reverse airflow through the propeller disk with the blades at a positive pitch angle. This vibration can be significantly reduced by placing the POWER Lever in the BETA range, or it can be eliminated by turning the airplane into the wind.

Refer to the Taxiing Diagram figure for additional taxiing instructions.

NOTE

Strong quartering tail winds require caution. Avoid excessive use of power and sharp braking when the airplane is in this attitude. Use the steerable nose wheel and rudder to maintain direction.

Figure 4-3

BEFORE TAKEOFF

The FUEL TANK SELECTORS are normally both ON for takeoff and all flight operations. However, one side can be turned OFF as required to balance the fuel load.

WARNING

- Do not exceed 200 pounds fuel imbalance in flight.
- To obtain accurate fuel quantity indicator readings, verify the airplane is parked in a laterally level condition; or, if in flight, make sure the airplane is in a coordinated and stabilized condition.

When checking the INERTIAL SEPARATOR with engine power set at 400 foot-pounds, it is typical to see an approximate 25 foot-pound drop in torque when the T-handle is pulled to the BYPASS position. This torque drop will vary some with wind conditions during static check.

A neutral index mark is added to the pedestal cover which corresponds to the zero degree trim tab position. As loadings vary towards the forward C.G. limit or aft C.G. limit, elevator trim settings towards the nose up and nose down ends of this takeoff range, respectively, will provide comfortable control wheel forces during takeoff and initial climb.

Prior to takeoff, the FUEL CONDITION Lever is moved forward to the HIGH IDLE position (approximately 65% N_g) to remain in this position until after landing. The higher gas generator idle speed for flight provides faster engine acceleration when adding power (from an idle condition) on approach or for a balked landing go-around.

TAKEOFF

POWER SETTING

Refer to the Maximum Engine Torque for Takeoff chart in Section 5 to determine the torque corresponding to the surface altitude and OAT conditions. This torque should be obtainable without exceeding 805°C ITT or 101.6% N_a.

Takeoff roll is most smoothly initiated by gradually advancing the POWER Lever until propeller RPM nears 1900. Smoothly release the brakes and continue advancing the POWER Lever until the takeoff torque is reached.

NOTE

As airspeed increases during takeoff, an increase in torque at a fixed POWER Lever position is normal and need not be reduced provided the torque limit (1865 foot-pounds) is not exceeded.

WING FLAP SETTINGS

A flap setting of 20° is recommended for all takeoffs unless a strong crosswind exists at which time 10° flaps may be preferred. Use of 20° flaps provides for a lower liftoff speed, as well as a reduction in ground roll and total distance over an obstacle compared to takeoff with flaps up.

Flap settings greater than 20° are not approved for takeoff.

SHORT FIELD TAKEOFF

If an obstruction dictates the use of a steep climb angle after liftoff, accelerate to and climb at an obstacle clearance speed of 83 KIAS with 20° flaps. Takeoff performance data is shown in Section 5 based on this speed and configuration.

NOTE

The 83 KIAS obstacle clearance speed is a recommended safe speed under all conditions, including turbulence and complete engine failure. The actual V_X speed with flaps 20° is 70 KIAS at maximum takeoff weight as noted in the Climb Gradient - Takeoff Flap Setting - Flaps 20 chart in Section 5.

SHORT FIELD TAKEOFF (Continued)

After clearing the obstacle, and reaching a safe altitude, the flaps can be retracted slowly as the airplane accelerates to the normal climb airspeed.

Minimum ground roll takeoffs are accomplished by using 20° flaps, lifting the nose wheel off the ground as soon as practical and leaving the ground in a slightly tail-low attitude. However, after liftoff the airplane should be leveled immediately to accelerate to a safe climb airspeed.

TYPE II, TYPE III OR TYPE IV ANTI-ICE FLUID TAKEOFF

When Type II, Type III or Type IV anti-ice fluid is applied to the airplane, a rotation speed of 89 KIAS with flaps UP is required. Use of flaps UP allows the airplane to accelerate to a higher rotation speed without any liftoff tendencies, which is required for the Type II, Type III or Type IV anti-ice fluid to be effective. Takeoff performance data shown in Section 5 is based on this speed and configuration.

CROSSWIND TAKEOFF

Takeoffs into strong crosswinds normally are performed with FLAPS 10° or 20°. With the ailerons partially deflected into the wind, the airplane is accelerated to a speed higher than normal, and then rotated to prevent settling back to the runway. When clear of the ground, make a coordinated turn into the wind to correct for drift. The use of flaps 10° will improve directional control, but will also increase the takeoff distance. Increase the flaps 20° short field takeoff lift off and 50 feet obstacle speeds by 7 knots, if flaps 10° is used for takeoff.

ENROUTE CLIMB

Normally, maximum climb power is maintained during the climb to cruise altitude. Adjust the POWER Lever as required to prevent exceeding maximum climb torque, maximum climb ITT of 765°C, or maximum climb N_{α} of 101.6%, whichever occurs first.

NOTE

Engine operations which exceed 740°C ITT can reduce engine life.

(Continued Next Page)

U.S. 4-45

ENROUTE CLIMB (Continued)

At lower altitudes and cool outside air temperatures (below approximately 10,000 feet), the engine will reach the torque limit before reaching the ITT or N_g limit. As the climb progresses and the torque is maintained by POWER Lever advancement, the ITT and N_g will increase until an altitude is reached where ITT or N_g will dictate POWER Lever positioning. When operating near the ITT limit, advance POWER Lever slowly to allow the current ITT to be indicated. The rate of power (and temperature) increase of the engine is greater than the response rate of the ITT indicating system; therefore, a rapid POWER Lever advance could allow an over-temperature condition to exist momentarily in the engine before the over-temperature would be indicated.

For maximum performance climb, the best rate-of-climb airspeed should be used with 1900 RPM and maximum climb power. This speed is 104 KIAS from sea level to 10,000 feet, decreasing to 87 KIAS at 20,000 feet.

For improved visibility over the nose, a cruise climb airspeed of 115 - 125 KIAS may be desirable at altitudes up to approximately 12,000 feet. Adjust the POWER Lever (in accord with the Maximum Engine Torque for Climb chart in Section 5) with the PROP PRM set at 1900 to prevent exceeding the maximum allowable shaft horsepower for the ambient conditions. After Climb Torque is set, PROP RPM can be reduced in accord the following table for improved passenger comfort.

Under no circumstances should the following limitations be exceeded:

- 1. The MAX TORQUE for the corresponding PROP RPM
- 2. A maximum climb ITT of 765°C
- 3. A maximum N_q of 101.6%

RPM	MAX TORQUE
1900	1865
1800	1970
1700	1970
1600	1970

NOTE

- Engine operations which exceed 740° C ITT can reduce engine life.
- To achieve maximum flat-rated horsepower, use a minimum of 1800 RPM.

If an obstruction dictates the use of a steep climb angle, climb with Flaps UP and maximum continuous power at 86 KIAS.

4 - 46

CRUISE

Normal cruise is performed using any desired power setting up to the maximum cruise power (observe ITT, torque, and N_g cruise limits). Do not exceed the maximum cruise torque or 740°C ITT shown in Cruise Performance or Cruise Maximum Torque charts in Section 5 for the particular altitude and temperature. Normally, a new engine will exhibit an ITT below 710°C when set to the maximum cruise torque.

The Sample Cruise Performance chart illustrates the advantage of higher altitude on both true airspeed and nautical miles per 1000 pounds of fuel. In addition, the beneficial effect of lower cruise power on nautical miles per 1000 pounds of fuel at a given altitude can be observed. Charts are provided in Section 5 to assist in selecting an efficient altitude based on available winds aloft information for a given trip. The selection of cruise altitude on the basis of the most favorable wind conditions and the use of low power settings are significant factors that should be considered to reduce fuel consumption.

PITOT/STATIC and STALL HEAT should be ON anytime the OAT is below 5°C (41°F). If icing conditions are encountered, ensure that the additional anti-icing systems (airframe ANTI-ICE (if installed) and INERTIAL SEPARATOR) are ON and in the BYPASS mode before encountering visible moisture below approximately 5°C (41°F). Windshield anti-ice (if installed) and propeller anti-ice (if installed) systems should also be turned ON.

SAMPLE CRUISE PERFORMANCE CHART

PARAMETERS: Standard Conditions 1900 RPM Zero Wind

ALTITUDE	Maximum Cruise Power		Maximum Range Power	
(Feet)	KTAS	NM/1000 LBS	KTAS	NM/1000 LBS
5,000	182	430	155	470
10,000	182	480	157	530
15,000	177	540	159	580
20,000	167	610	161	610

(WITHOUT CARGO POD)

ALTITUDE	Maximum Cruise Power		Maximum Range Power	
(Feet)	KTAS	NM/1000 LBS	KTAS	NM/1000 LBS
5,000	173	410	149	450
10,000	172	460	151	500
15,000	167	510	152	540
20,000	157	570	156	570

(WITH CARGO POD)

Figure 4-4

CRUISE (Continued)

These systems are designed to prevent ice formation, rather than removing it after it has formed. Even if the airplane is equipped with the "Flight Into Known Icing" package, accumulation of some airframe ice is unavoidable; this will increase airplane weight and drag and decrease airspeed and general airplane performance. It is always wise to avoid icing conditions, if practical.

Fuel quantity should be monitored to maintain a balanced fuel condition. Normally, both FUEL TANK SELECTORS are left ON and fuel will feed equally from each tank. If a fuel imbalance condition approaching 200 pounds does occur, the fuel tank selector for the tank with less fuel should be turned OFF until the fuel quantity is balanced. With one fuel tank selector OFF and fuel remaining in the tank being used is less than approximately 170 lbs (25 gallons), the FUEL SELECT OFF CAS MSG will come ON and a warning horn will sound.

WARNING

Turn IGNITION ON when flying in heavy precipitation or icing conditions. Refer to Engine Ignition Procedures in this section for additional information on use of ignition.

CAUTION

Prolonged zero or negative "G" maneuvers will starve the engine oil pump and result in engine damage.

Supplemental oxygen should be used by all occupants when cruising above 12,500 feet. It is often advisable to use oxygen at altitudes lower than 12,500 feet under conditions of night flying, fatigue, or periods of physiological or emotional disturbances. Also, the habitual and excessive use of tobacco or alcohol will usually necessitate the use of oxygen at less than 10,000 feet.

CRUISE (Continued)

WARNING

- Operation up to the maximum allowable operating altitude is predicated on the availability and use of supplemental oxygen above 12,500 feet as specified by 14 CFR 91.211.
- Smoking is prohibited when using oxygen. Oil, grease, soap, lipstick, lip balm, and other fatty materials constitute a serious fire hazard when in contact with oxygen. Be sure hands and clothing are oil-free before handling oxygen equipment.

STALLS

Stall characteristics are conventional and aural warning is provided by a stall warning horn which sounds between 5 and 10 knots above the stall in all configurations.

Idle-power stall speeds at maximum weight for both forward and aft C.G. are presented in Section 5.

NOTE

Practice of stalls should be done conservatively and with sufficient altitude for a safe recovery.

LANDING

NORMAL LANDING

Normal landing approaches can be made with power-on or idle power with any flap setting desired and the PROP RPM Lever set at 1900. Use of FULL flaps is normally preferred to minimize touchdown speed and subsequent need for braking. For a given flap setting, surface winds and turbulence are usually the primary factors in determining the most comfortable approach speed.

Actual touchdown should be made with idle power and on the main wheels first, just slightly above stall speed. The nose wheel is then gently lowered to the runway, the POWER Lever repositioned to the BETA range, and brakes applied as required. When clear of the runway, reposition the FUEL CONDITION Lever from HIGH IDLE to LOW IDLE. This will reduce cabin and exterior noise levels as well as reduce braking requirements when the POWER Lever is positioned ahead of the REVERSE range. Landings on rough or soft fields are accomplished in a similar manner except that the nose wheel is lowered to the runway at a lower speed to prevent excessive nose gear loads.

NOTE

The use of BETA range after touchdown is recommended to reduce brake wear. Generally, the POWER Lever can be moved aft of the IDLE gate until it contacts a spring in the control quadrant without substantial propeller erosion from loose debris on the runway or taxiway.

SHORT FIELD LANDING

For short field landings, make a power approach at 78 KIAS with the PROP RPM lever at MAX (full forward) and with full flaps. After all approach obstacles are cleared, reduce power to idle. Maintain 78 KIAS approach speed by lowering the nose of the airplane. Touchdown should be made with the POWER Lever at IDLE, and on the main wheels first. Immediately after touchdown, lower the nose gear, reposition the POWER Lever against the spring in the BETA range, and apply heavy braking as required.

For maximum brake effectiveness after all three wheels are on the ground, hold full nose up elevator and apply maximum possible brake pressure without sliding the tires.

(Continued Next Page)

U.S. 4-51

SHORT FIELD LANDING (Continued)

The landing performance in Section 5 is based on the above procedure. A reduction in ground roll of approximately 10% will result from the use of reverse thrust (POWER Lever full aft to provide increased power from the gas generator and a reverse thrust propeller blade angle).

CAUTION

To minimize propeller blade erosion or possible propeller blade damage, reverse thrust should be used only when necessary to shorten the ground roll. Bringing the propeller out of reverse before decelerating through approximately 25 knots will minimize propeller erosion.

CROSSWIND LANDING

For crosswind approaches, either the wing-low, crab or combination method can be used. A flap setting between 10° and 30° is recommended. Use a minimum flap setting for the field length. After touchdown, lower the nose wheel and maintain control. Maintain a straight course using the steerable nose wheel, ailerons, and occasional braking if necessary.

BALKED LANDING

In a balked landing (go-around) climb, the wing flap setting should be reduced to 20° after takeoff power is applied. After all obstacles are cleared and a safe altitude and airspeed are obtained, the WING FLAPS should be retracted.

CESSNA MODEL 208B G1000

AFTER SHUTDOWN

If dusty conditions exist or if the last flight of the day has been completed, install engine inlet covers to protect the engine from debris. The covers can be installed after the engine has cooled (ITT indicator showing "off scale" temperature). Secure the propeller to prevent windmilling since no oil pressure is available for engine lubrication when the engine is not running.

COLD WEATHER OPERATION

Special consideration should be given to the operation of the airplane fuel system during the winter season or prior to any flight in cold temperatures. Proper preflight draining of the fuel system is especially important and will eliminate any free water accumulation. The use of an additive is required for anti-ice protection. Refer to Section 8 for information on the proper use of additives.

Cold weather often causes conditions which require special care prior to flight. Operating the elevator and aileron trim tabs through their full travel in both directions will assure smooth operation by reducing any stiffness in these systems caused by the cold weather effects on system lubrication. Even small accumulations of frost, ice, snow or slush must be removed, particularly from wing, tail and all control surfaces to assure satisfactory flight performance and handling. Also, control surfaces must be free of any internal accumulations of ice or snow.

The use of an external pre-heater reduces wear and abuse to the engine and the electrical system. Pre-heat will lower the viscosity of the oil trapped in the oil cooler, prior to starting in extremely cold temperatures.

Use of an GPU is recommended when ambient temperatures are below $-18^{\circ}C$ (0°F). Assure that oil temperature is in the green band (10°C to 99°C) prior to takeoff.

If snow or slush covers the takeoff surface, allowance must be made for takeoff distances which will be increasingly extended as the snow or slush depth increases. The depth and consistency of this cover can, in fact, prevent takeoff in many instances.

HIGH ALTITUDE OPERATION

At altitudes above 20,000 feet, a compressor surge can be experienced if engine power is rapidly re-applied immediately after a power reduction. This characteristic is not detrimental to the engine and can be eliminated completely by turning BLEED AIR HEAT ON and adjusting the TEMP HOT knob to at least the one-half setting.

ENGINE COMPRESSOR STALLS

An engine compressor stall can be noted by a single or multiple loud popping noise from the engine compartment. This situation can be resolved by reducing the engine power to a point where the "popping" discontinues, and slowly advancing the throttle to the necessary setting for continued flight. The use of BLEED AIR HEAT can also help eliminate engine compressor stalls if this situation is encountered.

NOISE CHARACTERISTICS

Increased emphasis on improving the quality of our environment requires renewed effort on the part of all pilots to minimize the effect of airplane noise on the public.

We, as pilots, can demonstrate our concern for environmental improvement, by application of the following suggested procedures, and thereby tend to build public support for aviation:

- 1. Pilots operating aircraft under VFR over outdoor assemblies of persons, recreational and park areas, and other noise-sensitive areas should make every effort to fly not less than 2000 feet above the surface, weather permitting, even though flight at a lower level can be consistent with the provisions of government regulations.
- 2. During departure from or approach to an airport, climb after takeoff and descent for landing should be made so as to avoid prolonged flight at low altitude near noise-sensitive areas.

NOTE

The above recommended procedures do not apply where they would conflict with Air Traffic Control clearances or instructions, or where, in the pilot's judgment, an altitude of less than 2000 feet is necessary for him to adequately exercise his duty to see and avoid other aircraft.

The certificated noise level for the Model 208B at 8750 pounds maximum weight is 82.7 dB(A). These measurements were obtained using a takeoff profile. No determination has been made by the Federal Aviation Administration that the noise levels of this airplane are or should be acceptable or unacceptable for operation at, into, or out of, any airport.

PERFORMANCE

TABLE OF CONTENTS

Pag	je
Introduction	-3
Use of Performance Charts	-3
Sample Problem	-4
Takeoff	-5
Cruise	-6
Fuel Required	-6
Landing	-8
Airspeed Calibration - Normal Static Source	-9
Airspeed Calibration - Alternate Static Source	0
Altimeter Correction - Alternate Static Source	11
Pressure Conversion	2
Temperature Conversion Chart	3
ISA Conversion and Operating Temperature Limits	4
Stall Speeds	5
Wind Components	6
Maximum Engine Torque for Takeoff	17
Maximum Engine Torque for Climb	8

AIRPLANES WITH CARGO POD INSTALLED

Short Field Takeoff Distance	9
Flaps UP Takeoff Distance	<u>2</u> 4
Rate of Climb - Takeoff Flap Setting	27
Climb Gradient - Takeoff Flap Setting	28
Maximum Rate of Climb - Flaps UP	29
Climb Gradient - Takeoff - Flaps UP	30
Cruise Climb - Flaps UP - 115 KIAS5-3	31
Rate of Climb - Balked Landing	32
Time, Fuel, and Distance to Climb - Maximum Rate of Climb5-3	33
Time, Fuel, and Distance to Climb - Cruise Climb - 115 KIAS 5-3	34

(Continued Next Page)

SECTION 5 PERFORMANCE

TABLE OF CONTENTS (Continued)PageCruise Performance5-35Cruise Maximum Torque5-46Fuel and Time Required - Maximum Cruise Power (40-200 NM)5-53Fuel and Time Required - Maximum Cruise Power (200-1000 NM)5-54Fuel and Time Required - Maximum Range Power (40-200 NM)5-55Fuel and Time Required - Maximum Range Power (200-1000 NM)5-55Fuel and Time Required - Maximum Range Power (200-1000 NM)5-55Fuel and Time Required - Maximum Range Power (200-1000 NM)5-55Fuel and Time Required - Maximum Range Power (200-1000 NM)5-56Fuel, and Distance to Descend5-57Short Field Landing Distance5-60

Airplanes Without Cargo Pod

Short Field Takeoff Distance.	5-65
Flaps UP Takeoff Distance	
Rate of Climb - Takeoff Flap Setting.	
Climb Gradient - Takeoff Flap Setting	
Maximum Rate of Climb - Flaps UP	
Climb Gradient - Takeoff - Flaps UP.	
Cruise Climb - Flaps UP - 115 KIAS.	
Rate of Climb - Balked Landing	
Time, Fuel, and Distance to Climb - Maximum Rate of Climb	
Time, Fuel, And Distance to Climb - Cruise Climb - 115 KIAS	5-80
Cruise Performance	5-81
Cruise Maximum Torque	5-93
Fuel and Time Required Maximum Cruise Power (40-200 NM).	5-100
Fuel and Time Required Maximum Cruise Power (200-1000 NM)	5-101
Fuel and Time Required Maximum Range Power (40-200 NM) .	5-102
Fuel and Time Required Maximum Range Power (200-1000 NM)	5-103
Range Profile	5-104
Endurance Profile	5-105
Time, Fuel, and Distance to Descend	5-106
Short Field Landing Distance	5-107

CESSNA MODEL 208B G1000

INTRODUCTION

Performance data charts on the following pages are presented so that you may know what to expect from the airplane under various conditions, and also, to facilitate the planning of flights in detail and with reasonable accuracy. The data in the charts has been computed from actual flight tests using average piloting techniques and an airplane and engine in good condition and equipped with a Hartzell propeller. Airplanes equipped with a McCauley propeller will have comparable performance and should also use the data shown.

WARNING

To make sure that performance in this section can be duplicated, the airplane and engine must be maintained in good condition. Pilot proficiency and proper preflight planning using data necessary for all flight phases is also required to assure expected performance with ample margins of safety.

It should be noted that the performance information presented in the range and endurance profile charts allows for 45 minutes reserve fuel at the specified cruise power and altitude. Some indeterminate variables such as engine and propeller condition, and air turbulence may account for variations of 10% or more in range and endurance. Therefore, it is important to utilize all available information to estimate the fuel required for the particular flight.

Notes have been provided on various graphs and tables to approximate performance with the inertial separator in BYPASS and/or cabin heat on. The effect will vary, depending upon airspeed, temperature, and altitude. At lower altitudes, where operation on the torque limit is possible, the effect of the inertial separator will be less, depending upon how much power can be recovered after the separator vanes have been extended.

In some cases, performance charts in this section include data for temperatures which are outside of the ISA Conversion and Operating Temperature Limits chart. This data has been included to aid in interpolation.

USE OF PERFORMANCE CHARTS

Performance data is presented in tabular or graphical form to illustrate the effect of different variables. Sufficiently detailed information is provided in the tables so that conservative values can be selected and used to determine the particular performance figure with reasonable accuracy.

SECTION 5 PERFORMANCE

SAMPLE PROBLEM

The following sample flight problem utilizes information from the various charts to determine the predicted performance data for a typical flight of an airplane equipped with a cargo pod. A similar calculation can be made for an airplane without a cargo pod using charts identified as appropriate for this configuration. The following information is known:

AIRPLANE CONFIGURATION (CARGO POD INSTALLED)

Takeoff weight	8600 Pounds
Usable fuel	2224 Pounds

TAKEOFF CONDITIONS

Field pressure altitude	3500 Feet
Temperature	16°C (standard + 8°C)
Wind component along runway	12 Knot Headwind
Field length	4000 Feet

CRUISE CONDITIONS

Total distance	650 Nautical Miles
Pressure altitude	11,500 Feet
Temperature	8°C
Expected wind enroute	10 Knot Headwind

LANDING CONDITIONS

Field pressure altitude	1500 Feet
Temperature	25°C
Field length	3000 Feet

CESSNA MODEL 208B G1000

TAKEOFF

The Takeoff Distance chart shows distances that are based on the short field technique. Conservative distances can be established by reading the chart at the next higher value of weight, altitude and temperature. For example, in this particular sample problem, the takeoff distance information presented for a weight of 8750 pounds, pressure altitude of 4000 feet and a temperature of 20°C should be used and results in the following:

Ground roll

1875 Feet

Total distance to clear a 50-foot obstacle 3295 Feet

These distances are well within the available takeoff field length. However, a correction for the effect of wind may be made based on Note 2 of the takeoff chart. The correction for a 12 knot headwind is:

<u>12 Knots</u>

11 Knots X 10% = 11% Decrease

This results in the following distances, corrected for wind:

Ground roll, zero wind	1875 Feet
Decrease in ground roll (1875 feet X 11%)	- <u>206 Feet</u>
Corrected ground roll	1669 Feet
Total distance to clear a 50-foot obstacle, zero wind	3295 Feet
Decrease in total distance (3295 feet X 11%)	- <u>362 Feet</u>
Corrected total distance to clear a 50-foot obstacle	2933 Feet

The Maximum Engine Torque For Takeoff chart should be consulted for takeoff power setting. For the above ambient conditions, the power setting is:

Takeoff torque

1865 Ft-Lbs

The Maximum Engine Torque For Climb chart should be consulted for climb power setting from field elevation to cruise altitude. For the above ambient conditions, the power setting is:

Field Elevation Maximum Climb Torque	1740 Ft-lbs
Cruise Altitude Maximum Climb Torque	1360 Ft-lbs

FAA APPROVED 208BPHBUS-00

U.S. 5-5

SECTION 5 PERFORMANCE

CRUISE

The cruising altitude should be selected based on a consideration of trip length, winds aloft, and the airplane's performance. A cruising altitude and the expected wind enroute have been given for this sample problem. However, the power setting selection for cruise must be determined based on several considerations. These include the cruise performance characteristics presented in the Cruise Performance, Cruise Maximum Torque charts, Fuel and Time Required, and the Range and Endurance Profile charts.

The Range Profile chart shows range at maximum cruise power and also at maximum range power. For this sample problem, maximum cruise power and 1900 RPM will be used.

The Cruise Performance chart for 12,000 feet pressure altitude is entered using 10°C temperature. These values most nearly correspond to the planned altitude and expected temperature conditions. The torque setting for maximum cruise power is 1280 Ft-Lbs torque at 1900 RPM which results in the following:

True Airspeed Cruise Fuel Flow 158 Knots 306 PPH

FUEL REQUIRED

The total fuel requirement for the flight may be estimated using the performance information in the Time, Fuel, and Distance to Climb chart, Cruise Performance chart, and Time, Fuel, and Distance to Descend chart or in the Fuel and Time Required (Maximum Cruise Power) chart and Fuel and Time Required (Maximum Range Power) chart. The longer detailed method will be used for this sample problem, but the use of Fuel and Time Required (Maximum Cruise Power) or Fuel and Time Required (Maximum Range Power) charts will provide the desired information for most flight planning purposes.

Assuming a maximum climb, Time, Fuel, and Distance to Climb (Maximum Rate Climb) chart may be used to determine the time, fuel and distance to climb by reading values for a weight of 8000 pounds and a temperature 20°C above standard. The difference between the values shown in the table for 4000 feet and 12,000 feet results in the following:

Time	16 Minutes
Fuel	94 Pounds
Distance	33 Nautical Miles

(Continued Next Page)

5-6

FUEL REQUIRED (Continued)

Similarly, Time, Fuel, and Distance to Descend chart shows that a descent from 12,000 feet to sea level results in the following:

Time	15 Minutes
Fuel	72 Pounds
Distance	43 Nautical Miles

The distances shown on the climb and descent charts are for zero wind. A correction for the effect of wind may be made as follows:

Distance during climb with no wind: 33 Nautical Miles

Decrease in distance due to wind (16/60 X 10 knot headwind) -3 Nautical Miles

Corrected distance to climb

Similarly, the distance for descent may be corrected for the effect of wind and results in 40 nautical miles.

The cruise distance is then determined by subtracting the distance during climb and distance during descent.

Total distance

650 Nautical Miles

-70 Nautical Miles

580 Nautical Miles

30 Nautical Miles

Distance during climb and descent

Cruise distance

With an expected 10 knot headwind, the ground speed for cruise is predicted to be:

158 Knots

-10 Knots

148 Knots

Therefore, the time required for the cruise portion of the trip is:

580 Nautical Miles = 3.9 Hours

148 Knots

The fuel required for cruise is:

3.9 hours X 306 pounds/hour = 1194 Pounds

A 45-minute reserve requires:

45 X 306 pounds/hour=230 Pounds

(Continued Next Page)

FAA APPROVED 208BPHBUS-00

U.S.

5-7

SECTION 5 PERFORMANCE

FUEL REQUIRED (Continued)

The total estimated fuel required is as follows:

Engine start, taxi, and takeoff	35 Pounds
Climb	+94 Pounds
Cruise	+1194 Pounds
Descent	+72 Pounds
Reserve	+ <u>230 Pounds</u>
Total fuel required	1625 Pounds

Once the flight is underway, ground speed checks will provide a more accurate basis for estimating the time enroute and the corresponding fuel required to complete the trip with ample reserve.

LANDING

A procedure similar to takeoff should be used for estimating the landing distance at the destination airport. The estimated landing weight is as follows:

Takeoff weight	8600 Pounds
Fuel required for climb, cruise, and descent	- <u>1625 Pounds</u>
Landing weight	6975 Pounds

The Short Field Landing Distance chart presents landing distance information for the short field technique. The landing distances for a weight of 7000 pounds and corresponding to 2000 feet pressure altitude and a temperature of 30°C should be used and are as follows:

Ground roll	850 Feet
Total distance to clear a 50-foot obstacle	1650Feet

A correction for the effect of wind may be made based on Note 2 of the landing chart using the same procedure as outlined for takeoff.

AIRSPEED CALIBRATION NORMAL STATIC SOURCE

CONDITIONS:

8750 Pounds

Power required for level flight or maximum rated RPM dive.

Flaps UP								
KIAS		80	100	120	140	160	175	
KCAS		85	100	120	140	160	175	
Flaps 10°								
KIAS	75	80	100	120	140	160	175	
KCAS	79	83	100	120	140	160	175	
Flaps								
20°								
KIAS	65	70	80	90	100	110	130	150
KCAS	71	74	81	91	100	110	130	150
Flaps FULL								
KIAS	65	70	80	90	100	110	125	
KCAS	69	72	80	90	101	111	126	 G208B675-00

NOTE

Where airspeed values have been replaced by dashes, the airspeed would be either below stall speed at maximum weight or above the maximum approved operating limit speed for the condition.

Figure 5-1 (Sheet 1 of 2)

AIRSPEED CALIBRATION ALTERNATE STATIC SOURCE

CONDITIONS:

8750 Pounds

Power required for level flight or maximum rated RPM dive. Refer to Sheet 1 for appropriate notes applicable to this chart.

Flaps UP							
NORMAL KIAS	80	100	120	140	160	175	
ALTERNATE KIAS	86	103	123	144	165	180	
Flaps 10°							
NORMAL KIAS	70	80	100	120	140	160	175
ALTERNATE KIAS	76	84	103	124	145	166	182
Flaps 20°							
NORMAL KIAS	60	70	80	100	120	140	150
ALTERNATE KIAS	66	74	83	104	125	147	157
Flaps FULL							
NORMAL KIAS	60	70	80	90	100	110	125
ALTERNATE KIAS	65	73	83	94	105	116	132
	V	ENTS	OPEN				
Flaps UP							
NORMAL KIAS	80	100	120	140	160	175	
ALTERNATE KIAS	82	99	119	140	160	176	
Flaps 10°							
NORMAL KIAS	70	80	100	120	140	160	175
ALTERNATE KIAS	72	80	100	120	141	162	178
Flaps 20°							
NORMAL KIAS	60	70	80	100	120	140	150
ALTERNATE KIAS	62	70	79	100	121	143	153
Flaps FULL							
NORMAL KIAS	60	70	80	90	100	110	125
ALTERNATE KIAS	61	70	79	90	101	112	128

VENTS CLOSED

Figure 5-1 (Sheet 2)

5-10 U.S.

ALTIMETER CORRECTION ALTERNATE STATIC SOURCE

	Correc	tion to b	e Addec	I - Feet				
KIAS								
80	90	100	120	140	160			
	15	20	40	55	80			
	20	30	50	75				
	25	40	70					
20	25	35	55	75				
25	35	50	75					
15	25	35	60					
20	35	50	85					
	 20 25 15	Correct 80 90 15 20 25 20 25 25 35 15 25	Correction to b 80 90 100 15 20 20 30 25 40 20 25 35 25 35 50 15 25 35	KIAS 80 90 100 120 15 20 40 20 30 50 25 40 70 20 25 35 55 25 35 50 75 15 25 35 60	Correction to be Added - FeetKIAS8090100120140152040552030507525407020253555752535507515253560			

VENTS OPEN

Correction to be Added - Feet							
Condition	KIAS						
	80	90	100	120	140	160	
Flaps UP							
Sea Level		-15	-10	-10	5	10	
10,000 FT		-20	-20	-15	10		
20,000 FT		-30	-25	-15			
Flaps 20°							
Sea Level	-20	-10	-5	10	25		
10,000 FT	-25	-15	-5	15			
Flaps FULL							
Sea Level	-15	-10	0	20			
10,000 FT	-20	-10	0	25			

NOTE

- 1. Add correction to desired altitude to obtain indicated altitude to fly.
- 2. Where altimeter correction values have been replaced by dashes, the correction is unnecessary because of conditions in which airpseed is not attainable in level flight.

FAA APPROVED 208BPHBUS-00

PRESSURE CONVERSION

Example:

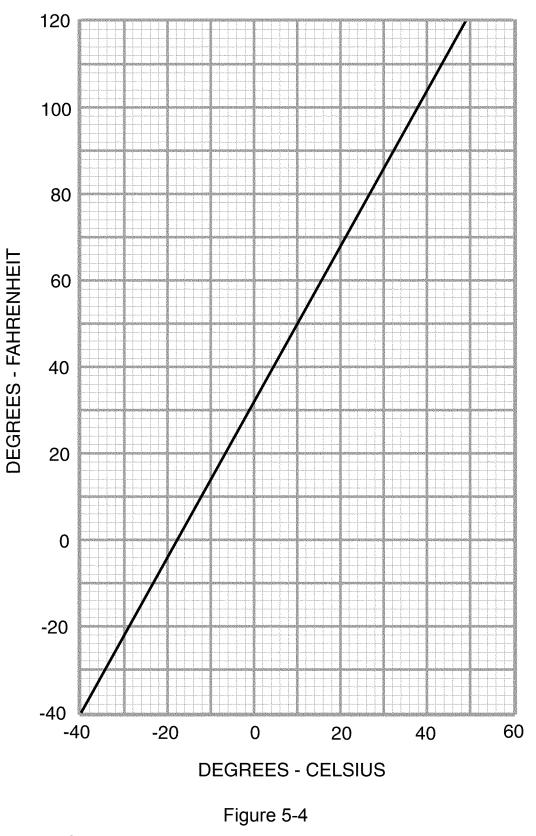

Pressure = 29.55 inches of mercury. Pressure = 1000.6 millibars.

Figure 5-3

5-12 U.S.

TEMPERATURE CONVERSION CHART

A39231

FAA APPROVED 208BPHBUS-00

U.S. 5-13

ISA CONVERSION AND OPERATING TEMPERATURE LIMITS

CAUTION

Do not Operate in shaded area of chart.

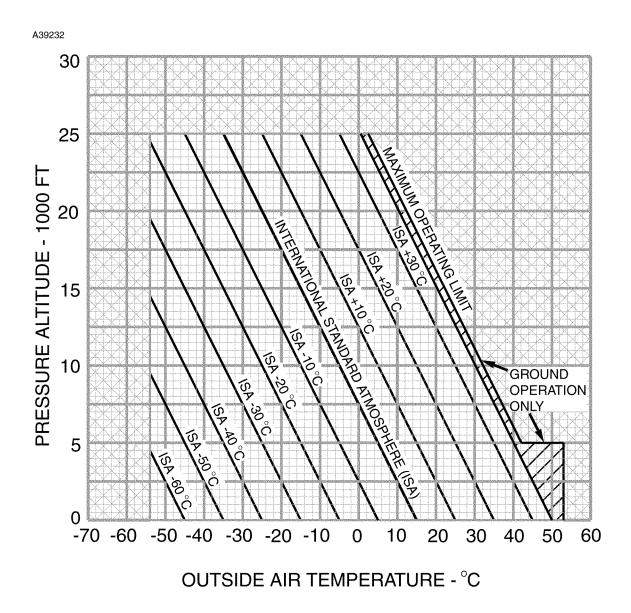


Figure 5-5

5-14

STALL SPEEDS

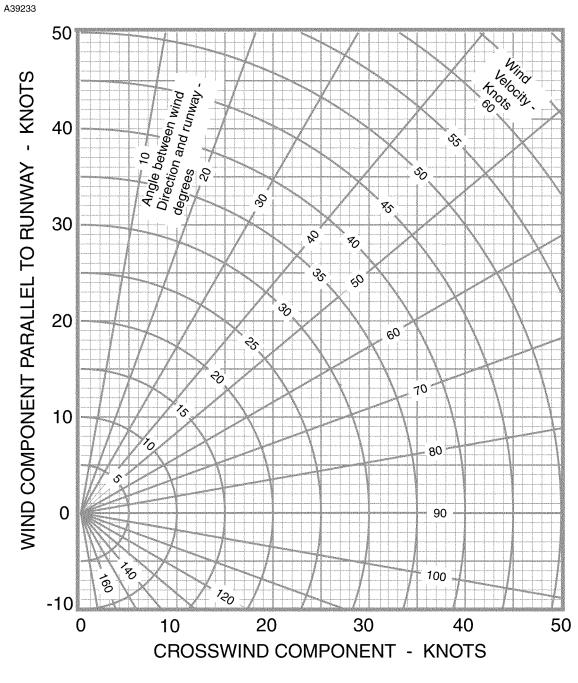
CONDITIONS: 8750 Pounds POWER Lever **IDLE** FUEL CONDITION Lever **HIGH IDLE**

MOST REARWARD CENTER OF GRAVITY

Elon	Angle of Bank										
Flap Setting	0 °		3	0°	45°		60°				
Setting	KIAS	KCAS	KIAS	KCAS	KIAS	KCAS	KIAS	KCAS			
UP	63	78	68	84	75	93	89	110			
10°	58	69	62	74	69	82	82	98			
20 °	53	63	57	68	63	75	75	89			
FULL	48	60	52	64	57	71	68	85			

MOST FORWARD CENTER OF GRAVITY

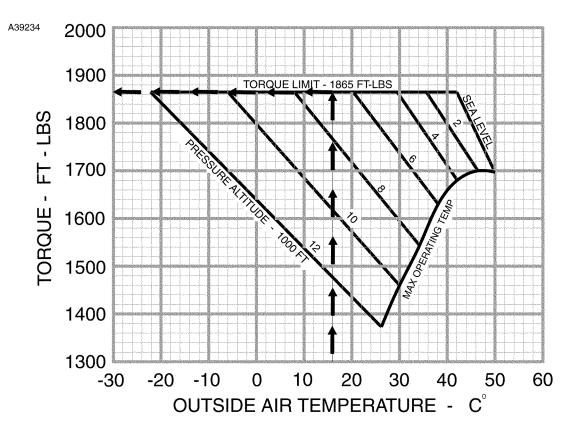
Elon	Angle of Bank										
Flap Setting	0 °		3	0°	45°		60°				
Setting	KIAS	KCAS	KIAS	KCAS	KIAS	KCAS	KIAS	KCAS			
UP	63	78	68	84	75	93	89	110			
10°	60	70	64	75	71	83	85	99			
20 °	54	64	58	69	64	76	76	91			
FULL	50	61	54	66	59	73	71	86 G2088675-00			


NOTE

- 1. Altitude loss during a stall recovery may be as much as 300 feet from a wings-level stall, and even greater from a turning stall.
- 2. KIAS values are approximate.

SECTION 5 PERFORMANCE

WIND COMPONENTS


NOTE

Maximum demonstrated crosswind velocity is 20 knots (not a limitation).

Figure 5-7

MAXIMUM ENGINE TORQUE FOR TAKEOFF

CONDITIONS: 1900 RPM 60 KIAS INERTIAL SEPARATOR **NORMAL**

NOTE

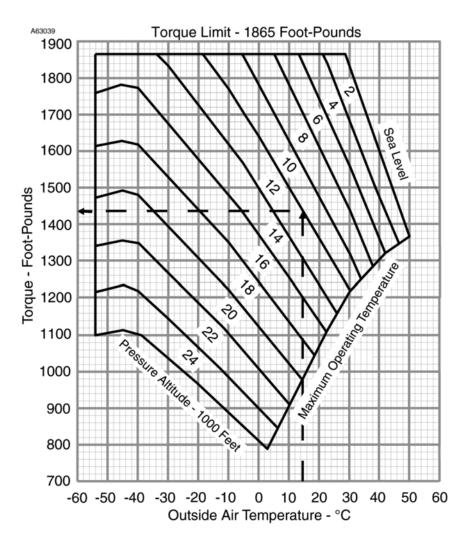

- 1. Torque increases approximately 10 Ft-Lbs from 0 to 60 KIAS.
- 2. Torque on this chart shall be achieved without exceeding 805° C ITT or 101.6 percent N_g. When the ITT exceeds 765°C, this power setting is time limited to 5 minutes.
- 3. With the inertial separator in BYPASS, where altitude and temperature do not permit 1865 Ft-Lbs for takeoff, decrease torque setting by 15 Ft-Lbs.
- 4. With the cabin heater ON, where altitude and temperature do not permit 1865 Ft-Lbs for takeoff, decrease torque setting by 65 Ft-Lbs.

Figure 5-8

FAA APPROVED 208BPHBUS-00

MAXIMUM ENGINE TORQUE FOR CLIMB

CONDITIONS: 1900 RPM V_y KIAS INERTIAL SEPARATOR **NORMAL**

NOTE

- 1. Torque on this chart shall be achieved without exceeding 765°C ITT or 101.6 percent $N_{\rm q}.$
- 2. With the inertial separator in BYPASS, decrease torque setting by 100 Ft-Lbs.
- 3. With the cabin heater ON, decrease torque setting by 80 Ft-Lbs.

NOTE

The following general information is applicable to all SHORT FIELD TAKEOFF DISTANCE Charts.

- 1. Use short field takeoff technique as specified in Section 4.
- Decrease distances by 10% for each 11 knots headwind. For operation with tailwind up to 10 knots, increase distances by 10% for each 2 knots.
- 3. For operation on a dry, grass runway, increase distances by 15% of the "Ground Roll" figure.
- 4. With takeoff power set below the torque limit (1865 footpounds), increase distances (both ground roll and total distance) by 3% for INERTIAL SEPARATOR in BYPASS and increase ground roll by 5% and total distance by 10% for CABIN HEAT ON.
- 5. Where distance values have been replaced by dashes, operating temperature limits of the airplane would be greatly exceeded. Those distances which are included but the operation slightly exceeds the temperature limit are provided for interpolation purposes only.
- 6. For operation above 40 °C and below the operating temperature limits, increase distances at 40 °C by 20%.

Figure 5-10 (Sheet 1 of 5)

CONDITION	IS:									
Flaps 20 ° 1900 RPM					ot Dor Ei					
1900 RPMTorque Set Per Figure 5-8CABIN HEAT OFFPaved, Level, Dry Runway										
INERTIAL SEPARATOR NORMAL Zero Wind										
Refer to Sheet 1 for appropriate notes applicable to this chart.										
Lift Off: 70 KIAS										
8750 Pounds: Speed at 50 Feet: 83 KIAS										
	-1()℃	0	<u>°C</u>	10	<u>℃</u>				
Pressure		Total		Total	_	Total				
Altitude	Grnd	Dist To	Grnd	Dist To	Grnd	Dist To				
Feet	Roll	Clear 50	Roll	Clear 50		Clear 50				
1001	Feet	Foot	Feet	Foot	Feet	Foot				
		Obst		Obst		Obst				
Sea Level	1205	2160	1280	2295	1365	2430				
2000	1360	2430	1455	2580	1545	2740				
4000	1550	2745	1655	2920	1760	3105				
6000	1765	3115	1890	3325	2015	3540				
8000	2025	3560	2165	3805	2345	4125				
10,000	2335	4090	2585	4580	2930	5325				
12,000	2875	5155	3270	6030	3745	7175				
	20)°C	30)°C	40°C					
Pressure		Total		Total		Total				
Altitude	Grnd	Dist To	Grnd	Dist To	Grnd	Dist To				
Feet	Roll	Clear 50	Roll	Clear 50		Clear 50				
	Feet	Foot	Feet	Foot	Feet	Foot				
Q a a l avral	4445	Obst	1505	Obst	1005	Obst				
Sea Level	1445	2570	1535	2720	1625	2870				
2000	1645	2905	1745	3075	1910	3400				
4000	1875	3295	1995	3510	2290	4135				
6000	2145	3765	2435	4370	2805	5195				
8000	2670	4815	3065	5715	3565	7005				
10,000	3370	6350	3915	7790						
12,000	4350	8865	5130	11,755		 G208B675-00				

Figure 5-10 (Sheet 2)

CONDITIONS:Flaps 20°1900 RPMCABIN HEAT OFFINERTIAL SEPARATOR NORMALRefer to Sheet 1 for appropriate notes applicable to this chart.Lift Off:67 KIAS								
8300 Pound	ls:		Speed at	50 Feet:		80 KIAS		
	-1(C₀ (0	℃	10	O°(
Pressure		Total		Total		Total		
Altitude	Grnd	Dist To	Grnd	Dist To	Grnd	Dist To		
Feet	Roll	Clear 50	Roll	Clear 50	Roll	Clear 50		
1 661	Feet	Foot	Feet	Foot	Feet	Foot		
		Obst		Obst		Obst		
Sea Level	1050	1870	1120	1980	1190	2095		
2000	1190	2095	1265	2225	1345	2360		
4000	1350	2360	1440	2510	1530	2665		
6000	1535	2675	1640	2850	1750	3030		
8000	1760	3045	1880	3250	2030	3515		
10,000	2025	3490	2235	3890	2530	4485		
12,000	2480	4350	2810	5040	3205	5915		
	20)°C	30 <i>°</i> C		40 <i>°</i> C			
Pressure		Total	. .	Total	. .	Total		
Altitude	Grnd	Dist To	Grnd	Dist To	Grnd	Dist To		
Feet	Roll	Clear 50	Roll	Clear 50	Roll	Clear 50		
	Feet	Foot	Feet	Foot	Feet	Foot		
	(000	Obst	(005	Obst	=	Obst		
Sea Level	1260	2215	1335	2340	1415	2470		
2000	1430	2495	1515	2640	1660	2910		
4000	1630	2825	1735	3005	1980	3510		
6000	1860	3220	2105	3710	2415	4360		
8000	2305	4070	2635	4775	3050	5745		
10,000	2890	5275	3340	6345				
12,000	3700	7135	4330	8965		 G208B675-00		

Figure 5-10 (Sheet 3)

CONDITION	IS:								
Flaps 20 ° 1900 RPM	1900 RPM Torque Set Per Figure 5-8								
CABIN HEAT OFF Paved, Level, Dry Runway									
INERTIAL SEPARATOR NORMAL Zero Wind									
Refer to Sheet 1 for appropriate notes applicable to this chart.									
Lift Off: 64 KIAS									
7800 Pound				50 Feet:		76 KIAS			
	-1()℃	0	°C	10)°C			
Pressure		Total		Total		Total			
Altitude	Grnd	Dist To	Grnd	Dist To	Grnd	Dist To			
Feet	Roll	Clear 50	Roll	Clear 50	Roll	Clear 50			
	Feet	Foot	Feet	Foot	Feet	Foot			
	005	Obst	055	Obst	1015	Obst			
Sea Level	895	1585	955	1680	1015	1775			
2000	1015	1775	1080	1880	1145	1990			
4000	1150	1995	1225	2115	1300	2245			
6000	1305	2250	1395	2395	1485	2545			
8000	1495	2555	1595	2725	1720	2940			
10,000	1715	2920	1890	3240	2130	3705			
12,000	2090	3605	2360	4135	2680	4800			
	20)°C	30°C		40°C				
Pressure	Grnd	Total Dist To	Grnd	Total Dist To	Grnd	Total Dist To			
Altitude	Roll	Clear 50	Roll	Clear 50		Clear 50			
Feet	Feet	Foot	Feet	Foot	Feet	Foot			
	1 661	Obst	1 661	Obst	1 661	Obst			
Sea Level	1075	1875	1140	1975	1205	2080			
2000	1215	2105	1290	2225	1410	2440			
4000	1385	2375	1470	2525	1675	2925			
6000	1580	2700	1780	3085	2030	3595			
8000	1945	3375	2215	3920	2550	4645			
10,000	2425	4310	2785	5100					
12,000	3075	5685	3575	6920					

Figure 5-10 (Sheet 4)

CONDITIONS:Flaps 20°1900 RPMCABIN HEAT OFFINERTIAL SEPARATOR NORMALRefer to Sheet 1 for appropriate notes applicable to this chart.Lift Off:61 KIAS								
7300 Pounds: Speed at 50 Feet: 73 KIA								
	-1()℃	0	S₀	10	O°(
Pressure		Total		Total		Total		
Altitude	Grnd	Dist To	Grnd	Dist To	Grnd	Dist To		
Feet	Roll	Clear 50	Roll	Clear 50	Roll	Clear 50		
1 661	Feet	Foot	Feet	Foot	Feet	Foot		
		Obst		Obst		Obst		
Sea Level	760	1345	805	1420	855	1500		
2000	855	1500	910	1585	970	1680		
4000	970	1680	1035	1780	1100	1885		
6000	1100	1895	1175	2010	1250	2130		
8000	1255	2145	1340	2280	1445	2455		
10,000	1440	2440	1585	2695	1780	3065		
12,000	1750	2985	1970	3405	2225	3910		
	20	0°C	30°C		40 <i>°</i> C			
Pressure		Total	A 1	Total	. .	Total		
Altitude	Grnd	Dist To	Grnd	Dist To	Grnd	Dist To		
Feet	Roll	Clear 50	Roll	Clear 50	Roll	Clear 50		
	Feet	Foot	Feet	Foot	Feet	Foot		
	010	Obst		Obst	1015	Obst		
Sea Level	910	1580	960	1665	1015	1755		
2000	1025	1775	1085	1870	1185	2045		
4000	1165	1995	1240	2115	1405	2435		
6000	1330	2260	1495	2570	1695	2965		
8000	1630	2800	1845	3225	2115	3780		
10,000	2020	3530	2305	4130				
12,000	2540	4575	2930	5460		 G208B675-00		

Figure 5-10 (Sheet 5)

CARGO POD INSTALLED FLAPS UP TAKEOFF DISTANCE

NOTE

The following general information is applicable to all FLAPS UP TAKEOFF DISTANCE Charts.

- 1. Use Type II, Type III, or Type IV anti-ice fluid takeoff technique as specified in Section 4.
- Decrease distances by 10% for each 11 knots headwind. For operation with tailwinds up to 10 knots, increase distances by 10% for each 2 knots.
- 3. For operation on a dry, grass runway, increase distances by 15% of the "Ground Roll" figure.
- 4. With takeoff power set below the torque limit (1865 footpounds), increase distances (both ground roll and total distance) by 3% for INERTIAL SEPARATOR in BYPASS and increase ground roll by 5% and total distance by 10% for CABIN HEAT ON.

Figure 5-11 (Sheet 1 of 3)

CARGO POD INSTALLED FLAPS UP TAKEOFF DISTANCE

CONDITIONS: Flaps **UP** 1900 RPM CABIN HEAT **OFF** INERTIAL SEPARATOR **NORMAL**

Torque Set Per Figure 5-8 Paved, Level, Dry Runway Zero Wind

Refer to Sheet 1 for appropriate notes applicable to this chart.

Lift Off: **83 KIAS** Speed at 50 Feet: 104 KIAS 8750 Pounds: -10℃ -20℃ 0°C 10℃ Total Total Total Total Pressure Grnd Dist To Grnd Dist To Grnd Dist To Grnd Dist To Altitude Roll Clear Roll Clear Roll Clear Roll Clear Feet 50 Foot Feet 50 Foot 50 Foot Feet 50 Foot Feet Feet Obst Obst Obst Obst 3645 Sea Level 1720 3205 1840 3420 2085 1960 3880 2000 1950 3625 2085 2225 2370 3875 4140 4410 4000 2215 4125 2370 4415 2535 4725 2700 5045 6000 2530 4715 2710 5060 2900 5425 3095 5805 8000 2900 5425 3110 5835 3335 6270 3605 6825 10,000 3340 6280 3590 6775 3995 7660 4575 9045 8740 5135 10,385 5955 12,585 12,000 3930 7485 4475 Lift Off: **83 KIAS** 8300 Pounds: Speed at 50 Feet: 104 KIAS -10℃ -20℃ <u>0°C</u> 10℃ Total Total Total Total Pressure Grnd Dist To Grnd Dist To Grnd Dist To Grnd Dist To Altitude Roll Roll Roll Roll Clear Clear Clear Clear Feet 50 Foot Feet 50 Foot 50 Foot Feet 50 Foot Feet Feet Obst Obst Obst Obst 3220 Sea Level 1620 3015 1730 1845 3430 1965 3650 2000 1835 3410 1960 3645 2095 3890 2230 4145 4(5

4000	2085	3875	2230	4150	2385	4435	2540	4735
6000	2380	4430	2550	4750	2725	5090	2910	5445
8000	2725	5090	2925	5475	3130	5880	3385	6395
10,000	3140	5890	3375	6350	3750	7170	4285	8450
12,000	3690	7010	4195	8170	4810	9685	5570	11,705

Figure 5-11 (Sheet 2)

FAA APPROVED 208BPHBUS-00

CARGO POD INSTALLED FLAPS UP TAKEOFF DISTANCE

CONDITIC Flaps UP 1900 RPM CABIN HE INERTIAL Refer to SI	ONS: AT OF SEPAF	RATOR	NORM		Torque Paved Zero V applicat		er Figur Dry Ru is charl	nway
7800 Pour	nds:			Spe		0 Feet:		4 KIAS
		℃ C	-1(າຕ່		°C	10	℃
Pressure Altitude Feet	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst
Sea Level 2000 4000	1510 1710 1940	2810 3175 3605	1615 1825 2080	2995 3390 3860	1720 1950 2220	3190 3620 4125	1830 2075 2365	3395 3855 4400
6000 8000 10,000	2215 2535 2920	4115 4730 5465	2370 2720 3135	4415 5085 5890	2535 2910 3480	4730 5455 6640	2705 3145 3975	5055 5930 7810
12,000 7300 Pour	3430 nds:	6495	3890	7555 Spe	4460 ed at 5	8935 Lift Off: 0 Feet:		10,765 3 KIAS 4 KIAS
	-20	°℃	-1(°℃	0	°C	10	℃
Pressure Altitude Feet	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst
Sea Level 2000 4000 6000 8000	1405 1585 1800 2055 2350	2605 2945 3340 3810 4375	1500 1695 1925 2200 2520	2780 3145 3575 4085 4700	1595 1810 2055 2350 2695	2960 3355 3820 4375 5040	1695 1925 2190 2505 2910	3145 3570 4075 4675 5475
10,000 12,000	2705 3170	5050 5995	2905 3595	5440 6960	3220 4115	6125 8215	3675 4750	7190 9865

Figure 5-11 (Sheet 3)

CONDITIONS

CARGO POD INSTALLED RATE OF CLIMB - TAKEOFF FLAP SETTING FLAPS 20°

Takeoff F 1900 RPI	Power					ATOR NO	DMAI
	Pressure	Climb	Rate			^r Minute (F	
Weight Pounds	Altitude Feet	Speed KIAS	-40 <i>°</i> C	-20°C	0℃	20°C	40℃
8750	Sea Level 2000 4000 6000 8000 10,000 12,000	92 90 89 88 87 85 85 84	875 860 835 815 785 760 725	855 835 815 790 760 730 680	835 815 790 765 735 665 540	815 795 765 740 620 500 380	795 730 645 555 435
8300	Sea Level 2000 4000 6000 8000 10,000 12,000	91 89 88 86 85 84 82	955 940 915 895 865 835 805	940 920 895 870 840 810 760	920 895 870 845 815 745 615	900 875 850 820 700 575 450	880 810 725 630 505
7800	Sea Level 2000 4000 6000 8000 10,000 12,000	89 87 86 85 83 82 80	1055 1035 1015 990 965 935 905	1035 1015 995 965 940 905 855	1020 995 970 945 915 840 710	1000 975 950 920 795 665 540	980 910 820 720 595
7300	Sea Level 2000 4000 6000 8000 10,000 12,000	88 86 85 84 82 81 79	1160 1145 1125 1100 1075 1045 1015	1145 1125 1105 1075 1050 1015 965	1130 1105 1080 1055 1025 950 810	1110 1085 1060 1030 900 765 635	1090 1020 925 825 690

NOTE

- 1. Do not exceed torque limit for takeoff per MAXIMUM ENGINE TORQUE FOR TAKEOFF chart. When ITT exceeds 765 ℃, this power setting is time limited to 5 minutes.
- 2. With climb power set below the torque limit, decrese rate of climb by 20 FPM for INERTIAL SEPARATOR set in BYPASS and 45 FPM for CABIN HEAT ON.
- 3. Where rate of climb values have been replaced by dashes, operating temperature limits of the airplane would be greatly exceeded. Those rates of climb which are included, but the operation slightly exceeds the temperature limit, are provided for interpolation purposes only.

CARGO POD INSTALLED CLIMB GRADIENT - TAKEOFF FLAP SETTING

CONDITIONS: FLAPS 20°									
Takeoff P	ower			Zero Win					
1900 RPI		Climb	Oliverh			ATOR NO			
Weight	Pressure Altitude	Climb	Climb	Gradient -	Feet/Naut	ical Mile (I	- 1 / NM)		
Pounds	Feet	Speed KIAS	-40 <i>°</i> C	-20℃	℃ 0	20°C	40 <i>°</i> C		
	Sea Level 2000 4000	70 71 71	710 675 635	670 630 590	630 590 555	595 555 520	560 500 430		
8750	6000 8000 10,000	71 72 72	595 555 515	555 515 475	515 475 420	480 390 310	355 270 		
	12,000	72	475	430	330	225			
	Sea Level 2000 4000	68 69 69	790 750 710	745 705 665	705 660 620	665 625 585	630 565 490		
8300	6000 8000 10,000	69 69 69	665 625 580	620 580 540	580 540 475	545 450 360	410 325 		
	12,000	69	540	490	385	275			
	Sea Level 2000 4000	65 65 66	890 845 800	840 795 750	795 750 705	755 710 665	715 645 565		
7800	6000 8000 10,000	66 66 67	755 710 665	705 660 620	665 620 550	625 525 430	480 390 		
	12,000	67	620	565	450	335			
7300	Sea Level 2000 4000 6000	62 62 63 63	1005 955 905 855	950 900 855 805	900 855 805 755	855 805 760 715	810 735 650 560		
	8000 10,000	63 64	805 760	755 710	710 635	605 505	460 		
	12,000	64	710	650	530	405			

NOTE

- 1. Do not exceed torque limit for takeoff per MAXIMUM ENGINE TORQUE FOR TAKEOFF chart. When ITT exceeds 765 ℃, this power setting is time limited to 5 minutes.
- With climb power set below the torque limit, decrese climb gradient by 10 FT/NM for INERTIAL SEPARATOR set in BYPASS and 30 FT/NM for CABIN HEAT ON.
- 3. Where climb gradient values have been replaced by dashes, operating temperature limits of the airplane would be greatly exceeded. Those climb gradients which are included, but the operation slightly exceeds the temperature limit, are provided for interpolation purposes only.

CARGO POD INSTALLED MAXIMUM RATE OF CLIMB

CONDITIONS: 1900 RPM

INERTIAL SEPARATOR NORMAL

Weight	Pressure	Climb		e of Climb	- Feet Per	[.] Minute (F	·PM)
Pounds	Altitude Feet	Speed KIAS	-40 <i>°</i> C	-20℃	0℃	20°C	40 <i>°</i> C
	Sea Level 4000 8000	104 104 104	975 940 890	960 915 865	940 890 780	920 785 515	705 450 215
8750	12,000 16,000 20,000	101 95 87	840 610 345	710 445 195	510 260 20	275 50 	
	24,000	78	95				
	Sea Level 4000 8000	103 103 103	1065 1025 980	1045 1000 950	1025 980 865	1005 865 590	780 520 275
8300	12,000 16,000 20,000	100 94 86	930 690 420	795 520 260	585 330 80	340 110 	
	24,000	77	165	15			
	Sea Level 4000 8000	101 101 101	1170 1130 1085	1150 1110 1060	1135 1090 975	1115 975 685	880 610 355
7800	12,000 16,000 20,000	98 91 83	1035 790 510	900 615 345	680 415 160	425 185 	
	24,000	73	245	95			
	Sea Level 4000 8000	99 99 99	1285 1250 1205	1270 1230 1180	1250 1210 1090	1235 1090 790	990 710 445
7300	12,000 16,000 20,000	96 88 80	1155 900 605	1015 720 440	790 510 245	520 275 	
	24,000	69	330	175			 G208B675-00

NOTE

- 1. Torque set at 1865 foot-pounds or lesser value must not exceed maximum climb ITT of 765 ℃ or Ng of 101.6%.
- 2. With climb power set below the torque limit, decrese rate of climb by 30 FPM for INERTIAL SEPARATOR set in BYPASS and 65 FPM for CABIN HEAT ON.
- 3. Where rate of climb values have been replaced by dashes, an appreciable rate of climb for the weight shown cannot be expected or operating temperature limits of the airplane would be greatly exceeded. Those rates of climb which are included, but the operation slightly exceeds the temperature limit, are provided for interpolation purposes only.

CARGO POD INSTALLED CLIMB GRADIENT - TAKEOFF FLAPS UP

CONDIT Takeoff P			Zero Wind						
1900 RPN						ATOR NO			
Weight	Pressure	Climb	Climb	Gradient -	Feet/Naut	ical Mile (I	-T/NM)		
Pounds	Altitude Feet	Speed KIAS	-40 <i>°</i> C	-20℃	0℃	20℃	40℃		
0750	Sea Level 2000 4000	68 69 69	735 695 660	695 655 615	655 615 580	620 580 500	475 390 305		
8750	6000 8000 10,000	70 70 71	620 580 545	580 540 505	545 475 390	410 330 250	230 165 		
	12,000	72	505	420	305	180			
	Sea Level 2000 4000	66 66 67	810 770 730	770 730 690	725 685 650	690 650 565	535 445 360		
8300	6000 8000 10,000	68 68 69	690 650 610	645 605 570	610 540 445	470 380 300	280 210 		
	12,000	69	570	475	355	225			
	Sea Level 2000 4000	61 62 62 62 63	910 865 820	860 820 775	815 775 730	775 735 640	615 515 425		
7800	6000 8000 10,000	62 63 63	780 735 690	730 690 645	690 615 515	540 445 360	340 265 		
	12,000	63	645	550	420	280			
	Sea Level 2000 4000	59 59 59	1020 975 925	970 920 875	920 875 830	875 830 730	700 595 500		
7300	6000 8000 10,000	59 59 59	880 830 785	830 780 735	780 700 595	620 520 430	405 330 		
	12,000	59	735	630	490	340	 G208B675-00		

NOTE

1. Do not exceed torque limit for takeoff per MAXIMUM ENGINE TORQUE FOR TAKEOFF chart. When ITT exceeds 765 ℃, this power setting is time limited to 5 minutes.

- 2. With climb power set below the torque limit, decrease climb gradient by 10 FT/NM for INERTIAL SEPARATOR set in BYPASS and 40 FT/NM for CABIN HEAT ON.
- 3. Where climb gradient values have been replaced by dashes, operating temperature limits of the airplane would be greatly exceeded. Those climb gradients which are included, but the operation slightly exceeds the temperature limit, are provided for interpolation purposes only.

CARGO POD INSTALLED CRUISE CLIMB FLAPS UP - 115 KIAS

CONDITIONS: 1900 RPM

INERTIAL SEPARATOR NORMAL

Weight	Pressure	R	ate of Climb	- Feet Per	Minute (FPN	M)
Pounds	Altitude Feet	-40 <i>°</i> C	-20 <i>°</i> C	0℃	20℃	40℃
	Sea Level	940	915	890	865	635
	2000	915	890	865	840	495
	4000	890	865	835	715	355
8750	6000	865	835	805	570	225
	8000	835	800	710	425	105
	10,000	800	765	555	285	
	12,000	765	625	400	145	
	Sea Level	1015	990	970	945	700
	2000	995	970	945	915	555
	4000	970	940	915	790	410
8300	6000	945	910	880	635	275
	8000	915	880	785	485	150
	10,000	880	845	625	340	
	12,000	845	695	460	195	
	Sea Level	1115	1090	1065	1040	780
	2000	1090	1065	1040	1010	630
	4000	1065	1040	1010	880	475
7800	6000	1040	1005	975	715	330
	8000	1010	975	875	555	200
	10,000	975	935	705	405	
	12,000	935	780	535	250	
	Sea Level	1220	1195	1175	1150	870
	2000	1195	1170	1145	1120	710
	4000	1170	1145	1115	975	550
7300	6000	1145	1115	1080	805	395
	8000	1115	1080	975	635	255
	10,000	1080	1040	795	475	
	12,000	1040	875	615	310	 G208B675-00

NOTE

- 1. Torque set at 1865 foot-pounds or lesser value must not exceed maximum climb ITT of 765 °C or Ng of 101.6%.
- 2. With climb power set below the torque limit, decrese rate of climb by 50 FPM for INERTIAL SEPARATOR set in BYPASS and 70 FPM for CABIN HEAT ON.
- 3. Where rate of climb values have been replaced by dashes, an appreciable rate of climb for the weight shown cannot be expected or operating temperature limits of the airplane would be greatly exceeded. Those rates of climb which are included, but the operation slightly exceeds the temperature limit, are provided for interpolation purposes only.

CARGO POD INSTALLED RATE OF CLIMB BALKED LANDING - FLAPS FULL

CONDITIONS: Takeoff Power 1900 RPM

INERTIAL SEPARATOR NORMAL

CESSNA

Weight	Pressure	Climb	Rate	e of Climb	- Feet Per	^r Minute (F	PM)
Pounds	Altitude Feet	Speed KIAS	-40 <i>°</i> C	-20℃	0℃	20℃	40℃
	Sea Level	83	825	805	780	760	735
	2000	82	805	780	755	735	670
	4000	81	780	755	730	705	590
8500	6000	80	755	730	700	675	495
	8000	79	730	700	670	560	380
	10,000	78	700	665	600	440	
	12,000	77	665	620	480	325	
	Sea Level	82	915	895	870	850	830
	2000	81	895	870	850	825	760
	4000	80	870	845	820	795	675
8000	6000	79	845	820	795	765	580
	8000	78	820	790	760	645	460
	10,000	77	790	760	690	525	
	12,000	76	755	710	565	405	
	Sea Level	81	1015	995	975	950	930
	2000	80	995	975	950	925	860
	4000	79	970	950	925	900	775
7500	6000	78	950	920	895	870	675
	8000	77	920	890	865	745	550
	10,000	75	890	860	790	620	
	12,000	74	860	810	660	490	
	Sea Level	80	1125	1105	1085	1065	1045
	2000	79	1105	1085	1065	1040	970
	4000	78	1085	1060	1035	1010	880
7000	6000	77	1060	1035	1010	980	780
	8000	75	1035	1005	975	850	645
	10,000	74	1005	970	900	720	
	12,000	73	970	920	765	590	 G208B675-00

NOTE

1. Do not exceed torque limit for takeoff per MAXIMUM ENGINE TORQUE FOR TAKEOFF chart. When ITT exceeds 765 °C, this power setting is time limited to 5 minutes.

- 2. With climb power set below the torque limit, decrese rate of climb by 15 FPM for INERTIAL SEPARATOR set in BYPASS and 45 FPM for CABIN HEAT ON.
- 3. Where rate of climb values have been replaced by dashes, operating temperature limits of the airplane would be greatly exceeded. Those rates of climb which are included, but the operation slightly exceeds the temperature limit, are provided for interpolation purposes only.

Figure 5-17

U.S.

CARGO POD INSTALLED TIME, FUEL, AND DISTANCE TO CLIMB MAXIMUM RATE OF CLIMB

Flaps U	aps UP Zero Wind										
1900 RI					INER	TIAL	SEPA	RATC	DR NC	RMA	L
	_					imb F					
Weight	Pressure	Climb		℃ Bel		Standard			20℃ Above		
Pounds	Altitude	Speed		tandai			npera			tandai	
. oundo	Feet	KIAS	Time	Fuel	Dist	Time		Dist	Time		Dist
		101	min	Lbs	NM	min	Lbs	NM	min	Lbs	NM
	Sea Level 4000	104 104	0 4	0 32	0 8	0 5	0 33	0 8	0 6	0 38	0 10
	4000 8000	104	9	52 64	0 16	9	- 3-3 - 66	0 17	12	80	24
8750	12,000	102	14	98	25	15	105	29	22	132	43
0.00	16,000	96	20	136	37	23	152	45	35	202	71
	20,000	88	28	186	54	36	219	72	69	349	142
	24,000	79	49	278	93	75	388	152			
	Sea Level	103	0	0	0 7	0		0 7	0	0	0
	4000 8000	103 103	4 8	29 58	14	4 8	30 60	15	5 11	34 72	9 21
8300	12,000	101	13	89	23	14	95	26	19	116	21 37
	16,000	95	18	123	33	21	135	40	30	172	60
	20,000	87	25	165	47	31	189	61	51	265	104
	24,000	77	40	233	76	54	287	106			
	Sea Level	101	0	0	0	0	$\begin{vmatrix} 0 \\ 0 \\ 0 \\ 7 \\ 0 \\ 7 \\ 0 \\ 7 \\ 0 \\ 0 \\$	0	0	0	0
	4000 8000	101 101	4 7	26 52	6 13	4 8	27 54	6 14	4 10	30 63	8 18
7800	12,000	99	11	80	20	12	84	22	16	100	31
	16,000	92	16	110	29	18	119	34	25	145	49
	20,000	84	22	146	41	27	163	51	40	210	79
	24,000	74	33	198	62	42	229	81	88	395	178
	Sea Level	99	0		0	0		0	0		0 7
	4000 8000	99 99	3 7	24 47	5 11	3 7	24 49	6 12	4 9	27 55	16
7300	12,000	97	10	72	18	11	75	20	14	87	27
	16,000	89	14	99	25	16	105	30	21	124	41
	20,000	80	20	129	35	23	141	43	32	173	63
	24,000	70	29	171	52	34	191	65	55	260	108

NOTE

1. Torque set at 1865 foot-pounds or lesser value must not exceed maximum climb ITT of 765 ℃ or Ng of 101.6%.

- 2. Add 35 pounds of fuel for engine start, taxi, and takeoff allowances.
- 3. With INERTIAL SEPARATOR set in BYPASS, increase time, fuel, and distance numbers by 1% for each 2000 feet of climb and for CABIN HEAT ON, increase time, fuel, and distance numbers by 1% for each 1000 feet of climb.
- 4. Where time, fuel, and distance values have been replaced by dashes, an appreciable rate of climb for the weight shown cannot be expected.

Figure 5-18 (Sheet 1 of 2)

CARGO POD INSTALLED TIME, FUEL, AND DISTANCE TO CLIMB

CRUISE CLIMB - 115 KIAS

CONDITIONS:										
Flaps UP					Zero \	Nind				
1900 RPM	1				INER [®]	TIAL S	EPAR	ATOF		MAL
				C	limb F	rom Se	ea Lev	el		
\//aiabt	Pressure	20	℃ Bel	ow	S	tandar	d	20℃ Above		
Weight	Altitude	S	Standard			nperat	ure	S	tandar	ď
Pounds	Feet	Time	Fuel	Dist	Time	Fuel	Dist	Time	Fuel	Dist
		min	Lbs	NM	min	Lbs	NM	min	Lbs	NM
	Sea Level	0	0	0	0	0	0	0	0	0
	2000	2 5	17	4	2 5	17	5	3	20	6
0750	4000	5	33	9	5	35	9	6	42	13
8750	6000	7	50	14	7	53	15	10	65	20
	8000	10	68	19	10	71	20	14	91	30
	10,000 12,000	12 15	86 105	24 30	13 17	92 115	27 35	19 26	122 159	42 58
	Sea Level	0	0	0	0	0	0	0	0	0
	2000	2	15	4	2	16	4	3	18	5
	4000	4	31	8	4	32	9	6	38	11
8300	6000	6	46	12	7	48	13	9	59	18
	8000	9	62	17	9	65	18	13	82	27
	10,000	11	79	22	12	84	24	17	108	37
	12,000	13	96	27	15	104	32	23	140	50
	Sea Level	0	0	0	00	0	0	0	0	0
	2000 4000	2 4	14 28	4 7	2 4	14 29	4 8	2 5	17 34	5 10
7800	6000	6	42	11	6	44	12	8	52	16
1000	8000	8	56	16	8	59	17	11	73	24
	10,000	10	71	20	11	75	22	15	95	33
	12,000	12	87	25	14	94	29	20	122	44
	Sea Level	0	0	0	0	0	0	0	0	0
	2000	2	13	3	2	13	4	2 5	15	4
7000	4000	4	25	7	4	26	7	5	30	9
7300	6000	5	38	10	5 7	39	11	7	47	15
	8000 10,000	9	51 64	14 18	10	53 68	15 20	10 13	65 85	21 29
	12,000	9 11	- 64 78	22	12	84	20 26	17	00 107	29 38
			10	<u> </u>	14	04	20	17	107	00

NOTE

- 1. Torque set at 1865 foot-pounds or lesser value must not exceed maximum climb ITT of 765 ℃ or Ng of 101.6%.
- 2. Add 35 pounds of fuel for engine start, taxi, and takeoff allowances.
- 3. With INERTIAL SEPARATOR set in BYPASS or CABIN HEAT ON, increase time, fuel, and distance numbers by 1% for each 1000 feet of climb.

Figure 5-18 (Sheet 2)

CARGO POD INSTALLED CRUISE PERFORMANCE

NOTE

The following general information is applicable to all CRUISE PERFORMANCE Charts.

- 1. The highest torque shown for each temperature and RPM corresponds to maximum allowable cruise power. Do not exceed this torque, 740 °C ITT, or 101.6% Ng, whichever occurs first.
- 2. The lowest torque shown for each temperature and RPM corresponds to the recommended torque setting for best range in zero wind conditions.
- 3. With the INERTIAL SEPARATOR in BYPASS and power set below the torque limit (1865 foot-pounds), decrease the maximum cruise torque by 100 foot-pounds. Do not exceed 740 ℃ ITT. Fuel flow for a given torque setting will be 15 pounds per hour (PPH) higher.
- 4. With the CABIN HEAT ON and power set below the torque limit (1865 foot-pounds), decrease maximum cruise torque by 80 foot-pounds. Do not exceed 740°C ITT. Fuel flow for a given torque setting will be 7 PPH higher.

Figure 5-19 (Sheet 1 of 11)

CARGO POD INSTALLED CRUISE PERFORMANCE CRUISE PRESSURE ALTITUDE 2000 FEET

	CRUISE PRESSURE ALTITUDE 2000 FEET										
						Dama					
8750 Po							t exceed m				
	AL SEPA						torque or 7	40 °C 11 1			
Refer to				otes applic							
_	1	900 RPI	M	1.	750 RPI	M](600 RPI	VI		
Temp	Torque	Fuel		Torque	Fuel		Torque	Fuel			
°C	Ft-Lbs	Flow	KTAS	Ft-Lbs	Flow	KTAS	Ft-Lbs	Flow	KTAS		
		PPH		1 (-LDS	PPH		T L-LDS	PPH			
46	1225	343	145	1313	343	144	1402	343	143		
40	1000			1200	314	132					
40	1363	362	152	1457	362	151	1555	362	149		
	1584	393	161	<u>1200</u> 1689	<u>314</u> 393	<u>132</u> 160	<u>1550</u> 1797	<u>361</u> 393	<u>149</u> 157		
30	1420	367	161 153	1500	365	151	1600	365	150		
	0			1465	360	150	1545	357	147		
	1794	424	168	1910	424	166	1970	416	162		
20	1600	393 361	160 150	1800	407	162	1800	390	156		
	1395	361	150	1 <u>600</u> 1460	<u>376</u> 356	<u>154</u> 148	1 <u>600</u> 1535	<u>361</u> 352	148 146		
	1865	433	168	1970	430	140	1970	411	160		
10	1700	406	168 162	1800	404	161	1800	386	154		
10	1500	375	154	1600	373	153	1600	386 358	147		
	1385	356	148	1450	<u>351</u>	146	1515	<u>346</u>	143		
	1865	430	167	1970	427	165	1970	407	159		
0	1700 1500	403 372	160 152	1800 1600	400 370	159 151	1800 1600	382 354	153 146		
	1385	354	147	1435	345	144	1500	341	140		
	1865	427	165	1970	423	163	1970	403	157		
-10	1700	400	159	1800	397	157	1800	379	151		
10	1500	369	150	1600	367	150	1600	351	144		
	<u>1370</u> 1865	<u>349</u> 424	<u>144</u> 163	1425 1970	<u>341</u> 419	<u>142</u> 161	<u>1480</u> 1970	<u>335</u> 400	<u>139</u> 155		
	1700	397	157	1800	393	155	1800	375	150		
-20	1500	397 366	148	1600	364	148	1600	375 347	142		
	1375	347	143	1405	335	140	1460	328	137		
	1865	422	161 155	1970	415	159	1970	396 372	153		
-30	1700 1500	395	155 147	1800 1600	390 360	154 146	1800 1600	3/2	148		
-30	1365	<u>364</u> 344	147	1400	331	138	1460	34 <u>3</u> 325	141 135		
	1000	011		1390	330	137	1100	020	100		
	1865	420	159	1970	413	157	1970	392	152		
	1700	392	153	1800	387 357	152	1800	368	146		
-40	1500 1365	<u>361</u> 341	145 139	1600 1400	<u>357</u> 329	144 136	1600 1455	340 320	1 <u>39</u> 134		
	1305	341	139	1380	329	135	1455	520	134		
	1865	419	156	1970	411	155	1970	388	150		
	1700	390	150	1800	383	150	1800	364	144		
-50	1500	359	143	1600	354 326	142	1600	<u>336</u> 314	137		
	1360	338	136	1400	326	134	1435	314	131		
	1865	418	155	<u>1375</u> 1970	<u>322</u> 410	<u>133</u> 154	1970	386	149		
	1700	389	150	1800	382	149	1800	362	144		
-54	1500	359	142	1600	382 353	141	1600 1435	<u>335</u> 313	137		
	1370	339	136	1400	325	133	1435	313	130		
				1375	321	132			G208B675-00		

Figure 5-19 (Sheet 2)

CARGO POD INSTALLED CRUISE PERFORMANCE CRUISE PRESSURE ALTITUDE 4000 FEET

Figure 5-19 (Sheet 3)

r

CARGO POD INSTALLED CRUISE PERFORMANCE RUISE PRESSURE ALTITUDE 6000 FEET

	CRUISE PRESSURE ALTITUDE 6000 FEET										
8750 Pc						Dono	t exceed m		oruico		
	AL SEPAI			1			torque or 7				
				∟ otes applic	abla ta t			+0 0111	•		
		900 RPI			750 RPI			600 RPI	И		
Temp	1	Fuel	VI	1.	Fuel	VI		Fuel	VI		
°€	Torque	Flow	KTAS	Torque	Flow	KTAS	Torque	Flow	KTAS		
	Ft-Lbs		RTA3	Ft-Lbs		RTA5	Ft-Lbs		KTA5		
38	1178	PPH 315	146	1260	<u>PPH</u> 315	145	1345	<u>PPH</u> 315	143		
	1340	338	155	1430	338	154	1522	338	143		
30	1330	337	155	1380	330	151	1460	329	148		
00	1533	367	164	1632	367	162	1731	367	159		
20	1400 1320	345 333	157 153	1500 1360	346 325	156 149	1600 1455	347 325	154 147		
	1720	<u> </u>	170	1828	<u> 325 </u> 396	169	1934	<u> 325 </u> 396	166		
10	1600	375	165 156	1700	375	164	1800	374	161		
	1400	343	156	1500	343	155	1600	343	153		
	<u>1305</u> 1865	<u>328</u> 423	<u>150</u> 174	1 <u>360</u> 1970	<u>322</u> 421	<u>148</u> 172	<u>1435</u> 1970	<u>319</u> 399	<u>145</u> 165		
	1700	390	168	1800	388	166	1800	370	159		
0	1500	357	159	1600	356	158	1600	340	151		
	1300	325	148	1400	325	149	1420	314	143		
	<u>1285</u> 1865	<u>323</u> 421	<u>148</u> 172	<u>1355</u> 1970	<u>318</u> 418	<u>146</u> 170	1970	396	164		
	1700	388	166	1800	386	164	1800	366	158		
-10	1500	354	157	1600	353	156	1600	337	150		
	1300	322	147	1400	322	147	1400	308	141		
	<u>1280</u> 1865	<u>319</u> 419	<u>146</u> 170	<u>1330</u> 1970	<u>312</u> 415	<u>143</u> 168	1970	392	162		
	1700	387	164	1800	383	162	1800	363	156		
-20	1500	352	155	1600	350	154	1600	334	148		
	1300	320 315	145	1400 1320	319 308	145	1400	305 302	139		
	<u>1265</u> 1865	417	<u>143</u> 168	1970	<u> </u>	<u>142</u> 166	<u>1380</u> 1970	<u> 302 </u> 389	<u>138</u> 160		
	1700	385	162	1800	380	160	1800	360	154		
-30	1500	349	162 153	1600	347	153	1600	331	147		
	1300	318	144 142	1400 1315	317	144	1400	302	138 137		
	<u>1265</u> 1865	<u>312</u> 415	166	1970	<u> 304 </u> 410	<u>140</u> 164	<u>1370</u> 1970	<u>298</u> 386	158		
	1700	383	160	1800	378	158	1800	357	153		
-40	1500	347	151	1600	344	151	1600	327	145		
	1300 1265	316 311	142	1400 1290	314	142 137	1400 1350	299 292	136		
	1865	413	<u> 140 </u> 164	1 <u>290</u> 1970	<u>298</u> 407	162	1350	<u>9</u>	<u>134</u> 156		
	1700	381	158	1800	376	156	1800	354	151		
-50	1500	345	149	1600	341	149	1600	324	143		
	1300 1270	314 309	140 138	1400 1280	311 294	140 134	1400 1340	296 287	135 132		
	1865	412	163	1260	<u>- 294</u> 406	161	1970	<u>- 207</u> 382	155		
	1700	381	157	1800	375	156	1800	352	150		
-54	1500	344	149	1600	340	148	1600	322	143		
	1300 1265	313 307	139 137	1400 1280	310 293	140 134	1400 1335	295 286	134 131		
	1200	307	137	1200	230	104	1000	200	G208B675-00		

Figure 5-19 (Sheet 4)

CARGO POD INSTALLED CRUISE PERFORMANCE CRUISE PRESSURE ALTITU<u>DE 8000 FEET</u>

CRUISE PRESSURE ALTITUDE 8000 FEET									
8750 Pc						Do no	t exceed m		cruise
	AL SEPA	RATOR	NORMA	L			torque or 7	′40℃ ITT	
Refer to	sheet 1 f	for appro	opriate no	otes applic	able to	this chart			
		900 RPI			750 RPI			600 RPI	M
Temp	Taraura	Fuel		Такана	Fuel		Такана	Fuel	
°℃	Torque	Flow	KTAS	Torque	Flow	KTAS	Torque	Flow	KTAS
	Ft-Lbs	PPH		Ft-Lbs	PPH		Ft-Lbs	PPH	
30	1209	311	150	1291	311	149	1375	311	146
20	1390	338	160	1481	338	158	1572	338	155
20	1290	322	154	1325	314	150	1410	313	147
	1564	364	167	1663	364	165	1760	364	162
10	1400	337	159	1500	338	158	1600	338	155
	1290	319	153	1325	310	149	1405	309	146
	1736 1600	396 369	173 167	1844 1700	396 368	171 165	1949 1800	396 368	168 162
0	1400	335	157	1500	335	156	1600	335	154
0	1265	313	150	1325	307	147	1400	306	144
	1200	010	100	1020	007		1380	302	143
	1865	420	176	1970	418	174	1970	396	167
	1700	387	170	1800	385	168	1800	364	161
-10	1500	349	161	1600	348	159	1600	332	153
	1300	316	150	1400	316	150	1400	303	143
	1250	308	147	1310	303	145	1365	297	141
	1865 1700	418 385	174 168	1970 1800	415 383	172 166	1970 1800	393 361	165 159
-20	1500	346	159	1600	345	158	1600	329	151
20	1300	314	148	1400	314	148	1400	300	142
	1240	304	145	1295	298	143	1340	291	139
	1865	415	172	1970	412	170	1970	389	163
	1700	383	166	1800	380	164	1800	358	157
-30	1500	344	157	1600	342	156	1600	326	150
	1300	312	147	1400	311	147	1400	297	141
	<u>1235</u> 1865	<u>302</u> 413	<u>143</u> 170	<u>1285</u> 1970	<u>294</u> 409	<u>141</u> 168	<u>1330</u> 1970	<u>286</u> 386	<u>137</u> 161
	1700	381	164	1800	409 377	162	1800	356	156
-40	1500	343	155	1600	340	154	1600	323	148
	1300	310	145	1400	308	145	1400	294	139
	1230	299	141	1265	288	138	1315	282	135
	1865	411	168	1970	406	166	1970	383	159
50	1700	380	161	1800	375	160	1800	353	154
-50	1500	342	153	1600	338	152	1600	320	146
	1300	308	143	1400	306	143	1400	291	137
	<u>1240</u> 1865	<u>298</u> 410	<u>140</u> 167	<u>1255</u> 1970	<u>284</u> 405	<u>136</u> 165	<u>1310</u> 1970	<u>277</u> 382	<u>133</u> 159
	1700	379	167	1800	405 374	159	1800	362 352	159
-54	1500	341	152	1600	338	151	1600	318	146
_	1300	307	142	1400	305	143	1400	289	137
	1230	296	139	1240	281	134	1300	275	132

Figure 5-19 (Sheet 5)

U.S.

CARGO POD INSTALLED CRUISE PERFORMANCE CRUISE PRESSURE ALTITUDE 10,000 FEET

	CRUISE PRESSURE ALTITUDE 10,000 FEET											
						Do not exceed maximum cruise						
8750 Po												
	AL SEPA	_	-				torque or 7	40 °C 11 1				
Refer to				otes applic								
	19	900 RPI	M	1	750 RPI	M	10	600 RPI	M			
Temp	Torque	Fuel		Torque	Fuel		Torque	Fuel				
°C		Flow	KTAS	-	Flow	KTAS	-	Flow	KTAS			
	Ft-Lbs	PPH		Ft-Lbs	PPH		Ft-Lbs	PPH				
25	1176	298	150	1254	298	148	1335	298	145			
	1259	310	155	1342	310	154	1426	310	150			
20		••••		1320	307	152	1395	306	149			
	1420	334	163	1510	334	161	1600	334	158			
10	1300	315	156	1400	317	156	1395	302	148			
	1275	310	155	1305	302	150						
	1580	364	170	1678	364	168	1775	363	165			
	1400	329	161	1500	330	159	1600	331	157			
0	1270	307	153	1295	298	148	1400	300	147			
							1385	298	146			
	1738	394	175	1847	394	173	1949	394	170			
	1600	366	169	1700	366	167	1800	365	164			
-10	1400	327	159	1500	328	158	1600	328	155			
	1240	301	150	1300	296	147	1400	298	146			
				1290	294	147	1365	292	144			
	1865	417	178	1970	414	176	1970	394	169			
	1700	384	171	1800	382	169	1800	362	162			
-20	1500	344	162	1600	344	161	1600	325	154			
	1300	308	152	1400	308	151	1400	295	144			
	1235	297	148	1285	291	145	1350	287	142			
	1865	414	176	1970	412	174	1970	390	167			
	1700	382	169	1800	380	167	1800	358	161			
-30	1500	343	160	1600	342	159	1600	322	152			
	1300	306	150	1400	306	150	1400	292	143			
	1220	293	145	1275	287	143	1320	280	139			
	1865	412	174	1970	409	172	1970	386	165			
	1700	380	167	1800	377	166	1800	355	159			
-40	1500	341	158	1600	339	157	1600	320	151			
	1300	304	148	1400	303	148	1400	289	142			
	1200	288	143	1265	283	141	1305	275	137			
	1865	411	172	1970	407	170	1970	382	163			
	1700	378	165	1800	374	164	1800	353	157			
-50	1500	340	156	1600	337	156	1600	317	149			
	1300	302	146	1400	301	147	1400	286	140			
	1205	287	141	1255	279	139	1295	271	135			
	1865	411	171	1970	406	169	1970	381	162			
E A	1700	378	164	1800	373	163	1800	352	156			
-54	1500	339	156	1600	336	155	1600	316	149			
	1300	301	146	1400	300	146	1400	285	140			
	1200	285	140	1250	277	138	1280	268	134			

Figure 5-19 (Sheet 6)

G208B675-00

CARGO POD INSTALLED CRUISE PERFORMANCE CRUISE PRESSURE ALTITUDE 12,000 FEET

CONDI	CRUISE PRESSURE ALTITUDE 12,000 FEET										
8750 Pc						Do no	t exceed m		cruise		
INERTI	AL SEPA	RATOR	NORMA	L			torque or 7	'40℃ ITT	-		
Refer to	sheet 1 f	or appro	priate no	otes applic	able to t	this chart					
	19	900 RPI	Ń	17	750 RPI	N	10	600 RPI	M		
Temp	Torque	Fuel		Torque	Fuel		Torque	Fuel			
°C	Ft-Lbs	Flow	KTAS		Flow	KTAS		Flow	KTAS		
	FI-LDS	PPH		Ft-Lbs	PPH		Ft-Lbs	PPH			
20	1132	284	148	1207	284	147	1283	284	143		
10	1280	306	158	1362	306	156	1445	306	153		
10	1255	302	156	1310	298	153	1390	297	149		
	1431	333	166	1520	333	164	1609	332	160		
0	1300	307	158	1400	310	157	1500	312	155		
	1250	299	155	1295	293	151	1380	293	148		
	1578	361	172	1676	361	169	1771	361	166		
-10	1400	325	162	1500	327	161	1600	328	158		
10	1240	295	153	1300	291	150	1400	293	148		
				1280	288	149	1370	288	146		
	1702	383	175	1808	383	173	1908	383	170		
	1500	343	166	1700	363	169	1800	363	166		
-20	1300	304	155	1500	324	159	1600	325	157		
	1230	292	151	1300	288	149	1400	291	147		
				1280	285	147	1350	282	144		
	1823	408	178	1936	408	176	1970	392	170		
00	1700	381	173	1800	380	171	1800	360	164		
-30	1500	342	164	1600	342	162	1600	322	155		
	1300	302	153	1400	303	153	1400	288	146		
	1220	287	148	1265	280	145	1335	277	142		
	1865	415	178	1970	413	175	1970	389	169 162		
-40	1700	379	171 162	1800	377	169	1800	356	162		
-40	1500 1300	340 301	152	1600 1400	339 301	161 151	1600 1400	320 285	154 144		
	1205	283	146	1255	276	143	1300	205	139		
	1865	<u> </u>	146	1255	410	143	1970	385	167		
	1700	377	169	1800	374	167	1800	353	160		
-50	1500	339	160	1600	337	159	1600	317	152		
-50	1300	300	150	1400	299	159	1400	282	143		
	1185	278	143	1245	299	141	1280	262 264	136		
	1865	413	175	1970	410	172	1970	384	166		
	1700	377	168	1800	374	166	1800	352	159		
-54	1500	338	159	1600	336	158	1600	316	153		
	1300	299	149	1400	299	149	1400	281	142		
	1175	276	142	1235	270	140	1285	264	136		
		210	115	1200		110	1200	201	G208B675-00		

Figure 5-19 (Sheet 7)

CARGO POD INSTALLED CRUISE PERFORMANCE CRUISE PRESSURE ALTITUDE 14,000 FEET

0010	CRUISE PRESSURE AL III UDE 14,000 FEE I CONDITIONS: NOTE										
8750 Po							t exceed m				
	AL SEPA						torque or 7	40°C111	•		
Refer to				otes applic							
_	19	900 RPI	M	1.	750 RPI	И	16	600 RPI	M		
Temp	Torque	Fuel		Torque	Fuel		Torque	Fuel			
°C	Ft-Lbs	Flow	KTAS	Ft-Lbs	Flow	KTAS	Ft-Lbs	Flow	KTAS		
		PPH			PPH			PPH			
15	1081	269	145	1152	269	143	1225	269	139		
10	1151	280	151	1225	280	149	1300	280	145		
0	1291	304	160	1372	304	158	1454	303	155		
U	1230	292	156	1295	289	153	1380	290	150		
	1428	330	167	1516	329	165	1603	329	161		
-10	1300	304	160	1400	307	159	1400	291	150		
	1215	287	154	1280	284	151	1365	284	148		
	1546	352	172	1642	352	169	1734	352	166		
-20	1400	322	164	1500	324	163	1600	326	160		
-20	1200	283	152	1300	286	151	1400	288	149		
				1260	278	149	1355	279	146		
	1658	374	175	1761	373	173	1859	373	170		
-30	1500	341	168	1600	341	166	1700	342	163		
-30	1300	301	156	1400	303	156	1500	304	153		
	1185	279	149	1255	275	147	1335	274	144		
	1774	398	178	1885	398	176	1970	394	172		
	1600	359	171	1700	358	169	1800	358	166		
-40	1400	319	160	1500	320	159	1600	320	157		
	1200	280	148	1300	282	148	1400	284	147		
	1165	274	146	1235	269	144	1305	267	141		
	1865	414	180	1970	412	177	1970	390	170		
	1700	379	173	1800	378	171	1800	354	164		
-50	1500	337	164	1600	336	162	1600	317	155		
	1300	298	153	1400	298	153	1400	282	145		
	1135	267	142	1215	264	142	1285	261	139		
	1865	413	179	1970	411	176	1970	389	169		
	1700	379	172	1800	377	170	1800	353	163		
-54	1500	336	163	1600	336	161	1600	316	154		
	1300	298	152	1400	298	152	1400	281	145		
	1130	265	141	1210	263	141	1275	258	138		
									G208B675-00		

Figure 5-19 (Sheet 8)

CARGO POD INSTALLED CRUISE PERFORMANCE CRUISE PRESSURE ALTITUDE 16,000 FEET

	CONDITIONS: 3750 Pounds Do not exceed maximum cruise										
8750 Pc											
	AL SEPA						torque or 740 ℃ ITT.				
Refer to				tes applic							
-	19	900 RPI	VI	1,	750 RPI	M	16	500 RPI	VI		
Temp	Torque	Fuel		Torque	Fuel		Torque	Fuel			
°C	Ft-Lbs	Flow	KTAS	Ft-Lbs	Flow	KTAS	Ft-Lbs	Flow	KTAS		
		PPH			PPH			PPH			
10	1033	256	141	1101	256	138	1168	256	132		
0	1163	277	153	1237	277	151	1311	277	147		
-10	1287	300	162	1367	300	159	1447	300	155		
	1165	276	153	1235	275	150	1330	278	147		
	1401	322	167	1488	322	165	1572	322	161		
-20	1200	282	154	1300	285	153	1400	289	151		
	1150	272	150	1215	268	147	1305	270	145		
	1504	341	171	1597	341	169	1687	341	166		
-30	1300	300	159	1400	303	158	1500	305	156		
00	1130	267	147	1200	264	146	1300	267	144		
							1290	265	143		
	1610	364	175	1710	364	172	1805	363	169		
	1500	339	169	1600	340	167	1600	321	160		
-40	1300	299	158	1400	301	157	1400	284	149		
	1115	262	145	1200	262	144	1265	259	140		
				1185	259	143					
	1720	385	178	1824	384	175	1923	384	172		
	1600	360	172	1700	359	170	1800	359	167		
-50	1400	317	162	1500	317	161	1600	317	158		
	1200	278	150	1300	279	149	1400	281	148		
	1095	257	142	1160	253	140	1235	252	137		
	1717	383	177	1820	382	174	1921	382	171		
	1600	359	171	1700	359	169	1800	358	166		
-54	1400	316	161	1500	316	160	1600	316	157		
	1200	277	149	1300	279	149	1400	280	147		
	1085	255	140	1160	253	140	1235	251	137 G208B675-00		

Figure 5-19 (Sheet 9)

CARGO POD INSTALLED CRUISE PERFORMANCE

	CRUISE PRESSURE ALTITUDE 18,000 FEET												
CONDI							NO						
87 <u>50 P</u>						Do no	t exceed n	naximum	cruise				
	AL SEPA						torque or 7	40 °C 11 1					
Refer to				otes applic									
	19	900 RPI	M	1	750 RPI	M	1	600 RPI	N				
Temp	Torquo	Fuel		Torquo	Fuel		Torquo	Fuel					
°C	Torque	Flow	KTAS	Torque	Flow	KTAS	Torque	Flow	KTAS				
Ū	Ft-Lbs	PPH		Ft-Lbs	PPH		Ft-Lbs	PPH					
-5	1103	263	149	1173	263	146	1242	263	141				
-10	1160	274	154	1232	274	140	1305	273	146				
	1268	294	162	1346	294	159	1423	294	155				
-20	1145	270	152	1210	267	149	1315	273	147				
	1361	311	167	1446	311	164	1528	311	160				
-30	1200	279	155	1300	283	155	1400	286	152				
50	1135	266	150	1195	263	147	1300	268	145				
	1456	331	171	1547	331	168	1633	331	164				
	1300	298	161	1400	300	160	1500	303	157				
-40	1130	263	148	1200	262	146	1300	265	144				
	1100	200	140	1175	257	144	1275	261	143				
	1552	351	174	1647	350	171	1739	350	168				
50	1400	317	166	1500	320	164	1600	321	161				
-50	1200	276	153	1300	279	152	1400	281	150				
	1110	259	146	1165	253	142	1250	254	140				
	1547	348	173	1642	348	170	1735	348	167				
F 4	1400	317	165	1500	319	163	1600	320	160				
-54	1200	276	152	1300	278	151	1400	281	149				
	1100	256	144	1155	251	141	1230	249	138				
				SURE A									
CONDI		011010					NO	TE					
8750 Pc						Do no			cruise				
	AL SEPA	RATOR	NORMA	L			Do not exceed maximum cruise torque or 740 °C ITT.						
				tes applic	able to				-				
		900 RPI			750 RPI			600 RPI	1				
Tomp		Fuel	VI	1	Fuel	VI		Fuel	VI				
Temp	Torque			Torque			Torque						
°C	Ft-Lbs	Flow	KTAS	Ft-Lbs	Flow	KTAS	Ft-Lbs	Flow	KTAS				
		PPH		11, 200	PPH			PPH					
-15	1090	258	148	1158	258	144	1225	258	138				
-20	1142	268	153	1212	268	150	1282	267	144				
-30	1229	284	160	1305	284	157	1379	284	152				
-30	1170	272	155	1235	270	152	1335	275	149				
	1315	302	165	1397	301	162	1475	301	158				
-40	1200	277	156	1210	263	149	1315	268	147				
	1150	267	<u>153</u>										
	1402	319	169	1487	319	166	1570	318	162				
-50	1200	275	155	1300	279	154	1400	282	152				
	1130	262	150	1190	257	146	1310	265	146				
	1395	317	168	1481	317	165	1566	316	162				
-54	1200	275	154	1300	279	154	1400	281	152				
	1135	261	149	1180	255	145	1295	261	145 G208B675-00				

Figure 5-19 (Sheet 10)

5-44

CARGO POD INSTALLED CRUISE PERFORMANCE BUISE PRESSURE ALTITUDE 22,000 FEE

CRUISE PRESSURE ALTITUDE 22,000 FEET											
	ounds AL SEPAI	RATOR	NORMA	L		NOTE Do not exceed maximum cruise torque or 740 °C ITT.					
Refer to				otes applic							
	19	900 RPI	N	17	750 RPI	N	10	600 RPI	N		
Temp ℃	Torque Ft-Lbs	Fuel Flow PPH	KTAS	Torque Ft-Lbs	Fuel Flow PPH	KTAS	Torque Ft-Lbs	Fuel Flow PPH	KTAS		
-25	1065	250	152	1131	250	148	1197	250	142		
-30	1106	258	155	1175	258	152	1243	258	147		
-40	1186 1105	274 256	161 154	1260 1165	274 254	158 151	1332 1255	274 258	154 148		
-50	1264 1100	290 254	166 153	1341 1200	290 259	163 153	1417 1300	289 264	159 151		
	1090 1257	<u>251</u> 288	<u>152</u> 165	1145 1336	248 288	148 162	1255 1414	<u>254</u> 287	147 158		
-54	1100 1090	253 251	152 151	1200 1135	259 246	152 147	1300 1245	263 252	150 146		
	1000			SURE A					110		
CONDI	TIONS	011010					NO'	TF			
7800 Po INERTI	ounds AL SEPAI					Do not exceed maximum cruise torque or 740 °C ITT.					
Refer to				tes applic							
_	19	<u>900 RPI</u>	M	17	750 RPI	M	1(600 RPI	M		
Temp ℃	Torque Ft-Lbs	Fuel Flow PPH	KTAS	Torque Ft-Lbs	Fuel Flow PPH	KTAS	Torque Ft-Lbs	Fuel Flow PPH	KTAS		
-30	994	234	151	1057	234	147	1119	234	141		
-40	1069 1040	249 242	158 155	1136 1100	249 241	155 151	1202 1190	248 245	150 149		
-50	1140 1025	263 238	163 152	1210 1100	263 239	160 151	1279 1165	262 238	156 146		
-54	1133 1020	262 236	162 151	1085 1204 1070	236 261 233	149 159 148	1275 1165	261 238	155 146		

Figure 5-19 (Sheet 11)

The following general information is applicable to all CRUISE MAXIMUM TORQUE Charts.

- 1. The highest torque shown for each temperature and RPM corresponds to maximum allowable cruise power. Do not exceed this torque, 740 ℃ ITT, or 101.6% Ng, whichever occurs first.
- 2. With the INERTIAL SEPARATOR in BYPASS and power set below the torque limit (1865 foot-pounds), decrease the maximum cruise torque by 100 foot-pounds. Do not exceed 740°C ITT. Fuel flow for a given torque setting will be 15 pounds per hour (PPH) higher.
- With the CABIN HEAT ON and power set below the torque limit (1865 foot-pounds), decrease maximum cruise torque by 80 foot-pounds. Do not exceed 740 ℃ ITT. Fuel flow for a given torque setting will be 7 PPH higher.
- 4. Where torque values have been replaced by dashes, operating temperature limits of the airplane would be greatly exceeded. Those torque values which are included, but the operation slightly exceeds the temperature limit, are provided for interpolation purposes only.

Figure 5-20 (Sheet 1 of 7)

CONDITIONS:

INERTIAL SEPARATOR NORMAL

Refer to sheet 1 for appropriate notes applicable to this chart.

		sure Alt			sure Alt		Pressure Altitude			
Temp	1	000 Fee	et	2	2000 Fee	et	3	000 Fee	et	
°C	Propel	ler Spee	d RPM	Propel	ler Spee	d RPM	Propel	ler Spee	d RPM	
	1900	1750	1600	1900	1750	1600	1900	1750	1600	
50	1196	1284	1371	1144	1228	1311				
45	1307	1399	1495	1252	1341	1433	1198	1283	1371	
40	1424	1523	1625	1367	1461	1560	1310	1400	1495	
35	1538	1642	1750	1478	1578	1682	1419	1515	1615	
30	1649	1759	1871	1586	1692	1800	1525	1626	1730	
25	1762	1877	1970	1696	1807	1919	1632	1738	1847	
20	1865	1970	1970	1796	1912	1970	1730	1841	1954	
15	1865	1970	1970	1865	1970	1970	1829	1945	1970	
10	1865	1970	1970	1865	1970	1970	1865	1970	1970	
5	1865	1970	1970	1865	1970	1970	1865	1970	1970	
0	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-5	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-10	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-15	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-20	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-25	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-30	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-35	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-40	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-45	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-50	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-54	1865	1970	1970	1865	1970	1970	1865	1970	1970	

Figure 5-20 (Sheet 2)

5-47

CONDITIONS:

INERTIAL SEPARATOR NORMAL

Refer to sheet 1 for appropriate notes applicable to this chart.

	Pres	sure Alti	itude	Pres	sure Alti	itude	Pres	sure Alt	itude
Temp	4	000 Fee	et	5	000 Fee	et	6	000 Fee	et
°C	Propel	er Spee	d RPM	Propel	ler Spee	d RPM	Propel	ler Spee	d RPM
	1900	1750	1600	1900	1750	1600	1900	1750	1600
45	1144	1226	1310						
40	1253	1340	1431	1198	1281	1368	1142	1222	1306
35	1360	1453	1549	1303	1392	1484	1246	1331	1419
30	1464	1561	1661	1403	1497	1594	1344	1434	1527
25	1568	1671	1775	1506	1604	1705	1444	1539	1635
20	1664	1771	1879	1599	1702	1806	1536	1635	1735
15	1761	1873	1970	1694	1802	1909	1628	1731	1835
10	1861	1970	1970	1791	1903	1970	1722	1830	1937
5	1865	1970	1970	1865	1970	1970	1813	1927	1970
0	1865	1970	1970	1865	1970	1970	1865	1970	1970
-5	1865	1970	1970	1865	1970	1970	1865	1970	1970
-10	1865	1970	1970	1865	1970	1970	1865	1970	1970
-15	1865	1970	1970	1865	1970	1970	1865	1970	1970
-20	1865	1970	1970	1865	1970	1970	1865	1970	1970
-25	1865	1970	1970	1865	1970	1970	1865	1970	1970
-30	1865	1970	1970	1865	1970	1970	1865	1970	1970
-35	1865	1970	1970	1865	1970	1970	1865	1970	1970
-40	1865	1970	1970	1865	1970	1970	1865	1970	1970
-45	1865	1970	1970	1865	1970	1970	1865	1970	1970
-50	1865	1970	1970	1865	1970	1970	1865	1970	1970
-54	1865	1970	1970	1865	1970	1970	1865	1970	1970

Figure 5-20 (Sheet 3)

CONDITIONS:

INERTIAL SEPARATOR NORMAL

Refer to sheet 1 for appropriate notes applicable to this chart.

	Pres	sure Alt	itude	Pres	sure Alt	itude	Pressure Altitude			
Temp	7	'000 Fee	et	8	8000 Fee	et	g	000 Fee	et	
°C	Propel	er Spee	d RPM	Propel	ler Spee	d RPM	Propeller Speed RPM			
	1900	1750	1600	1900	1750	1600	1900	1750	1600	
40	1082	1159	1238							
35	1183	1265	1349	1124	1201	1282	1066	1140	1217	
30	1278	1364	1452	1214	1297	1381	1154	1233	1314	
25	1374	1465	1557	1307	1393	1482	1243	1325	1410	
20	1464	1559	1655	1394	1485	1577	1328	1415	1503	
15	1554	1653	1752	1480	1575	1670	1410	1501	1592	
10	1645	1748	1850	1568	1666	1764	1494	1589	1683	
5	1735	1843	1949	1655	1758	1860	1579	1678	1775	
0	1823	1936	1970	1739	1848	1953	1660	1763	1864	
-5	1865	1970	1970	1825	1939	1970	1742	1850	1954	
-10	1865	1970	1970	1865	1970	1970	1822	1935	1970	
-15	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-20	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-25	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-30	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-35	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-40	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-45	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-50	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-54	1865	1970	1970	1865	1970	1970	1865	1970	1970	

Figure 5-20 (Sheet 4)

CONDITIONS:

INERTIAL SEPARATOR NORMAL

Refer to sheet 1 for appropriate notes applicable to this chart.

	Pressure Altitude			Pres	sure Alti	itude	Pres	sure Alt	Pressure Altitude			
Temp	10),000 Fe	et	11	,000 Fe	et	12,000 Feet					
°C	Propel	er Spee	d RPM	Propel	ler Spee	d RPM	Propeller Speed RPM					
	1900	1750	1600	1900	1750	1600	1900	1750	1600			
30	1097	1171	1249	1041	1113	1187	984	1052	1123			
25	1181	1261	1342	1123	1198	1276	1062	1134	1208			
20	1264	1348	1432	1204	1284	1364	1141	1217	1295			
15	1343	1430	1518	1280	1363	1447	1214	1293	1374			
10	1424	1514	1605	1357	1444	1530	1288	1370	1454			
5	1506	1600	1694	1436	1526	1616	1364	1450	1536			
0	1583	1682	1779	1511	1606	1698	1437	1527	1616			
-5	1662	1766	1865	1587	1686	1782	1510	1604	1696			
-10	1741	1850	1953	1665	1768	1867	1584	1683	1777			
-15	1805	1918	1970	1726	1834	1936	1646	1749	1847			
-20	1865	1970	1970	1789	1900	1970	1706	1813	1913			
-25	1865	1970	1970	1851	1967	1970	1766	1877	1970			
-30	1865	1970	1970	1865	1970	1970	1828	1941	1970			
-35	1865	1970	1970	1865	1970	1970	1865	1970	1970			
-40	1865	1970	1970	1865	1970	1970	1865	1970	1970			
-45	1865	1970	1970	1865	1970	1970	1865	1970	1970			
-50	1865	1970	1970	1865	1970	1970	1865	1970	1970			
-54	1865	1970	1970	1865	1970	1970	1865	1970	1970			

Figure 5-20 (Sheet 5)

CONDITIONS:

INERTIAL SEPARATOR NORMAL

Refer to sheet 1 for appropriate notes applicable to this chart.

	Pressure Altitude			Pressure Altitude			Pressure Altitude		
Temp		3,000 Fe			4,000 Fe			5,000 Fe	
		ler Spee							
°C					ler Spee			ler Spee	
0.5	1900	1750	1600	1900	1750	1600	1900	1750	1600
25	1004	1073	1144	949	1015	1082			
20	1080	1153	1227	1022	1091	1162	969	1034	1102
15	1151	1227	1304	1092	1164	1238	1036	1105	1175
10	1222	1301	1381	1160	1235	1311	1100	1173	1246
5	1295	1377	1459	1229	1308	1386	1167	1242	1317
0	1366	1452	1537	1298	1380	1462	1233	1312	1390
-5	1436	1525	1614	1365	1451	1535	1298	1379	1460
-10	1507	1601	1692	1434	1523	1610	1364	1448	1532
-15	1570	1668	1761	1497	1590	1680	1426	1515	1601
-20	1627	1729	1825	1551	1648	1741	1479	1571	1660
-25	1685	1790	1889	1607	1708	1803	1533	1628	1719
-30	1743	1852	1953	1663	1767	1864	1586	1685	1778
-35	1806	1917	1970	1722	1828	1928	1642	1743	1839
-40	1865	1970	1970	1784	1893	1970	1701	1806	1903
-45	1865	1970	1970	1844	1958	1970	1760	1867	1968
-50	1865	1970	1970	1865	1970	1970	1817	1929	1970
	• • • • • • • • •		1370		1370	1370		1363	13/0
-54	1865	1970	1970	1865	1970	1970	1815	1925	1970
-54	1865 Pres	1970 sure Alti	1970 tude	1865 Pres	1970 sure Alti	1970 tude	1815 Pres	1925 sure Alti	1970 tude
-54 Temp	1865 Pres 16	1970 sure Alti 6,000 Fe	1970 tude et	1865 Pres	<u>1970</u> sure Alti 7,000 Fe	1970 tude et	1815 Pres	1925 sure Alti 3,000 Fe	1970 tude et
-54	1865 Pres 16 Propel	1970 sure Alti 6,000 Fe ler Spee	1970 tude et d RPM	1865 Pres 1 Propel	1970 sure Alti 7,000 Fe ler Spee	1970 tude et d RPM	1815 Pres 18 Propel	1925 sure Alti 3,000 Fe ler Spee	1970 tude et d RPM
-54 Temp ℃	1865 Pres 16 Propel 1900	1970 sure Alti 5,000 Fe ler Spee 1750	1970 tude et d RPM 1600	1865 Pres 1 Propel 1900	1970 sure Alti 7,000 Fe ler Spee 1750	1970 tude et d RPM 1600	1815 Pres	1925 sure Alti 3,000 Fe	1970 tude et
-54 Temp ℃ 20	1865 Pres 10 Propel 1900 919	1970 sure Alti 6,000 Fe ler Spee 1750 981	1970 tude et d RPM 1600 1046	1865 Pres 1 Propel 1900 872	1970 sure Alti 7,000 Fe ler Spee 1750 932	1970 tude et d RPM 1600 993	1815 Pres 18 Propel 1900 	1925 sure Alti 3,000 Fe er Spee 1750 	1970 tude et d RPM 1600
-54 Temp ℃ 20 15	1865 Pres 10 Propel 1900 919 983	1970 sure Alti 6,000 Fe ler Spee 1750 981 1049	<u>1970</u> tude et <u>1600</u> 1046 1117	1865 Pres Propel 1900 872 934	<u>1970</u> sure Alti 7,000 Fe ler Spee 1750 932 997	1970 tude et 1600 993 1062	1815 Pres 18 Propel 1900 888	1925 sure Alti 3,000 Fe er Spee 1750 948	<u>1970</u> tude et <u>1600</u> 1009
-54 Temp ℃ 20 15 10	1865 Pres 10 Propel 1900 919 983 1045	1970 sure Alti 5,000 Fe ler Spee 1750 981 1049 1114	1970 tude d RPM 1600 1046 1117 1184	1865 Pres 1 Propel 1900 872 934 993	1970 sure Alti 7,000 Fe ler Spee 1750 932 997 1058	1970 tude d RPM 1600 993 1062 1125	1815 Pres 18 Propel 1900 888 943	1925 sure Alti 3,000 Fe er Spee 1750 948 1006	<u>1970</u> tude d RPM <u>1600</u> 1009 1070
-54 Temp ℃ 20 15 10 5	1865 Pres 10 Propel 1900 919 983 1045 1108	1970 sure Alti 5,000 Fe er Spee 1750 981 1049 1114 1179	1970 tude et 1600 1046 1117 1184 1252	1865 Pres Propel 1900 872 934 993 1052	1970 sure Alti 7,000 Fe ler Spee 1750 932 932 997 1058 1120	1970 tude et 1600 993 1062 1125 1190	1815 Pres 18 Propel 1900 888 943 999	1925 sure Alti 3,000 Fe er Spee 1750 948 1006 1065	1970 tude et 1600 1009 1070 1131
-54 Temp ℃ 20 15 10 5 0	1865 Pres 10 Propel 1900 919 983 1045 1108 1172	1970 sure Alti 6,000 Fe er Spee 1750 981 1049 1114 1179 1246	1970 tude et 1600 1046 1117 1184 1252 1322	1865 Pres 17 Propel 1900 872 934 993 1052 1113	1970 sure Alti 7,000 Fe 1750 932 997 1058 1120 1184	1970 tude et 1600 993 1062 1125 1190 1256	1815 Pres 18 Propel 1900 888 943 999 1057	1925 sure Alti 3,000 Fe 1750 948 1006 1065 1125	<u>1970</u> tude et <u>1600</u> 1009 1070 1131 1194
-54 Temp ℃ 20 15 10 5 0 -5	1865 Pres 10 Propel 1900 919 983 1045 1108 1172 1232	1970 sure Alti 6,000 Fe er Spee 1750 981 1049 1114 1179 1246 1310	1970 tude et 1600 1046 1117 1184 1252 1322 1388	1865 Pres 1 Propel 1900 872 934 993 1052 1113 1171	<u>1970</u> sure Alti 7,000 Fe er Spee 1750 932 997 1058 1120 1184 1245	1970 tude et 1600 993 1062 1125 1190 1256 1320	1815 Pres 18 Propel 1900 888 943 999 1057 1113	1925 sure Alti 3,000 Fe er Spee 1750 948 1006 1065 1125 1184	<u>1970</u> tude et <u>1600</u> 1009 1070 1131 1194 1255
-54 Temp ℃ 20 15 10 5 0 -5 -10	1865 Pres 10 Propel 1900 919 983 1045 1108 1172 1232 1295	1970 sure Alti 5,000 Fe 1750 981 1049 1114 1179 1246 1310 1376	1970 tude et 1600 1046 1117 1184 1252 1322 1388 1456	1865 Pres 1 Propel 1900 872 934 993 1052 1113 1171 1230	1970 sure Alti 7,000 Fe 1750 932 997 1058 1120 1184 1245 1307	1970 tude et 1600 993 1062 1125 1190 1256 1320 1384	1815 Pres 18 Propel 1900 888 943 999 1057 1113 1169	1925 sure Alti 3,000 Fe er Spee 1750 948 1006 1065 1125 1184 1243	1970 tude et 1600 1009 1070 1131 1194 1255 1316
-54 Temp ℃ 20 15 10 5 0 -5 -10 -15	1865 Pres 10 Propel 1900 919 983 1045 1108 1172 1232 1295 1358	1970 sure Alti 6,000 Fe 1750 981 1049 1114 1179 1246 1310 1376 1442	1970 tude et 1600 1046 1117 1184 1252 1322 1328 1388 1456 1525	1865 Pres 1 Propel 1900 872 934 993 1052 1113 1171 1230 1291	1970 sure Alti 7,000 Fe 1750 932 997 1058 1120 1184 1245 1307 1371	1970 tude et 1600 993 1062 1125 1190 1256 1320 1384 1450	1815 Pres 18 Propel 1900 888 943 999 1057 1113 1169 1227	1925 sure Alti 3,000 Fe 1750 948 1006 1065 1125 1184 1243 1303	1970 tude et 1600 1009 1070 1131 1194 1255 1316 1379
-54 Temp ℃ 20 15 10 5 0 -5 -10 -15 -20	1865 Pres 10 Propel 1900 919 983 1045 1108 1172 1232 1295 1358 1407	1970 sure Alti 5,000 Fe er Spee 1750 981 1049 1114 1179 1246 1310 1376 1442 1495	1970 tude et 1600 1046 1117 1184 1252 1322 1388 1456 1525 1580	1865 Pres 1 Propel 1900 872 934 993 1052 1113 1171 1230 1291 1340	1970 sure Alti 7,000 Fe 1750 932 997 1058 1120 1184 1245 1307 1371 1423	1970 tude et 1600 993 1062 1125 1190 1256 1320 1384 1450 1505	1815 Propel 1900 888 943 999 1057 1113 1169 1227 1275	1925 sure Alti 3,000 Fe 1750 948 1006 1065 1125 1184 1243 1303 1355	1970 tude et 1600 1009 1070 1131 1194 1255 1316 1379 1433
-54 Temp ℃ 20 15 10 5 0 -5 -10 -15 -20 -25	1865 Pres 10 Propel 1900 919 983 1045 1108 1172 1232 1295 1358 1407 1459	1970 sure Alti 5,000 Fe er Spee 1750 981 1049 1114 1179 1246 1310 1376 1442 1495 1549	1970 tude et 1600 1046 1117 1184 1252 1322 1388 1456 1525 1580 1637	1865 Pres 1900 872 934 993 1052 1113 1171 1230 1291 1340 1388	1970 ssure Alti 7,000 Fe er Spee 1750 932 997 1058 1120 1184 1245 1307 1371 1423 1475	1970 tude et 1600 993 1062 1125 1190 1256 1320 1384 1450 1505 1559	1815 Pres 18 Propel 1900 888 943 999 1057 1113 1169 1227 1275 1321	1925 sure Alti 3,000 Fe 1750 948 1006 1065 1125 1184 1243 1303 1355 1404	1970 tude et 1600 1009 1070 1131 1194 1255 1316 1379 1433 1484
-54 Temp ℃ 20 15 10 5 0 -5 -10 -15 -20 -25 -30	1865 Pres 10 Propel 1900 919 983 1045 1108 1172 1232 1295 1358 1407 1459 1509	1970 sure Alti 5,000 Fe 1750 981 1049 1114 1179 1246 1310 1376 1442 1495 1549 1603	1970 tude et 1600 1046 1117 1184 1252 1322 1388 1456 1525 1580 1637 1693	1865 Pres 1 900 872 934 993 1052 1113 1171 1230 1291 1340 1388 1437	1970 sure Alti 7,000 Fe 1750 932 997 1058 1120 1184 1245 1307 1371 1423	1970 tude et 1600 993 1062 1125 1125 1125 1320 1384 1450 1505 1559 1612	1815 Pres 18 Propel 1900 888 943 999 1057 1113 1169 1227 1275 1321 1368	1925 sure Alti 3,000 Fe 1750 948 1006 1065 1125 1184 1243 1303 1355 1404 1453	1970 tude et 1600 1009 1070 1131 1194 1255 1316 1379 1433 1484 1536
-54 Temp ℃ 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35	1865 Pres 10 Propel 1900 919 983 1045 1108 1172 1232 1295 1358 1407 1459	1970 sure Alti 6,000 Fe 1750 981 1049 1114 1179 1246 1310 1376 1442 1495 1549 1603 1658	1970 tude et 1600 1046 1117 1184 1252 1322 1388 1456 1525 1580 1637 1693 1750	1865 Pres 1 970 972 934 993 1052 1113 1171 1230 1291 1340 1388 1437 1486	1970 sure Alti 7,000 Fe 1750 932 997 1058 1120 1184 1245 1307 1371 1423 1475 1526 1578	1970 tude et 1600 993 1062 1125 1125 1125 1256 1320 1384 1450 1559 1612 1667	1815 Pres 18 Propel 1900 888 943 999 1057 1113 1169 1227 1275 1321 1368 1414	1925 sure Alti 3,000 Fe 1750 948 1006 1065 1125 1184 1243 1303 1355 1404 1453 1502	1970 tude et 1600 1009 1070 1131 1194 1255 1316 1379 1433 1484 1536 1587
-54 Temp ℃ 20 15 10 5 0 -5 -10 -15 -20 -25 -30	1865 Pres 10 Propel 1900 919 983 1045 1108 1172 1232 1295 1358 1407 1459 1509	1970 sure Alti 5,000 Fe 1750 981 1049 1114 1179 1246 1310 1376 1442 1495 1549 1603	1970 tude et 1600 1046 1117 1184 1252 1322 1388 1456 1525 1580 1637 1693	1865 Pres 1 900 872 934 993 1052 1113 1171 1230 1291 1340 1388 1437	1970 sure Alti 7,000 Fe 1750 932 997 1058 1120 1184 1245 1307 1371 1423 1475 1526	1970 tude et 1600 993 1062 1125 1125 1125 1320 1384 1450 1505 1559 1612	1815 Pres 18 Propel 1900 888 943 999 1057 1113 1169 1227 1275 1321 1368	1925 sure Alti 3,000 Fe 1750 948 1006 1065 1125 1184 1243 1303 1355 1404 1453 1502 1554	1970 tude et 1600 1009 1070 1131 1194 1255 1316 1379 1433 1484 1536
-54 Temp ℃ 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35	1865 Pres 10 9ropel 1900 919 983 1045 1108 1172 1232 1295 1358 1407 1459 1509 1562 1619	1970 sure Alti 6,000 Fe 1750 981 1049 1114 1179 1246 1310 1376 1442 1495 1549 1603 1658	1970 tude et 1600 1046 1117 1184 1252 1322 1388 1456 1525 1580 1637 1693 1750	1865 Pres 1 970 972 934 993 1052 1113 1171 1230 1291 1340 1388 1437 1486	1970 sure Alti 7,000 Fe 1750 932 997 1058 1120 1184 1245 1307 1371 1423 1475 1526 1578	1970 tude et 1600 993 1062 1125 1125 1125 1256 1320 1384 1450 1559 1612 1667	1815 Pres 18 Propel 1900 888 943 999 1057 1113 1169 1227 1275 1321 1368 1414	1925 sure Alti 3,000 Fe 1750 948 1006 1065 1125 1184 1243 1303 1355 1404 1453 1502 1554	1970 tude et 1600 1009 1070 1131 1194 1255 1316 1379 1433 1484 1536 1587 1641
-54 Temp ℃ 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40	1865 Pres 10 Propel 1900 919 983 1045 1108 1172 1232 1295 1358 1407 1459 1509 1562	1970 sure Alti 5,000 Fe 1750 981 1049 1114 1179 1246 1310 1376 1442 1495 1549 1603 1658 1718	1970 tude et 1600 1046 1117 1184 1252 1322 1388 1456 1525 1580 1637 1693 1750 1812	1865 Pres 1 970 972 934 993 1052 1113 1171 1230 1291 1340 1388 1437 1486 1539	1970 sure Alti 7,000 Fe 1750 932 997 1058 1120 1184 1245 1307 1371 1423 1475 1526 1578 1633	1970 tude et 1600 993 1062 1125 1190 1256 1320 1384 1450 1505 1559 1612 1667 1724	1815 Pres 18 Propel 1900 888 943 999 1057 1113 1169 1227 1275 1321 1368 1414 1464	1925 sure Alti 3,000 Fe 1750 948 1006 1065 1125 1184 1243 1303 1355 1404 1453 1502	1970 tude et 1600 1009 1070 1131 1194 1255 1316 1379 1433 1484 1536 1587

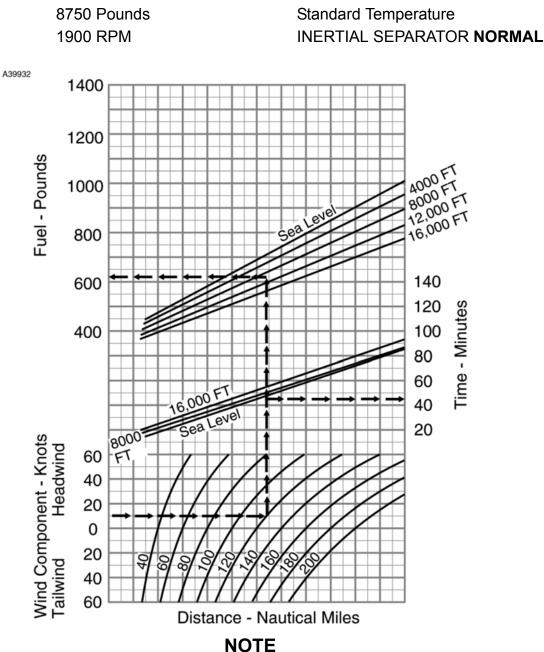
Figure 5-20 (Sheet 6)

CONDITIONS:

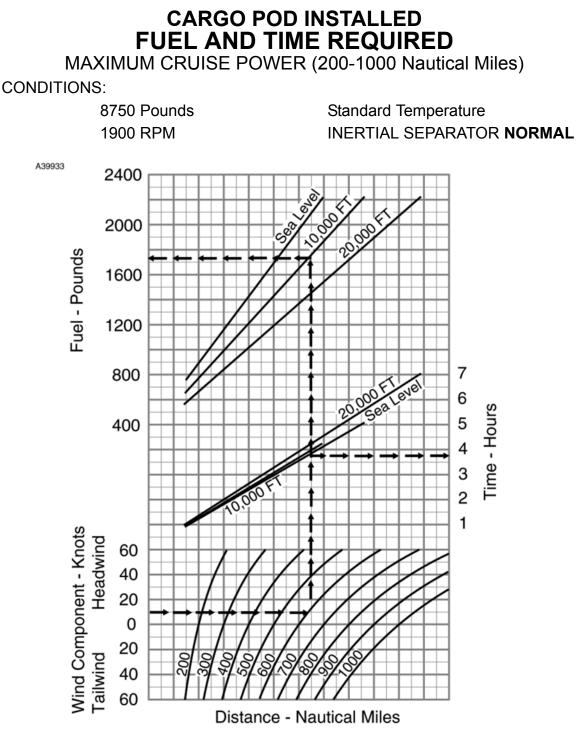
INERTIAL SEPARATOR NORMAL

Refer to sheet 1 for appropriate notes applicable to this chart.

Tarran	Pressure Altitude 19,000 Feet			Pres	sure Alti	tude	Pres	Pressure Altitude 21,000 Feet		
Temp ℃		er Spee			0,000 Fe ler Spee			ler Spee		
Ŭ	1900	1750	1600	1900	1750	1600	1900	1750	1600	
15	842	899	958							
10	896	955	1016	842	899	957	792	846	901	
5	950	1012	1075	894	953	1014	842	898	955	
0	1005	1070	1135	947	1009	1071	893	951	1011	
-5	1058	1126	1194	1000	1064	1129	944	1005	1067	
-10	1111	1182	1252	1051	1118	1185	993	1057	1121	
-15	1166	1239	1311	1103	1173	1242	1043	1109	1175	
-20	1214	1290	1365	1152	1225	1296	1093	1161	1230	
-25	1258	1336	1413	1195	1269	1343	1133	1204	1275	
-30	1302	1383	1462	1237	1314	1390	1174	1248	1320	
-35	1346	1430	1511	1280	1359	1437	1215	1291	1365	
-40	1392	1478	1562	1323	1405	1485	1256	1335	1411	
-45	1441	1529	1615	1369	1453	1536	1301	1381	1460	
-50	1489	1580	1667	1416	1502	1585	1345	1426	1506	
	1400			4 4 4 0	4400		4000	4 4 0 4	1500	
-54	1485	1575	1664	1410	1496	1581	1338	1421	1502	
	Pres	sure Alti	itude	Pres	sure Alti	tude	Pres	sure Alti	tude	
Temp	Pres 22	sure Alti 2,000 Fe	itude et	Pres 2	sure Alti 3,000 Fe	tude et	Pres 24	sure Alti 4,000 Fe	tude et	
	Pres 22 Propel	sure Alti 2,000 Fe ler Spee	itude et d RPM	Pres 23 Propel	sure Alti 3,000 Fe ler Spee	tude et d RPM	Pres 2 ⁴ Propel	sure Alti 4,000 Fe ler Spee	tude et d RPM	
Temp ℃	Pres 22 Propel 1900	sure Alti 2,000 Fe ler Spee 1750	itude et d RPM 1600	Pres 2	sure Alti 3,000 Fe	tude et	Pres 24	sure Alti 4,000 Fe	tude et	
Temp ℃ 10	Pres 22 Propel 1900 744	ssure Alti 2,000 Fe ler Spee 1750 795	tude et d RPM 1600 847	Pres 2: Propel 1900 	ssure Alti 3,000 Fe ler Spee 1750 	tude et d RPM 1600 	Pres 24 Propel 1900 	sure Alti 4,000 Fe ler Spee 1750 	tude et d RPM 1600 	
Temp ℃ 10 5	Pres 22 Propel 1900 744 792	ssure Alti 2,000 Fe ler Spee 1750 795 846	itude et d RPM 1600 847 900	Pres 2: Propel 1900 745	ssure Alti 3,000 Fe ler Spee 1750 796	tude et d RPM 1600 847	Pres 2 ² Propel 1900 700	sure Alti 4,000 Fe ler Spee 1750 748	tude et d RPM 1600 797	
Temp ℃ 10	Pres 22 Propel 1900 744	ssure Alti 2,000 Fe ler Spee 1750 795	tude et d RPM 1600 847	Pres 2: Propel 1900 	ssure Alti 3,000 Fe ler Spee 1750 	tude et d RPM 1600 	Pres 24 Propel 1900 	sure Alti 4,000 Fe ler Spee 1750 	tude et d RPM 1600 	
Temp ℃ 10 5 0	Pres 22 Propel 1900 744 792 841	ssure Alti 2,000 Fe ler Spee 1750 795 846 897	tude et d RPM 1600 847 900 953	Pres 2: Propel 1900 745 792	sure Alti 3,000 Fe ler Spee 1750 796 845	tude et d RPM 1600 847 899	Pres 2 ² Propel 1900 700 746	sure Alti 4,000 Fe ler Spee 1750 748 796	tude et d RPM 1600 797 847	
Temp ℃ 10 5 0 -5 -10 -15	Pres 22 Propel 1900 744 792 841 891 938 986	ssure Alti 2,000 Fe ler Spee 1750 795 846 897 949 999 1049	tude et 1600 847 900 953 1008 1060 1112	Pres 23 Propel 1900 745 792 840 886 932	ssure Alti 3,000 Fe ler Spee 1750 796 845 895 944 992	tude et 1600 847 899 951 1002 1052	Pres 24 Propel 1900 700 746 791 837 880	sure Alti 4,000 Fe ler Spee 1750 748 796 844 891 937	tude et 1600 797 847 897 947 995	
Temp ℃ 10 5 0 -5 -10 -15 -20	Pres 22 Propel 1900 744 792 841 891 938 986 1035	ssure Alti 2,000 Fe ler Spee 1750 795 846 897 949 949 999 1049 1100	tude et <u>1600</u> 847 900 953 1008 1060 1112 1166	Pres 2: Propel 1900 745 792 840 886 932 979	ssure Alti 3,000 Fe ler Spee 1750 796 845 895 944 992 1041	tude et 1600 847 899 951 1002 1052 1103	Pres 24 Propel 1900 700 746 791 837 880 925	sure Alti 4,000 Fe ler Spee 1750 748 796 844 891 937 984	tude et 1600 797 847 897 947 995 1044	
Temp ℃ 10 5 0 -5 -10 -15 -20 -25	Pres 22 Propel 1900 744 792 841 891 938 986 1035 1074	ssure Alti 2,000 Fe ler Spee 1750 795 846 897 949 999 1049 1100 1142	tude et d RPM 1600 847 900 953 1008 1060 1112 1166 1210	Pres 23 Propel 1900 745 792 840 886 932 979 1019	ssure Alti 3,000 Fe ler Spee 1750 796 845 845 895 944 992 1041 1083	tude et 1600 847 899 951 1002 1052 1103 1148	Pres 2 ² Propel 1900 700 746 791 837 880 925 966	sure Alti 4,000 Fe ler Spee 1750 748 796 844 891 937 984 1027	tude et 1600 797 847 897 947 995 1044 1089	
Temp ℃ 10 5 0 -5 -10 -15 -20 -25 -30	Pres 22 Propel 1900 744 792 841 891 938 986 1035 1074 1114	ssure Alti 2,000 Fe 1750 795 846 897 949 999 1049 1100 1142 1184	tude et 1600 847 900 953 1008 1060 1112 1166 1210 1253	Pres 2: Propel 1900 745 792 840 886 932 979 1019 1057	ssure Alti 3,000 Fe 1750 796 845 895 944 992 1041 1083 1123	tude et 1600 847 899 951 1002 1052 1103 1148 1190	Pres 2/ Propel 1900 700 746 791 837 880 925 966 1002	sure Alti 4,000 Fe 1750 748 796 844 891 937 984 1027 1066	tude et 1600 797 847 897 947 995 1044 1089 1129	
Temp ℃ 10 5 0 -5 -10 -15 -20 -25 -30 -35	Pres 22 Propel 1900 744 792 841 891 938 986 1035 1074 1114 1153	ssure Alti 2,000 Fe ler Spee 795 846 897 949 999 1049 1100 1142 1184 1226	tude et 1600 847 900 953 1008 1060 1112 1166 1210 1253 1297	Pres 2: Propel 1900 745 792 840 886 932 979 1019 1057 1095	ssure Alti 3,000 Fe 1750 796 845 895 944 992 1041 1083 1123 1164	tude et 1600 847 899 951 1002 1052 1103 1148 1190 1232	Pres 24 Propel 1900 746 791 837 880 925 966 1002 1039	sure Alti 4,000 Fe 1750 748 796 844 891 937 984 1027 1066 1104	tude et 1600 797 847 897 947 995 1044 1089 1129 1170	
Temp ℃ 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40	Pres 22 Propel 1900 744 792 841 891 938 986 1035 1074 1114 1153 1193	sure Alti 2,000 Fe ler Spee 1750 795 846 897 949 999 1049 1100 1142 1184 1226 1267	tude et d RPM 1600 847 900 953 1008 1060 1112 1166 1210 1253 1297 1341	Pres 2: Propel 1900 745 792 840 886 932 979 1019 1057 1095 1133	sure Alti 3,000 Fe 1750 796 845 845 944 992 1041 1083 1123 1164 1204	tude et d RPM 1600 847 899 951 1002 1052 1103 1148 1190 1232 1274	Pres 2 [/] Propel 1900 700 746 791 837 837 880 925 966 1002 1039 1075	sure Alti 4,000 Fe ler Spee 1750 748 796 844 891 937 984 1027 1066 1104 1143	tude et d RPM 1600 797 847 897 947 995 1044 1089 1129 1170 1210	
Temp ℃ 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45	Pres 22 Propel 1900 744 792 841 891 938 986 1035 1074 1114 1153 1193 1235	sure Alti 2,000 Fe 1750 795 846 897 949 999 1049 1100 1142 1184 1226 1267 1312	tude et 1600 847 900 953 1008 1060 1112 1166 1210 1253 1297 1341 1387	Pres 2: Propel 1900 745 792 840 886 932 979 1019 1057 1095 1133 1172	sure Alti 3,000 Fe 1750 796 845 895 944 992 1041 1083 1123 1164 1204 1245	tude et 1600 847 899 951 1002 1052 1103 1148 1190 1232 1274 1318	Pres 24 Propel 1900 700 746 791 837 880 925 966 1002 1039 1075 1113	sure Alti 4,000 Fe 1750 748 796 844 891 937 984 1027 1066 1104 1143 1183	tude et 1600 797 847 947 947 995 1044 1089 1129 1170 1210 1252	
Temp ℃ 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40	Pres 22 Propel 1900 744 792 841 891 938 986 1035 1074 1114 1153 1193	sure Alti 2,000 Fe ler Spee 1750 795 846 897 949 999 1049 1100 1142 1184 1226 1267	tude et d RPM 1600 847 900 953 1008 1060 1112 1166 1210 1253 1297 1341	Pres 2: Propel 1900 745 792 840 886 932 979 1019 1057 1095 1133	sure Alti 3,000 Fe 1750 796 845 845 944 992 1041 1083 1123 1164 1204	tude et d RPM 1600 847 899 951 1002 1052 1103 1148 1190 1232 1274	Pres 2 [/] Propel 1900 700 746 791 837 837 880 925 966 1002 1039 1075	sure Alti 4,000 Fe ler Spee 1750 748 796 844 891 937 984 1027 1066 1104 1143	tude et d RPM 1600 797 847 897 947 995 1044 1089 1129 1170 1210	


Figure 5-20 (Sheet 7)

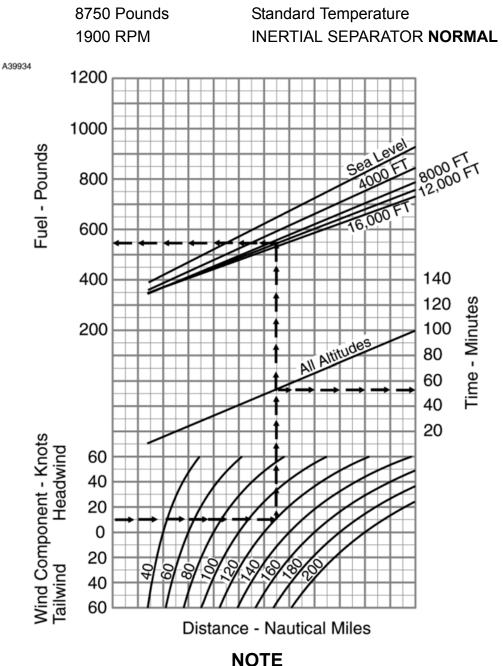
CESSNA MODEL 208B G1000 SECTION 5 PERFORMANCE


CARGO POD INSTALLED FUEL AND TIME REQUIRED

MAXIMUM CRUISE POWER (40-200 Nautical Miles)

CONDITIONS:

- 1. Fuel required includes the fuel used for engine start, taxi, takeoff, maximum climb from sea level, descent to sea level and 45 minutes reserve. Time required includes the time during a maximum climb and descent.
- With INERTIAL SEPARATOR in BYPAS, increase time by 4% and fuel by 2% or CABIN HEAT ON, increase time by 3% and fuel by 2%. Figure 5-21 (Sheet 1 of 2)


NOTE

- 1. Fuel required includes the fuel used for engine start, taxi, takeoff, maximum climb from sea level, descent to sea level and 45 minutes reserve. Time required includes the time during a maximum climb and descent.
- 2. With INERTIAL SEPARATOR in BYPAS, increase time by 5% and fuel by 2% or CABIN HEAT ON, increase time by 5% and fuel by 4%.. Figure 5-21 (Sheet 2)

CARGO POD INSTALLED FUEL AND TIME REQUIRED

MAXIMUM RANGE POWER (40-200 Nautical Miles)

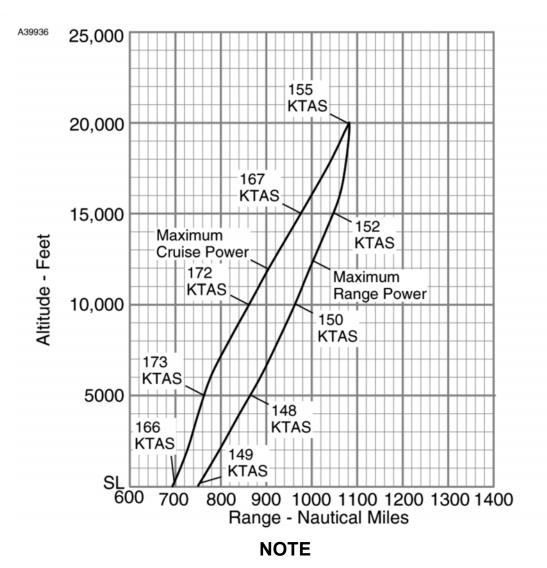
CONDITIONS:

- 1. Fuel required includes the fuel used for engine start, taxi, takeoff, maximum climb from sea level, descent to sea level and 45 minutes reserve. Time required includes the time during a maximum climb and descent.
- With INERTIAL SEPARATOR in BYPAS, increase time by 1% and fuel by 2% or CABIN HEAT ON, increase time by 1% and fuel by 3%. Figure 5-22 (Sheet 1 of 2)

208BPHBUS-01

CARGO POD INSTALLED FUEL AND TIME REQUIRED MAXIMUM RANGE POWER (200-1000 Nautical Miles) CONDITIONS: 8750 Pounds Standard Temperature 1900 RPM INERTIAL SEPARATOR NORMAL A39935 2400 2000 Fuel - Pounds 1600 1200 7 800 6 Time - Hours 5 400 4 3 2 1 Wind Component - Knots Headwind 60 40 20 0 20 Tailwind 40 60 **Distance - Nautical Miles**

NOTE

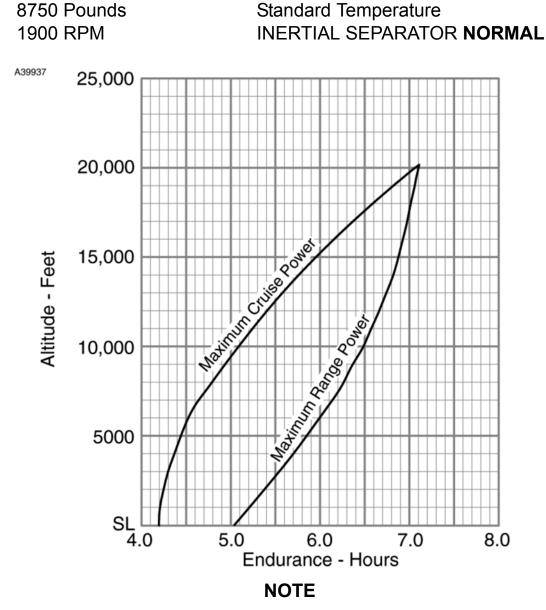

- 1. Fuel required includes the fuel used for engine start, taxi, takeoff, maximum climb from sea level, descent to sea level and 45 minutes reserve. Time required includes the time during a maximum climb and descent.
- 2. With INERTIAL SEPARATOR in BYPAS, increase time by 1% and fuel by 2% or CABIN HEAT ON, increase time by 1% and fuel by 3%. Figure 5-22 (Sheet 2)

CESSNA MODEL 208B G1000

CARGO POD INSTALLED RANGE PROFILE 45 MINUTES RESERVE 2224 POUNDS USABLE FUEL

CONDITIONS:

8750 Pounds 1900 RPM Standard Temperature INERTIAL SEPARATOR **NORMAL** Zero Wind


- 1. This chart allows for the fuel used for engine start, taxi, takeoff, climb and descent. The distance during a maximum climb and the distance during descent are included.
- 2. With INERTIAL SEPARATOR in BYPAS, decrease range by 2%, or with CABIN HEAT ON, decrease range by 3%. Figure 5-23

208BPHBUS-01

U.S. 5-57

CARGO POD INSTALLED ENDURANCE PROFILE 45 MINUTES RESERVE 2224 POUNDS USABLE FUEL

CONDITIONS:

- 1. This chart allows for the fuel used for engine start, taxi, takeoff, climb and descent. The time during a maximum climb and the time during descent are included.
- 2. With INERTIAL SEPARATOR in BYPAS, decrease endurance by 2%, or with CABIN HEAT ON, decrease endurance by 3%. Figure 5-24

CARGO POD INSTALLED TIME, FUEL, AND DISTANCE TO DESCEND

CONDITIONS: Flaps **UP** Zero Wind 8750 Pounds 1900 RPM 140 KIAS Above 16,000 Feet 160 KIAS Below 16,000 Feet Power Set for 800 Feet per Minute Rate of Descent

Pressure	Descent to Sea Level				
Altitude	Time	Fuel	Dist		
Feet	Minutes	Pounds	NM		
24,000	30	131	91		
20,000	25	113	75		
16,000	20	95	59		
12,000	15	71	43		
8000	10	48	28		
4000	5	24	14		
Sea Level	0	0	0		

Figure 5-25

NOTE

The following general information is applicable to all SHORT FIELD LANDING DISTANCE Charts.

- 1. Use short field landing technique as specified in Section 4.
- Decrease distances by 10% for each 11 knots headwind. For operation with tailwind up to 10 knots, increase distances by 10% for each 2 knots.
- 3. For operation on a dry, grass runway, increase distances by 40% of the "Ground Roll" figure.
- 4. If a landing with flaps UP is necessary, increase the approach speed by 15 KIAS and allow for 40% longer distances.
- 5. Use of maximum reverse thrust after touchdown reduces ground roll distance by approximately 10%.
- 6. Where distance values have been replaced by dashes, operating temperature limits of the airplane would be greatly exceeded. Those distances which are included but the operation slightly exceeds the temperature limit are provided for interpolation purposes only.

Figure 5-26 (Sheet 1 of 5)

CONDITIONS: Flaps **FULL** Zero Wind Maximum Braking PROP RPM Lever **MAX** Paved, Level, Dry Runway

POWER Lever **IDLE** after clearing obstacles. **BETA** range (lever against spring) after touchdown.

Refer to Sheet 1 for appropriate notes applicable to this chart.

8500 Pound		50 Feet:		78 KIAS		
	-1()°C	0	℃	10)°C
Pressure Altitude Feet	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst
Sea Level 2000 4000 6000 8000 10,000 12,000	835 900 965 1040 1125 1215 1310	1625 1715 1815 1920 2035 2160 2295	865 935 1005 1080 1165 1260 1360	1670 1765 1865 1975 2095 2220 2360	900 965 1040 1120 1210 1305 1410	1715 1815 1920 2030 2155 2285 2430
	20	O°C	30	°C	40)°C
Pressure Altitude Feet	Grnd Roll Feet	°℃ Total Dist To Clear 50 Foot Obst	30 Grnd Roll Feet	°℃ Total Dist To Clear 50 Foot Obst	40 Grnd Roll Feet	°℃ Total Dist To Clear 50 Foot Obst
Altitude Feet Sea Level	Grnd Roll Feet 930	Total Dist To Clear 50 Foot Obst 1765	Grnd Roll Feet 965	Total Dist To Clear 50 Foot Obst 1810	Grnd Roll Feet 995	Total Dist To Clear 50 Foot Obst 1855
Altitude Feet	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst
Altitude Feet Sea Level 2000	Grnd Roll Feet 930 1000	Total Dist To Clear 50 Foot Obst 1765 1860	Grnd Roll Feet 965 1035	Total Dist To Clear 50 Foot Obst 1810 1910	Grnd Roll Feet 995 1070	Total Dist To Clear 50 Foot Obst 1855 1960
Altitude Feet Sea Level 2000 4000	Grnd Roll Feet 930 1000 1075	Total Dist To Clear 50 Foot Obst 1765 1860 1970	Grnd Roll Feet 965 1035 1115	Total Dist To Clear 50 Foot Obst 1810 1910 2020	Grnd Roll Feet 995 1070 1150	Total Dist To Clear 50 Foot Obst 1855 1960 2070
Altitude Feet Sea Level 2000 4000 6000	Grnd Roll Feet 930 1000 1075 1160	Total Dist To Clear 50 Foot Obst 1765 1860 1970 2085	Grnd Roll Feet 965 1035 1115 1200	Total Dist To Clear 50 Foot Obst 1810 1910 2020 2140	Grnd Roll Feet 995 1070 1150 1240	Total Dist To Clear 50 Foot Obst 1855 1960 2070 2195

Figure 5-26 (Sheet 2)

CONDITIONS: Flaps **FULL** Zero Wind Maximum Braking PROP RPM Lever **MAX** Paved, Level, Dry Runway

POWER Lever **IDLE** after clearing obstacles. **BETA** range (lever against spring) after touchdown.

Refer to Sheet 1 for appropriate notes applicable to this chart.

8000 Pound		50 Feet:	75 KIAS			
	-1()℃	0	℃	10	℃
Pressure		Total		Total		Total
Altitude	Grnd	Dist To	Grnd	Dist To	Grnd	Dist To
Feet	Roll	Clear 50	Roll	Clear 50	Roll	Clear 50
1 661	Feet	Foot	Feet	Foot	Feet	Foot
		Obst		Obst		Obst
Sea Level	785	1555	815	1600	845	1640
2000	845	1640	880	1690	910	1735
4000	910	1735	945	1785	980	1835
6000	980	1835	1020	1890	1055	1940
8000	1060	1945	1100	2000	1140	2055
10,000	1140	2060	1185	2120	1230	2180
12,000	1235	2190	1280	2255	1330	2320
	20	°C	30	°℃	40)°C
Dragouro		Total		Total		Total
I Pressine i						
Pressure Altitude	Grnd	Dist To	Grnd	Dist To	Grnd	Dist To
Altitude	Roll	Clear 50	Roll	Clear 50	Roll	Clear 50
		Clear 50 Foot		Clear 50 Foot		Clear 50 Foot
Altitude Feet	Roll Feet	Clear 50 Foot Obst	Roll Feet	Clear 50 Foot Obst	Roll Feet	Clear 50 Foot Obst
Altitude Feet Sea Level	Roll Feet 875	Clear 50 Foot Obst 1685	Roll Feet 905	Clear 50 Foot Obst 1730	Roll Feet 935	Clear 50 Foot Obst 1770
Altitude Feet	Roll Feet 875 940	Clear 50 Foot Obst	Roll Feet 905 975	Clear 50 Foot Obst 1730 1825	Roll Feet 935 1005	Clear 50 Foot Obst
Altitude Feet Sea Level 2000 4000	Roll Feet 875 940 1015	Clear 50 Foot 0bst 1685 1780 1880	Roll Feet 905 975 1050	Clear 50 Foot 0bst 1730 1825 1930	Roll Feet 935 1005 1085	Clear 50 Foot 0bst 1770 1870 1980
Altitude Feet Sea Level 2000 4000 6000	Roll Feet 875 940 1015 1090	Clear 50 Foot 0bst 1685 1780 1880 1995	Roll Feet 905 975	Clear 50 Foot 0bst 1730 1825 1930 2045	Roll Feet 935 1005	Clear 50 Foot Obst 1770 1870
Altitude Feet Sea Level 2000 4000	Roll Feet 875 940 1015	Clear 50 Foot 0bst 1685 1780 1880	Roll Feet 905 975 1050	Clear 50 Foot 0bst 1730 1825 1930	Roll Feet 935 1005 1085	Clear 50 Foot 0bst 1770 1870 1980
Altitude Feet Sea Level 2000 4000 6000	Roll Feet 875 940 1015 1090	Clear 50 Foot 0bst 1685 1780 1880 1995	Roll Feet 905 975 1050 1130	Clear 50 Foot 0bst 1730 1825 1930 2045	Roll Feet 935 1005 1085 1165	Clear 50 Foot 0bst 1770 1870 1980 2095

Figure 5-26 (Sheet 3)

CONDITIONS: Flaps **FULL** Zero Wind Maximum Braking PROP RPM Lever **MAX** Paved, Level, Dry Runway

POWER Lever **IDLE** after clearing obstacles. **BETA** range (lever against spring) after touchdown.

Refer to Sheet 1 for appropriate notes applicable to this chart.

7500 Pound		73 KIAS				
	-1()°C	0	°C	10	°C
Pressure Altitude Feet	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst
Sea Level 2000 4000 6000 8000 10,000 12,000	740 795 855 920 995 1070 1160	1480 1565 1650 1745 1850 1960 2080	765 825 885 955 1030 1115 1205	1520 1605 1700 1795 1905 2020 2145	795 855 920 990 1070 1155 1245	1565 1650 1745 1845 1955 2075 2205
	20	°C	30	O°(40	0°C
Pressure Altitude Feet	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst
Sea Level 2000 4000	820 885 950	1605 1695 1790	850 915 985	1645 1740 1835	880 945 1015	1685 1780 1885
6000 8000	1025 1105	1895 2010	1060 1145	1945 2060	1015 1095 1180	1995 2115
10,000	1195	2130	1235	2185		

Figure 5-26 (Sheet 4)

CONDITIONS: Flaps **FULL** Zero Wind Maximum Braking PROP RPM Lever **MAX** Paved, Level, Dry Runway

POWER Lever **IDLE** after clearing obstacles. **BETA** range (lever against spring) after touchdown.

Refer to Sheet 1 for appropriate notes applicable to this chart.

7000 Pound				50 Feet:	71 KIAS		
	-1()℃	0	℃	10)°C	
Pressure Altitude	Grnd Roll	Total Dist To Clear 50	Grnd Roll	Total Dist To Clear 50	Grnd Roll	Total Dist To Clear 50	
Feet	Feet	Foot Obst	Feet	Foot Obst	Feet	Foot Obst	
Sea Level 2000 4000 6000 8000 10,000	690 740 795 860 925 1000	1410 1485 1570 1660 1755 1860	715 770 825 890 960 1035	1450 1525 1615 1705 1805 1915	740 795 855 925 995 1075	1485 1570 1655 1755 1855 1970	
12,000	1080	1975 ℃	1120	2030 °℃	1160	2090)℃	
Pressure		Total		Total		Total	
Altitude Feet	Grnd Roll Feet	Dist To Clear 50 Foot Obst	Grnd Roll Feet	Dist To Clear 50 Foot Obst	Grnd Roll Feet	Dist To Clear 50 Foot Obst	
Altitude	Roll	Clear 50 Foot	Roll	Clear 50 Foot	Roll	Clear 50 Foot	

Figure 5-26 (Sheet 5)

NOTE

The following general information is applicable to all SHORT FIELD TAKEOFF DISTANCE Charts.

- 1. Use short field takeoff technique as specified in Section 4.
- Decrease distances by 10% for each 11 knots headwind. For operation with tailwind up to 10 knots, increase distances by 10% for each 2 knots.
- 3. For operation on a dry, grass runway, increase distances by 15% of the "Ground Roll" figure.
- 4. With takeoff power set below the torque limit (1865 footpounds), increase distances (both ground roll and total distance) by 3% for INERTIAL SEPARATOR in BYPASS and increase ground roll by 5% and total distance by 9% for CABIN HEAT ON.
- 5. Where distance values have been replaced by dashes, operating temperature limits of the airplane would be greatly exceeded. Those distances which are included but the operation slightly exceeds the temperature limit are provided for interpolation purposes only.
- 6. For operation above 40 °C and below the operating temperature limits, increase distances at 40 °C by 20%.

Figure 5-27 (Sheet 1 of 5)

CONDITION Flaps 20°	IS:					
1900 RPM CABIN HEA	T OFF			Torque S Paved, L		
INERTIAL S				Zero Win		,
Refer to She	et 1 for a	appropriate	e notes a	• •	to this ch	
0750 Davis	1			Lift Off:		70 KIAS
8750 Pound		D°C		: 50 Feet: ℃	10	83 KIAS)℃
	-10	Total	0	Total		Total
Pressure	Grnd	Dist To	Grnd	Dist To	Grnd	Dist To
Altitude	Roll	Clear 50	Roll	Clear 50	Roll	Clear 50
Feet	Feet	Foot	Feet	Foot	Feet	Foot
		Obst		Obst		Obst
Sea Level	1170	2095	1245	2220	1325	2350
2000	1325	2350	1410	2500	1500	2650
4000	1505	2655	1605	2825	1710	3000
6000	1715	3010	1835	3210	1955	3420
8000	1965	3435	2105	3670	2270	3975
10,000	2265	3945	2505	4410	2840	5115
12,000	2785	4955	3165	5770	3620	6835
	20)°C	30)°C	40)°C
Pressure		Total		Total		Total
Altitude	Grnd	Dist To	Grnd	Dist To	Grnd	Dist To
Feet	Roll Foot	Clear 50 Foot	Roll Feet	Clear 50 Foot	Roll Feet	Clear 50 Foot
	Feet	Obst	гееі	Obst	гееі	Obst
Sea Level	1405	2490	1490	2630	1575	2775
2000	1595	2810	1690	2970	1855	3285
4000	1820	3185	1935	3390	2220	3985
6000	2080	3635	2360	4205	2715	4985
8000	2585	4630	2965	5470	3445	6660
10,000	3260	6065	3780	7385		
12,000	4200	8360	4940	10,800		 G208B675-00

Figure 5-27 (Sheet 2)

CONDITIONS: Flaps 20 ° 1900 RPM Torque Set Per Figure 5-8 CABIN HEAT OFF Paved, Level, Dry Runway INERTIAL SEPARATOR NORMAL Zero Wind Refer to Sheet 1 for appropriate notes applicable to this chart. Lift Off: 67 KIAS 8300 Pounds: Speed at 50 Feet: 80 KIAS									
8300 Pound			Speed at			80 KIAS			
	-1()°C	0	°C	10	O°(
Pressure Altitude Feet	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst			
Sea Level 2000 4000	1020 1155 1310	1815 2030 2290	1090 1230 1395	1920 2155 2430	1155 1310 1485	2035 2285 2580			
6000 8000 10,000 12,000	1495 1705 1965 2405	2590 2945 3370 4195	1595 1825 2170 2725	2755 3145 3755 4840	1700 1970 2450 3100	2930 3395 4315 5660			
,,	20)°C	<u>30°C</u>		40°C				
Pressure Altitude Feet	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst			
Sea Level 2000 4000	1225 1390 1580	2150 2420 2735	1300 1475 1685	2270 2555 2910	1375 1610 1925	2390 2815 3390			
6000 8000 10,000 12,000	1810 2235 2800 3575	3110 3925 5060 6790	2045 2550 3230 4180	3580 4585 6055 8430	2340 2950 	4195 5495 			
12,000	0070	0,00	1100			G208B675-00			

Figure 5-27 (Sheet 3)

CONDITION Flaps 20 ° 1900 RPM CABIN HEA INERTIAL S Refer to She	IS: T OFF EPARAT	or Nori		Torque S Paved, L Zero Wir	evel, Dry Id	Runway
		ppiopilat		Lift Off:		64 KIAS
7800 Pound				50 Feet:		76 KIAS
	-1(<u>℃</u>	0	°C	10	0°C
Pressure		Total		Total		Total
Altitude	Grnd	Dist To	Grnd	Dist To	Grnd	Dist To
Feet	Roll	Clear 50	Roll	Clear 50	Roll	Clear 50
1 661	Feet	Foot	Feet	Foot	Feet	Foot
		Obst		Obst		Obst
Sea Level	875	1540	930	1630	985	1725
2000	985	1725	1050	1825	1115	1930
4000	1115	1935	1190	2055	1265	2175
6000	1270	2185	1355	2320	1445	2465
8000	1450	2475	1550	2640	1670	2845
10,000	1665	2825	1835	3130	2065	3575
12,000	2030	3480	2290	3990	2600	4615
	20)°C	30°C		40 <i>°</i> C	
Pressure		Total		Total		Total
Altitude	Grnd	Dist To	Grnd	Dist To	Grnd	Dist To
Feet	Roll	Clear 50	Roll	Clear 50	Roll	Clear 50
1 661	Feet	Foot	Feet	Foot	Feet	Foot
		Obst		Obst		Obst
Sea Level	1045	1820	1105	1920	1170	2020
2000	1185	2045	1255	2155	1370	2365
4000	1345	2305	1430	2445	1630	2830
6000	1535	2615	1730	2985	1970	3470
8000	1890	3260	2145	3775	2470	4465
10,000	2350	4150	2695	4895		
12,000	2980	5445	3455	6585		 G208B675-00

Figure 5-27 (Sheet 4)

CONDITIONS: Flaps 20 ° 1900 RPM Torque Set Per Figure 5-8 CABIN HEAT OFF Paved, Level, Dry Runway INERTIAL SEPARATOR NORMAL Zero Wind Refer to Sheet 1 for appropriate notes applicable to this chart. Lift Off: 61 KIAS 7300 Pounds: Speed at 50 Feet: 73 KIAS									
7300 Pound						73 KIAS			
	-1()℃	0	℃	10)°C			
Pressure Altitude Feet	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst			
Sea Level	740	1305	785	1380	835	1460			
2000	835	1455	885	1540	940	1630			
4000	945	1635	1005	1730	1070	1830			
6000	1070	1840	1145	1950	1215	2070			
8000	1220	2080	1305	2210	1405	2380			
10,000	1400	2365	1540	2610	1730	2965			
12,000	1700	2890	1910	3290	2160	3775			
	20)°C	30 <i>°</i> C		40)°C			
Pressure Altitude Feet	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst			
Sea Level	885	1535	935	1620	985	1705			
2000	1000	1720	1060	1815	1155	1985			
4000	1135	1935	1205	2055	1365	2360			
6000	1295	2190	1450	2490	1650	2870			
8000	1585	2710	1790	3115	2050	3645			
10,000	1960	3410	2235	3975					
12,000	2465	4400	2835	5230		 G208B675-00			

Figure 5-27 (Sheet 5)

WITHOUT CARGO POD FLAPS UP TAKEOFF DISTANCE

NOTE

The following general information is applicable to all FLAPS UP TAKEOFF DISTANCE Charts.

- 1. Use Type II, Type III, or Type IV anti-ice fluid takeoff technique as specified in Section 4.
- Decrease distances by 10% for each 11 knots headwind. For operation with tailwinds up to 10 knots, increase distances by 10% for each 2 knots.
- 3. For operation on a dry, grass runway, increase distances by 15% of the "Ground Roll" figure.
- 4. With takeoff power set below the torque limit (1865 footpounds), increase distances (both ground roll and total distance) by 3% for INERTIAL SEPARATOR in BYPASS and increase ground roll by 5% and total distance by 9% for CABIN HEAT ON.

Figure 5-28 (Sheet 1 of 3)

WITHOUT CARGO POD FLAPS UP TAKEOFF DISTANCE

CONDITIONS: Flaps **UP** 1900 RPM CABIN HEAT **OFF** INERTIAL SEPARATOR **NORMAL**

Torque Set Per Figure 5-8 Paved, Level, Dry Runway Zero Wind

Refer to Sheet 1 for appropriate notes applicable to this chart.

83 KIAS Lift Off: Speed at 50 Feet: 104 KIAS 8750 Pounds: 0°C -20℃ -10℃ 10℃ Total Total Total Total Pressure Dist To Grnd Grnd Dist To Grnd Dist To Grnd Dist To Altitude Roll Roll Roll Clear Clear Roll Clear Clear Feet Feet 50 Foot Feet 50 Foot Feet 50 Foot Feet 50 Foot Obst Obst Obst Obst Sea Level 1685 3135 1800 3345 1920 3560 2040 3790 2000 1910 3545 2040 3785 2175 2315 4305 4040 4000 2170 4025 2320 4310 2475 4605 2640 4915 6000 2475 4595 2650 4930 2835 5280 3025 5645 8000 2835 5280 3040 5675 3255 6095 3515 6625 10,000 3260 6105 3505 6580 3895 7420 4450 8730 12,000 7260 5775 12,050 4355 4995 9995 3835 8445 83 KIAS Lift Off: Speed at 50 Feet: 8300 Pounds: 104 KIAS -10℃ -20℃ 0°C 10℃ Total Total Total Total Pressure Grnd Dist To Grnd Dist To Grnd Dist To Grnd Dist To Altitude Roll Roll Roll Roll Clear Clear Clear Clear Feet Feet 50 Foot Feet 50 Foot Feet 50 Foot Feet 50 Foot Obst Obst Obst Obst Sea Level 1590 2950 1695 3145 1805 3350 1920 3560 2000 1795 3330 1920 3560 2050 3795 2180 4045 4000 2040 3785 2185 4050 2330 4325 2485 4615

6000 2325 4320 2490 4630 2665 4955 5300 2840 4955 5715 8000 2665 2855 5325 3060 3305 6210 3065 5725 10,000 3290 6170 3655 6950 4175 8160 12,000 4085 4680 5405 3600 6800 7900 9330 11,215

Figure 5-28 (Sheet 2)

WITHOUT CARGO POD FLAPS UP TAKEOFF DISTANCE

CONDITIONS:												
Flaps UP					-			5 0				
1900 RPM		-				e Set Pe						
CABIN HE						, Level,	Dry Ru	nway				
INERTIAL					Zero W		• •	-				
Refer to SI	neet 1 t	or appr	opriate	notes a								
	•			0		Lift Off:	-	3 KIAS				
7800 Pour						0 Feet:		4 KIAS				
	-21	0℃	-10	0℃	<u> </u>	°C	10	°℃				
Pressure	ί'	Total		Total	l !	Total	_	Total				
Altitude	Grnd	Dist To	Grnd	Dist To	Grnd	Dist To	Grnd	Dist To				
Feet	Roll Foot	Clear 50 East	Roll Foot	Clear	Roll Foot	Clear	Roll Foot	Clear				
	Feet	50 Foot Obst	Feet	50 Foot Obst	Feet	50 Foot Obst	Feet	50 Foot Obst				
Sea Level												
2000	1675	3100	2030	3760								
4000	1900	3520	2035	3765	2170	4020	2310	4290				
6000	2165	4015	2320	4305	2480	4605	2645	4920				
8000	2480	4605	2660	4945	2845	5305	3070	5760				
10,000	2850	5315	3060	5720	3395	6440	3875	7545				
12,000	3345	6300	3790	7310	4335	8610	5000	10,320				
	-			•		Lift Off:		3 KIAS				
7300 Pour						0 Feet:		4 KIAS				
	-20	0℃	-1(0℃	0	Ŷ	10	°℃				
Pressure	l '	Total		Total	1	Total		Total				
Altitude	Grnd	Dist To	Grnd	Dist To	Grnd	Dist To	Grnd	Dist To				
Feet	Roll	Clear	Roll	Clear	Roll	Clear	Roll	Clear				
	Feet	50 Foot	Feet	50 Foot	Feet	50 Foot	Feet	50 Foot				
ا	<u> </u>	Obst		Obst		Obst		Obst				
Sea Level	1375	2550	1465	2720	1565	2890	1660	3075				
2000	1555	2875	1660	3070	1770	3275	1885	3485				
4000	1765	3260	1885	3490	2010	3725	2145	3970				
6000	2010	3720	2150	3985	2295	4260	2450	4550				
8000	2295	4260	2460	4575	2635	4905	2845	5320				
10,000	2640	4915	2835	5285	3140	5945	3580	6950				
12,000	3095	5815	3505	6735	4005	7920	4610	9465				

Figure 5-28 (Sheet 3)

WITHOUT CARGO POD RATE OF CLIMB - TAKEOFF FLAP SETTING FLAPS 20°

CONDITIONS:										
Takeoff P 1900 RPN				INERTIA	L SEPAR	ATOR NO	RMAL			
Weight	Pressure	Climb	Rate	e of Climb	- Feet Per	[.] Minute (F	PM)			
Pounds	Altitude Feet	Speed KIAS	-40 <i>°</i> C	-20℃	0℃	20℃	40 <i>°</i> C			
8750	Sea Level 2000 4000 6000 8000 10,000 12,000	92 90 89 88 87 85 84	910 890 870 845 820 790 760	890 870 850 820 795 760 715	875 850 825 800 770 700 575	855 830 805 775 655 535 415	835 770 685 590 470 			
8300	Sea Level 2000 4000 6000 8000 10,000 12,000	91 89 88 86 85 84 82	990 970 950 925 900 870 835	975 955 930 905 875 840 790	955 935 905 880 850 780 650	935 910 885 735 610 485	915 850 765 670 545 			
7800	Sea Level 2000 4000 6000 8000 10,000 12,000	89 87 86 85 83 82 80	1085 1070 1050 1025 995 965 935	1070 1050 1025 1000 970 940 890	1055 1030 1005 980 950 875 740	1035 1010 985 955 830 705 575	1015 950 860 760 630 			
7300	Sea Level 2000 4000 6000 8000 10,000 12,000	88 86 85 84 82 81 79	1195 1180 1160 1135 1105 1080 1045	1185 1160 1140 1110 1085 1050 1000	1165 1145 1120 1090 1060 985 845	1150 1125 1095 1065 935 805 670	1130 1060 965 865 730 			

NOTE

- 1. Do not exceed torque limit for takeoff per MAXIMUM ENGINE TORQUE FOR TAKEOFF chart. When ITT exceeds 765 ℃, this power setting is time limited to 5 minutes.
- 2. With climb power set below the torque limit, decrese rate of climb by 20 FPM for INERTIAL SEPARATOR set in BYPASS and 45 FPM for CABIN HEAT ON.
- 3. Where rate of climb values have been replaced by dashes, operating temperature limits of the airplane would be greatly exceeded. Those rates of climb which are included, but the operation slightly exceeds the temperature limit, are provided for interpolation purposes only.

WITHOUT CARGO POD CLIMB GRADIENT - TAKEOFF FLAP SETTING FLAPS 20°

CONDIT			FLAPS	FLAP5 20°							
Takeoff P	ower			Zero Wind							
1900 RPN						ATOR NC					
Weight	Pressure	Climb	Climb	Gradient -	Feet/Naut	ical Mile (I	FT/NM)				
Pounds	Altitude Feet	Speed KIAS	-40 <i>°</i> C	-20℃	0℃	20°C	40℃				
8750	Sea Level 2000 4000 6000 8000 10,000	70 71 71 71 72 72 72	730 690 650 610 570 530 495	685 645 610 570 530 490 445	645 605 570 530 495 435	610 570 535 495 410 325	575 515 445 370 290 				
	12,000 Sea Level 2000	68 69	805 765	760 720	345 720 680	245 680 640	645 580				
8300	4000 6000 8000 10,000	69 69 69 69	725 680 640 600	680 635 595 555	640 595 555 495	600 560 465 375	505 430 340 				
	12,000	69	555	505	400	290					
	Sea Level 2000 4000	65 65 66	905 865 815	860 815 770	810 765 725	770 725 680	730 660 580				
7800	6000 8000 10,000	66 66 67	770 725 680	725 680 635	680 635 570	640 540 445	500 405 				
	12,000	67	635	580	470	350					
	Sea Level 2000 4000	62 62 63	1020 975 925	965 920 870	915 870 820	870 825 775	830 755 670				
7300	6000 8000 10,000	63 63 64	875 825 775	820 770 725	775 725 655	730 620 520	580 475 				
	12,000	64	725	665	545	420					
							G208B675-00				

NOTE

- 1. Do not exceed torque limit for takeoff per MAXIMUM ENGINE TORQUE FOR TAKEOFF chart. When ITT exceeds 765 ℃, this power setting is time limited to 5 minutes.
- With climb power set below the torque limit, decrese climb gradient by 10 FT/NM for INERTIAL SEPARATOR set in BYPASS and 30 FT/NM for CABIN HEAT ON.
- 3. Where climb gradient values have been replaced by dashes, operating temperature limits of the airplane would be greatly exceeded. Those climb gradients which are included, but the operation slightly exceeds the temperature limit, are provided for interpolation purposes only.

WITHOUT CARGO POD MAXIMUM RATE OF CLIMB

CONDITIONS: 1900 RPM INERTIAL SEPARATOR NORMAL

Weight PoundsAltitude FeetSpeed KIAS-40 °C -40 °C-20 °C0 °C 0 °C20 °C40 °C 40 °CSea Level10410251005990970755 4000 104990970945840505 8000 104995920840575275 8750 12,00010189576556533575 $16,000$ 95660495315105 $20,000$ 8739024065 $24,000$ 78135 $24,000$ 103107510551035925580 8000 103107510551035925580 8000 103107510511035925580 8000 10098585064540013516,0009474057038516524,000772056024,000772056024,00073285135114511306708000101118511651145103067080001011185116511451030670800098109095574049021016,00098109095512651150770	INERTIAL SEPARATOR NORMAL										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Weight	Pressure	Climb	Rate	e of Climb	- Feet Per	[·] Minute (F	·PM)			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	Altitude	Speed	-4090	-2090	٥Ŷ	2090	1090			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Founds	Feet	KIAS	-40 0	-20 0	00	20 0	40 0			
8000 104 945 920 840 575 275 8750 12,000 101 895 765 565 335 75 20,000 87 390 240 65 24,000 78 135 24,000 78 135 35L 103 1110 1095 1075 1060 835 4000 103 1075 1035 925 580 8000 103 1035 1010 925 650 340 8300 12,000 100 985 850 645 400 135 16,000 94 740 570 385 165 24,000 77 205 60 24,000 101 1185 1165 1145 <											
8750 12,000 101 895 765 565 335 75 16,000 95 660 495 315 105 20,000 87 390 240 65 24,000 78 135 24,000 78 135 4000 103 1075 1095 1035 925 580 8000 103 1035 1010 925 650 340 12,000 100 985 850 645 4000 135 16,000 94 740 570 385 165 20,000 86 465 310 130 24,000 77 205 60 24,000 101 1185 1145 1030 670								505			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				945	920		575	275			
20,000 87 390 240 65 24,000 78 135 300 SL 103 1110 1095 1075 1060 835 4000 103 1075 1055 1035 925 580 8000 103 1035 1010 925 650 340 12,000 100 985 850 645 400 135 16,000 94 740 570 385 165 20,000 86 465 310 130 24,000 77 205 60 24,000 77 205 60 24,000 101 1185 1165 1145 1030 670 8000 101 1185 1165 1145 10	8750	12,000					335	75			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		16,000					105				
SL 103 1110 1095 1075 1060 835 4000 103 1075 1055 1035 925 580 8300 12,000 100 985 850 645 400 135 16,000 94 740 570 385 165 20,000 86 465 310 130 24,000 77 205 60 24,000 77 205 60 24,000 77 205 60 24,000 77 205 60 8000 101 1185 1165 1145 1030 670 8000 101 1145 1200 1185 1170 935 7800 12,000 98 1090 955 740 49					240	65					
4000 103 1075 1055 1035 925 580 8300 103 1035 1010 925 650 340 8300 12,000 100 985 850 645 400 135 16,000 94 740 570 385 165 20,000 86 465 310 130 24,000 77 205 60 24,000 77 205 60 24,000 77 205 60 24,000 101 11215 1200 1185 1170 935 4000 101 1145 1120 1035 745 420 7800 12,000 98 1090 955 740 490 210 16,000 83 555 395 210											
8000 103 1035 1010 925 650 340 8300 12,000 100 985 850 645 400 135 16,000 94 740 570 385 165 20,000 86 465 310 130 24,000 77 205 60 24,000 101 1215 1200 1185 1170 935 4000 101 1185 1165 1145 1030 670 8000 101 1145 1120 1035 745 420 7800 12,000 98 1090 955 740 490 210 16,000 91 840 665 470 245 20,000 83 555 395 210 24,000 73 285 135							1060				
8300 12,000 100 985 850 645 400 135 16,000 94 740 570 385 165 20,000 86 465 310 130 24,000 77 205 60 24,000 101 1215 1200 1185 1170 935 4000 101 1185 1165 1145 1030 670 8000 101 1185 1165 1145 1030 670 8000 101 1145 1120 1035 745 420 7800 12,000 98 1090 955 740 490 210 16,000 91 840 665 470 245 20,000 83 555 395 210 24,000 73 285 135											
16,000 94 740 570 385 165 20,000 86 465 310 130 24,000 77 205 60 24,000 77 205 60 385 101 1215 1200 1185 1170 935 4000 101 1185 1165 1145 1030 670 8000 101 1185 1165 1145 1030 670 8000 101 1145 1120 1035 745 420 7800 12,000 98 1090 955 740 490 210 16,000 91 840 665 470 245 20,000 83 555 395 210 24,000 73 285 135 <td>0000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>340</td>	0000							340			
20,000 86 465 310 130 24,000 77 205 60 SL 101 1215 1200 1185 1170 935 4000 101 1185 1165 1145 1030 670 8000 101 1145 1120 1035 745 420 7800 12,000 98 1090 955 740 490 210 16,000 91 840 665 470 245 20,000 83 555 395 210 20,000 83 555 395 210 24,000 73 285 135 24,000 99 1305 1285 1265 1150 770 8000 99 1265 1240 1155 855 510 <	8300	12,000			600 570	040 205	400	135			
24,000 77 205 60 SL 101 1215 1200 1185 1170 935 4000 101 1185 1165 1145 1030 670 8000 101 1185 1165 1145 1030 670 7800 12,000 98 1090 955 740 490 210 16,000 91 840 665 470 245 20,000 83 555 395 210 24,000 73 285 135 24,000 73 285 135 24,000 73 285 135 1200 1045 4000 99 1305 1285 1265 1150 770 8000 99 1265 1240 1155 855 510 7300 12,000											
SL 101 1215 1200 1185 1170 935 4000 101 1185 1165 1145 1030 670 8000 101 1145 1120 1035 745 420 7800 12,000 98 1090 955 740 490 210 16,000 91 840 665 470 245 20,000 83 555 395 210 24,000 73 285 135 24,000 73 285 135 1265 1150 770 8000 99 1305 1285 1265 1150 770 7300 12,000 96 1210 1070 850 585 510 7300 12,000 96 1210 1070 850 585 290 16,000 88 950 770 565											
4000 101 1185 1165 1145 1030 670 7800 12,000 98 1090 955 740 490 210 16,000 91 840 665 470 245 20,000 83 555 395 210 24,000 73 285 135 24,000 73 285 135 1265 1150 770 8000 99 1335 1320 1305 1290 1045 4000 99 1305 1285 1265 1150 770 8000 99 1265 1240 1155 855 510 7300 12,000 96 1210 1070 850 585 290 16,000 88 950 770 565 330 65 20,000 80 650 485 295 75						1185	1170				
8000 101 1145 1120 1035 745 420 7800 12,000 98 1090 955 740 490 210 16,000 91 840 665 470 245 20,000 83 555 395 210 24,000 73 285 135 24,000 73 285 135 300 99 1335 1320 1305 1290 1045 4000 99 1305 1285 1265 1150 770 8000 99 1265 1240 1155 855 510 7300 12,000 96 1210 1070 850 585 290 16,000 88 950 770 565 330 65 20,000 80 650 485 295 75											
7800 12,000 98 1090 955 740 490 210 16,000 91 840 665 470 245 20,000 83 555 395 210 24,000 73 285 135 24,000 73 285 135 120 1290 1045 4000 99 1305 1285 1265 1150 770 8000 99 1265 1240 1155 855 510 7300 12,000 96 1210 1070 850 585 290 16,000 88 950 770 565 330 65 20,000 80 650 485 295 75		8000									
16,000 91 840 665 470 245 20,000 83 555 395 210 24,000 73 285 135 24,000 73 285 135 SL 99 1335 1320 1305 1290 1045 4000 99 1305 1285 1265 1150 770 8000 99 1265 1240 1155 855 510 7300 12,000 96 1210 1070 850 585 290 16,000 88 950 770 565 330 65 20,000 80 650 485 295 75	7800										
20,000 83 555 395 210 24,000 73 285 135 SL 99 1335 1320 1305 1290 1045 4000 99 1305 1285 1265 1150 770 8000 99 1265 1240 1155 855 510 7300 12,000 96 1210 1070 850 585 290 16,000 88 950 770 565 330 65 20,000 80 650 485 295 75	1000	16.000	91		665						
24,000 73 285 135 SL 99 1335 1320 1305 1290 1045 4000 99 1305 1285 1265 1150 770 8000 99 1265 1240 1155 855 510 7300 12,000 96 1210 1070 850 585 290 16,000 88 950 770 565 330 65 20,000 80 650 485 295 75				555							
4000991305128512651150770800099126512401155855510730012,000961210107085058529016,000889507705653306520,0008065048529575				285							
800099126512401155855510730012,000961210107085058529016,000889507705653306520,0008065048529575		ŚL				1305	1290	1045			
7300 12,000 96 1210 1070 850 585 290 16,000 88 950 770 565 330 65 20,000 80 650 485 295 75			99			1265	1150				
16,000 88 950 770 565 330 65 20,000 80 650 485 295 75			99				855				
20,000 80 650 485 295 75	7300	12,000	96								
		16,000						65			
							/5				
		24,000	69	370	220	40		 G208B675-00			

NOTE

- 1. Torque set at 1865 foot-pounds or lesser value must not exceed maximum climb ITT of 765 ℃ or Ng of 101.6%.
- 2. With climb power set below the torque limit, decrese rate of climb by 30 FPM for INERTIAL SEPARATOR set in BYPASS and 65 FPM for CABIN HEAT ON.
- 3. Where rate of climb values have been replaced by dashes, an appreciable rate of climb for the weight shown cannot be expected or operating temperature limits of the airplane would be greatly exceeded. Those rates of climb which are included but the operation slightly exceeds the temperature limit are provided for interpolation purposes only.

WITHOUT CARGO POD CLIMB GRADIENT - TAKEOFF FLAPS UP

CONDITIONS: Takeoff Power Zero Wind										
1900 RPN				INERTIA	L SEPAR	ATOR NO				
Weight	Pressure	Climb	Climb	Gradient -	Feet/Naut	ical Mile (I	-T/NM)			
Pounds	Altitude Feet	Speed KIAS	-40 <i>°</i> C	-20℃	0℃	20℃	40℃			
8750	Sea Level 2000 4000 6000	68 69 69 70	750 715 675 640	710 675 635 600	670 635 600 560	635 600 515 430	490 405 325 250			
0100	8000 10,000 12,000	70 71 72	600 565 525	560 525 440	495 405 320	345 270 195	185			
	Sea Level 2000 4000	66 66 67	830 790 750	785 745 705	745 705 665	705 670 580	555 465 375			
8300	6000 8000 10,000 12,000	68 68 69 69	710 670 630 590	665 625 585 495	625 555 460 375	485 400 320 240	300 230 			
	Sea Level 2000 4000	61 62 62 62 63	925 885 840	880 835 795	835 795 750	795 755 660	635 535 440			
7800	6000 8000 10,000	63	795 755 710	750 705 665	710 635 530	560 465 380	355 285 			
	12,000 Sea Level	<u>63</u> 59	665 1040	<u>565</u> 990	435 940	<u>295</u> 895	 720			
	2000 4000	59 59	995 945	940 895	895 850	850 750	615 515			
7300	6000 8000 10,000	59 59 59	900 850 805	845 800 755	800 720 610	640 540 450	425 345 			
	12,000	59	755	650	510	360	 G208B675-00			

NOTE

1. Do not exceed torque limit for takeoff per MAXIMUM ENGINE TORQUE FOR TAKEOFF chart. When ITT exceeds 765 ℃, this power setting is time limited to 5 minutes.

- 2. With climb power set below the torque limit, decrease climb gradient by 10 FT/NM for INERTIAL SEPARATOR set in BYPASS and 40 FT/NM for CABIN HEAT ON.
- 3. Where climb gradient values have been replaced by dashes, operating temperature limits of the airplane would be greatly exceeded. Those climb gradients which are included, but the operation slightly exceeds the temperature limit, are provided for interpolation purposes only.

CESSNA MODEL 208B G1000

WITHOUT CARGO POD CRUISE CLIMB FLAPS UP - 115 KIAS

CONDITIONS: 1900 RPM

INERTIAL SEPARATOR NORMAL

Weight	Pressure	R	ate of Climb	- Feet Per	Minute (FPN	J)
Pounds	Altitude Feet	-40 <i>°</i> C	-20 <i>°</i> C	0℃	20℃	40℃
	Sea Level	1000	980	960	940	705
	2000	980	960	935	910	570
	4000	960	935	910	795	435
8750	6000	935	905	880	650	305
	8000	910	880	790	505	190
	10,000	880	845	640	370	
	12,000	845	705	485	235	
	Sea Level	1085	1060	1040	1020	780
	2000	1065	1040	1020	995	635
	4000	1040	1015	990	870	495
8300	6000	1015	990	960	720	360
	8000	990	960	870	570	235
	10,000	960	925	710	430	
	12,000	925	780	550	285	
	Sea Level	1185	1165	1145	1120	865
	2000	1165	1140	1120	1095	715
	4000	1140	1115	1090	965	565
7800	6000	1115	1090	1060	805	420
	8000	1090	1060	965	645	295
	10,000	1060	1025	795	500	
	12,000	1025	870	630	350	
	Sea Level	1300	1275	1255	1235	960
	2000	1275	1255	1230	1205	800
	4000	1255	1230	1205	1065	645
7300	6000	1230	1200	1170	900	490
	8000	1200	1170	1070	730	355
	10,000	1170	1135	890	575	
	12,000	1135	970	715	415	 G208B675-00

NOTE

- 1. Torque set at 1865 foot-pounds or lesser value must not exceed maximum climb ITT of 765 ℃ or Ng of 101.6%.
- 2. With climb power set below the torque limit, decrese rate of climb by 50 FPM for INERTIAL SEPARATOR set in BYPASS and 70 FPM for CABIN HEAT ON.
- 3. Where rate of climb values have been replaced by dashes, an appreciable rate of climb for the weight shown cannot be expected or operating temperature limits of the airplane would be greatly exceeded. Those rates of climb which are included, but the operation slightly exceeds the temperature limit, are provided for interpolation purposes only.

WITHOUT CARGO POD RATE OF CLIMB BALKED LANDING - FLAPS FULL

CONDITIONS: Takeoff Power 1900 RPM

INERTIAL SEPARATOR NORMAL

Weight	Pressure	Climb	Rate	e of Climb	- Feet Per	^r Minute (F	-PM)
Pounds	Altitude Feet	Speed KIAS	-40 <i>°</i> C	-20℃	0℃	20℃	40 <i>°</i> C
	Sea Level	83	845	830	810	785	765
	2000	82	830	805	785	760	700
	4000	81	805	780	755	735	620
8500	6000	80	780	755	730	700	525
	8000	79	755	725	695	590	410
	10,000	78	725	695	630	470	
	12,000	77	690	645	505	350	
	Sea Level	82	940	920	900	880	860
	2000	81	920	900	875	855	790
	4000	80	900	875	850	825	705
8000	6000	79	875	845	820	795	610
	8000	78	845	820	790	675	490
	10,000	77	815	785	720	555	
	12,000	76	785	735	595	435	
	Sea Level	81	1040	1020	1000	980	960
	2000	80	1020	1000	980	955	890
	4000	79	1000	975	950	930	805
7500	6000	78	975	950	925	900	705
	8000	77	945	920	890	775	580
	10,000	75	915	890	820	650	
	12,000	74	885	840	690	520	
	Sea Level	80	1150	1135	1115	1095	1075
	2000	79	1135	1115	1095	1070	1005
	4000	78	1115	1090	1065	1045	915
7000	6000	77	1090	1065	1040	1010	810
	8000	75	1060	1035	1005	885	680
	10,000	74	1030	1000	930	750	
	12,000	73	1000	950	795	620	 G208B675-00

NOTE

1. Do not exceed torque limit for takeoff per MAXIMUM ENGINE TORQUE FOR TAKEOFF chart. When ITT exceeds 765 ℃, this power setting is time limited to 5 minutes.

- 2. With climb power set below the torque limit, decrese rate of climb by 15 FPM for INERTIAL SEPARATOR set in BYPASS and 45 FPM for CABIN HEAT ON.
- 3. Where rate of climb values have been replaced by dashes, operating temperature limits of the airplane would be greatly exceeded. Those rates of climb which are included, but the operation slightly exceeds the temperature limit, are provided for interpolation purposes only.

WITHOUT CARGO POD TIME, FUEL, AND DISTANCE TO CLIMB MAXIMUM RATE OF CLIMB

	Flaps UP Zero Wind										
<u>1900 RI</u>							<u>SEPA</u>			RMA	L
		.					rom S				
Weight	Pressure	Climb	20℃ Below				tandai		20℃ Above		
Pounds	Altitude	Speed		tanda			nperat			tanda	
i ounus	Feet	KIAS	Time	Fuel	Dist	Time		Dist	Time	Fuel	Dist
			min	Lbs	NM	min	Lbs	NM	min	Lbs	NM
	Sea Level	104	0		0	0	0	0	Q		
	4000 8000	104 104	4 8	30 60	7 15	4 9	31 62	8 16	5 11	35 74	10
8750	12,000	102	13	92	24	14	98	27	19	119	<u>22</u> 38
0750	12,000 16,000		19	128	34	21 33	140	42	31	177	62
	20,000	96 88	26	173	50		198	65	54	280	111
	24,000	79	43	249	82	59	314	119			
	Sea Level	103	0	$\left \begin{array}{c} 0 \\ 0 \end{array} \right $	0	0	0	0 7	Ď	0	0
	4000 8000	103 103	4 8	27 55	7 14	4 8	28 57	14	5 10	32 66	9 19
8300	12.000	101	12	84	21	13	89	24	17	106	34
0000	12,000 16,000 20,000	95	12 17	116	21 31	19	126	24 37	27	154	53
	20,000	87	24	155	44	29	173	56	43	227	88
	24,000	77	36	213	69	46	252	92	174	719	363
	Sea Level	101	0		0	0		0	0		0 0
	4000 8000	101 101	4	25 50	6 12	47	26 52	6 13	4 9	28 59	8 17
7800	12.000	99	11	76	19	12	80	21	15	93	29
1000	12,000 16,000 20,000	92	15	104	27 38	17	112	21 32 47	23	133	45
	20,000	84	21	138	38	25	151	47	35	187	70
	24,000	74	31	184	57	38	208	73	65	301	131
	Sea Level	99	0		0	0,		05	0	0	0
	4000 8000	99 99	3 6	23 45	5 11	3 7	23 47	5 11	4 8	25 52	15
7300	12,000	97	10	69	17	10	72	19	13	81	25
	16,000	89	14	94	24	15	100	28	20	115	38
	20,000	80	19	123	34	22	<u>133</u>	40	29	158	57
	24,000	70	27	161	49	32	177	60	47	227	93

NOTE

1. Torque set at 1865 foot-pounds or lesser value must not exceed maximum climb ITT of 765 ℃ or Ng of 101.6%.

- 2. Add 35 pounds of fuel for engine start, taxi, and takeoff allowance.
- 3. With INERTIAL SEPARATOR set in BYPASS, increase time, fuel, and distance numbers by 1% for each 2000 feet of climb and for CABIN HEAT ON, increase time, fuel, and distance numbers by 1% for each 1000 feet of climb.
- 4. Where time, fuel, and distance values have been replaced by dashes, an appreciable rate of climb for the weight shown cannot be expected.

Figure 5-35 (Sheet 1 or 2)

U.S.

G208B6

CONDITIONS

WITHOUT CARGO POD TIME, FUEL, AND DISTANCE TO CLIMB

CRUISE CLIMB - 115 KIAS

Flaps UP	Zero Wind										
1900 RPN								ATOR		MAL	
					limb F						
Weight	Pressure	_	℃ Bel	-		standar		20℃ Above			
Pounds	Altitude		tandar			nperat			tandar		
	Feet	Time	Fuel	Dist	Time	Fuel	Dist	Time	Fuel	Dist	
		min	Lbs	NM	min	Lbs	NM	min	Lbs	NM	
	Sea Level 2000	0 2	0 15	0 4	0 2	0 16	0 4	0 3	0 18	0 5	
	4000	4	31	8	4	32	9	6	38	11	
8750	6000	7	47	13	7	48	13	9	58	18	
	8000	9	63	17	9	65	18	12	80	26	
	10,000 12,000	11 14	79 96	22 27	12 15	84 104	24 32	17 22	105 134	36 48	
	Sea Level	0	0	0	0	0	0	0	0	0	
	2000	2	14	4	2	15	4	2 5	17	5	
0000	4000	4	28	8	4	29	8	5	34	10	
8300	6000 8000	6 8	43 57	12 16	6 8	44 60	12 17	8 11	53 72	16 24	
	10,000	10	72	20	11	76	22	15	94	32	
	12,000	12	88	25	14	94	29	19	119	43	
	Sea Level	0	0	0	0	0	0	0	0	0	
	2000 4000	2 4	13 26	3 7	2 4	13 27	4 7	2 5	15 31	4 9	
7800	6000	5	39	11	6	40	11	7	47	15	
	8000	7	52	14	8	54	15	10	65	21	
	10,000	9	66	18	10	69	20	13	84	29	
	12,000 Sea Level	11 0	80 0	<u>23</u> 0	12 0	<u>85</u> 0	<u>26</u> 0	17 0	106 0	<u>38</u> 0	
	2000		12	3		12	3	2	14	4	
	4000	2 3 5	24	6	2 3 5	24	7	4	28	8	
7300	6000		35	10		37	10	6	42	13	
	8000 10,000	7 8	47 60	13 17	7 9	49 62	14 18	9 12	58 75	19 26	
	12,000	0 10	72	21	9 11	02 77	23	12	94	33	
							<u> </u>		<u> </u>	G208B675-00	

NOTE

- 1. Torque set at 1865 foot-pounds or lesser value must not exceed maximum climb ITT of 765 ℃ or Ng of 101.6%.
- 2. Add 35 pounds of fuel for engine start, taxi, and takeoff allowance.
- 3. With INERTIAL SEPARATOR set in BYPASS or CABIN HEAT ON, increase time, fuel, and distance numbers by 1% for each 1000 feet of climb.

Figure 5-35 (Sheet 2)

5-80

WITHOUT CARGO POD CRUISE PERFORMANCE

NOTE

The following general information is applicable to all CRUISE PERFORMANCE Charts.

- 1. The highest torque shown for each temperature and RPM corresponds to maximum allowable cruise power. Do not exceed this torque, 740 °C ITT, or 101.6% Ng, whichever occurs first.
- 2. The lowest torque shown for each temperature and RPM corresponds to the recommended torque setting for best range in zero wind conditions.
- With the INERTIAL SEPARATOR in BYPASS and power set below the torque limit (1865 foot-pounds), decrease the maximum cruise torque by 115 foot-pounds. Do not exceed 740 ℃ ITT. Fuel flow for a given torque setting will be 15 pounds per hour (PPH) higher.
- 4. With the CABIN HEAT ON and power set below the torque limit (1865 foot-pounds), decrease maximum cruise torque by 80 foot-pounds. Do not exceed 740 °C ITT. Fuel flow for a given torque setting will be 7 PPH higher.

Figure 5-36 (Sheet 1 of 12)

U.S. 5-81

WITHOUT CARGO POD CRUISE PERFORMANCE CRUISE PRESSURE ALTITUDE 2000 FEET

CRUISE PRESSURE AL III UDE 2000 FEE I CONDITIONS: NOTE											
						NOTE Do not exceed maximum cruise					
8750 Po											
INERTI	AL SEPA	RATOR	NORMA	L			torque or 7	′40°C II I			
Refer to	sheet 1 f	or appro	opriate no	otes applic							
	19	900 RPI	Ń	1	750 RPI	М	1600 RPM				
Temp	Targue	Fuel		Tarra	Fuel		Tarraisa	Fuel			
∘ຕ່	Torque	Flow	KTAS	Torque	Flow	KTAS	Torque	Flow	KTAS		
Ŭ	Ft-Lbs	PPH		Ft-Lbs	PPH		Ft-Lbs	PPH			
46	1232	<u>343</u>	153	1320	343	152	1410	343	151		
	1369	362	160	1464	362	159	1563	362	157		
40	1000	002	100	1460	361	159	1540	359	156		
	1590	393	169	1696	393	168	1804	393	166		
30	1400	363	160	1500	364	159	1600	363	158		
	1390	362	159	1450	357	157	1525	353	154		
	1800	424	176	1916	424	175	1970	414	170		
20	1600	392	168	1800	406	171	1800	389	164		
	1400	361	158	1600	375	162	1600	360	156		
	1385	358	157	1440	351	155	1510	348	152		
	1865 1700	432 405	177 170	1970 1800	429 402	175	1970 1800	410 385	168 162		
10	1500	374	161	1600	372	169 161	1600	357	155		
	1375	354	155	1435	348	153	1485	341	150		
	1865	429	175	1970	425	173	1970	406	167		
0	1700	402	168	1800	399	167	1800	381	161		
0	1500	371	160	1600	369	159	1600	353	153		
	1375	351	154	1415	342	151	1480	337	148		
	1865	426	173	1970	422	171	1970	402	165		
-10	1700	399	166	1800	395	165	1800	378	159		
	1500	368	158	1600	366	157	1600	350	151		
	<u>1355</u> 1865	<u>346</u> 423	<u>151</u> 171	<u>1405</u> 1970	<u>337</u> 418	<u>148</u> 169	<u>1460</u> 1970	<u>331</u> 398	<u>146</u> 163		
	1700	396	164	1800	392	163	1800	398 374	157		
-20	1500	365	156	1600	362	155	1600	346	150		
	1355	344	149	1395	333	146	1455	326	144		
	1865	421	168	1970	414	167	1970	395	161		
	1700	394	162	1800	389	161	1800	370	156		
-30	1500	363	154	1600	359	153	1600	342	148		
	1360	342	147	1400	331	145	1440	321	141		
	1005	440	100	1370	326	143	1070	004	150		
	1865	419	166	1970	412	165	1970	391	159		
-40	1700 1500	391 361	160 152	1800 1600	386 356	159 151	1800 1600	367 339	154 146		
-+0	1350	338	145	1400	328	143	1435	316	139		
	1000	550	140	1370	323	142	1400	510	100		
	1865	417	164	1970	410	163	1970	387	157		
	1700	389	158	1800	382	157	1800	363	152		
-50	1500	358	150	1600	353	149	1600	335	144		
	1355	336	143	1400	325	141	1415	311	137		
	1005		100	1360	319	139	1070		150		
	1865	417	163	1970	409	162	1970	385	156		
-54	1700	388	157	1800	381	156 148	1800	361	151		
-54	1 <u>500</u> 1360	<u>357</u> 336	<u>149</u> 142	1600 1400	<u>352</u> 324	148	1600 1410	<u>334</u> 309	14 <u>3</u> 136		
	1000	000	172	1360	324 318	138	1410	009	130		
				1000	010	100			G208B675-00		

Figure 5-36 (Sheet 2)

5-82

WITHOUT CARGO POD CRUISE PERFORMANCE CRUISE PRESSURE ALTITUDE 4000 FEET

		ener			NOTE Do not exceed maximum cruise					
8750 Po INERTI	AL SEPAI	RATOR	NORMA	L			torque or 7			
	sheet 1 f	for appro	priate no	otes applic						
T	19	900 RPI	N	1	750 RPI					
Temp ℃	Torque Ft-Lbs	Fuel Flow PPH	KTAS	Torque Ft-Lbs	Fuel Flow PPH	KTAS	Torque Ft-Lbs	Fuel Flow PPH	KTAS	
42	1211	329	154	1295	329	153	1384	329	152	
40	1255 1466	<u>335</u> 365	<u>156</u> 167	<u>1342</u> 1564	<u>335</u> 365	1 <u>56</u> 166	<u>1433</u> 1664	<u>335</u> 365	<u>154</u> 163	
30	1350	347	161	1395	340	157	1500 1480	341 338	156 155	
20	1667 1500 1330	395 368 342	175 167 158	1775 1600 1395	395 368 336	173 166 156	1883 1700 1500 1465	395 367 338 333	170 163 155 153	
10	1864 1700 1500 1320	426 398 365 337	181 174 165 156	1970 1800 1600 1400	424 396 365 334	179 172 164 155	1970 1800 1600 1445	405 378 349 327	172 166 158 151	
0	1865 1700 1500 1315	424 395 363 333	179 172 163 154	1380 1970 1800 1600 1400 1365	331 421 393 361 331 326	<u>154</u> 177 171 162 153 151	1970 1800 1600 1430	400 375 346 322	170 164 156 148	
-10	1865 1700 1500 1305	422 392 360 330	177 170 161 152	1970 1800 1600 1400 1355	418 389 358 329 322	175 169 161 151 149	1970 1800 1600 1415	396 371 342 316	168 162 155 146	
-20	1865 1700 1500 1295	420 390 358 326	175 168 159 149	1970 1800 1600 1400 1340	416 386 355 326 317	173 167 159 150 147	1970 1800 1600 1395	392 368 339 311	167 161 153 144	
-30	1865 1700 1500 1295	418 387 355 324	172 166 157 148	1970 1800 1600 1400 1325	413 382 352 323 312	171 165 157 148 144	1970 1800 1600 1395	389 364 336 307	165 159 151 142	
-40	1865 1700 1500 1300 1290	416 385 353 323 321	170 164 155 146 145	1970 1800 1600 1400 1315	410 379 350 320 308	169 163 155 146 142	1970 1800 1600 1400 1380	386 361 332 305 302	163 157 149 141 140	
-50	1865 1700 1500 1300 1285	415 384 351 320 318	168 162 153 144 143	1970 1800 1600 1400 1305	408 377 347 317 304	166 161 153 144 140	1970 1800 1600 1400 1365	383 357 328 301 297	161 155 147 139 137	
-54	1865 1700 1500 1300 1285	414 383 350 320 318	167 161 152 143 143	1970 1800 1600 1400 1305	407 376 346 316 303	165 160 152 143 139	1970 1800 1600 1400 1360	382 356 327 300 295	160 154 147 138 137 ^{G2088675-00}	

Figure 5-36 (Sheet 3)

U.S.

WITHOUT CARGO POD CRUISE PERFORMANCE CRUISE PRESSURE ALTITUDE 6000 FEET

	CRUISE PRESSURE ALTITUDE 6000 FEET											
8750 Pc						Do not exceed maximum cruise						
	AL SEPA	RATOR		l			torque or 7					
				- otes applic	able to			10 0 11 1	<u>·</u>			
		900 RPN			750 RPI			600 RPI	И			
Temp	1.	Fuel	VI	1	Fuel	VI		Fuel	VI			
	Torque	Flow	KTAS	Torque		KTAS	Torque		KIYO			
°C	Ft-Lbs		KTAS	Ft-Lbs	Flow	KTA5	Ft-Lbs	Flow	KTAS			
38	1100	PPH	155	1268	PPH	151	1050	<u>PPH</u> 315	150			
	<u>1186</u> 1346	<u>315</u> 338	<u>155</u> 164	1436	<u>315</u> 338	<u>154</u> 163	<u>1353</u> 1529	338	<u>152</u> 160			
30	1305	332	161	1355	326	158	1440	325	156			
	1538	367	172	1638	367	171	1737	367	168			
20	1400	344	165 159	1500 1345	345 322	165 156	1600 1425	346 320	162			
	<u>1295</u> 1725	<u>328</u> 396	179	1833	<u> 322 </u> 396	177	1940	<u>320</u> 396	<u>154</u> 174			
10	1600	375	174	1700	374	172	1800	373	169			
10	1400	342	164	1500	342	163	1600	342	161			
	1275	322	157	1340	318	155	1405	314	152			
	1865 1700	422 389	183 176	1970 1800	420 387	181 174	1970 1800	398 369	174 167			
0	1500	356	167	1600	355	166	1600	339	159			
Ū.	1300	324	156	1400	324	156	1400	311	150			
	1270	319	155	1330	<u>314</u>	1 <u>53</u>	1390	<u>309</u>	149			
	1865	420	181	1970	417	179	1970	395	172			
-10	1700 1500	387 353	174 165	1800 1600	385 352	172 164	1800 1600	365 336	166 158			
10	1300	322	155	1400	321	155	1400	308	148			
	1265	316	153	1310	308	150	1375	303	147			
	1865	418	179	1970	414	177	1970	391	170			
-20	1700 1500	386 351	172 163	1800 1600	382 349	171 162	1800 1600	362 333	164 156			
20	1300	319	153	1400	318	153	1400	304	147			
	1245	310	150	1300	304	148	1355	298	145			
	1865	416	177	1970	412	175	1970	388	168			
-30	1700 1500	384 348	170 161	1800 1600	379 346	168 160	1800 1600	359 330	162 154			
-30	1300	317	151	1400	316	151	1400	301	145			
	1240	308	148	1285	299	145	1350	294	143			
	1865	414	174	1970	409	172	1970	385	166			
40	1700	382	168	1800	377	166	1800	356	160			
-40	1500 1300	<u>346</u> 315	1 <u>59</u> 149	1600 1400	<u>343</u> 313	1 <u>58</u> 149	1600 1400	<u>326</u> 298	1 <u>53</u> 144			
	1240	306	149	1260	293	149	1340	289	141			
	1865	412	172	1970	406	170	1970	382	164			
	1700	381	165	1800	375	164	1800	353	158			
-50	1500	<u>344</u> 313	157 147	1600	<u>340</u> 310	<u>156</u> 148	1600 1400	323	151 142			
	1300 1250	305	147	1400 1265	291	140	1325	295 284	142			
	1865	411	171	1970	405	169	1970	381	163			
	1700	380	165	1800	374	163	1800	352	157			
-54	1500	343	156	1600	339	155	1600	322	150			
	1300 1250	312 304	146 144	1400 1245	309 287	147 139	1400 1310	294 282	141 137			
			1-7-7			100			G208B675-00			

Figure 5-36 (Sheet 4)

5-84

WITHOUT CARGO POD CRUISE PERFORMANCE CRUISE PRESSURE ALTITUDE 8000 FEET

	IONS:								
8750 Pou	unds						t exceed m	naximum	
INERTIA							torque or 7	'40℃ ITT	
Refer to :				otes applic					
I _∓ ⊢	19	900 RPI	VI	1,	750 RPI	VI	16	600 RPI	VI
Temp -	Torque	Fuel		Torque	Fuel		Torque	Fuel	
M .	Ft-Lbs	Flow	KTAS	Ft-Lbs	Flow	KTAS	Ft-Lbs	Flow	KTAS
		PPH	150		PPH	150		PPH	
30	<u>1215</u> 1397	<u>311</u> 338	1 <u>59</u> 169	1297 1488	<u>311</u> 338	1 <u>58</u> 167	<u>1382</u> 1579	<u>311</u> 338	1 <u>55</u> 164
20	1260	316	161	1305	309	157	1400	310	155
							1385	308	154
	1571	364	176	1670	364	174	1767	364	171
10	1400 1245	336 311	167 158	1500 1295	337 305	166 155	1600 1400	337 308	164 154
	1240	011	100	1200	000	100	1370	308 303	152
	1743	397	182	1852	396	180	1957	396	177
0	1600 1400	368 334	176 165	1700 1500	367 334	174 165	1800 1600	367 334	171
	1235	307	156	1300	303	155	1400	304	<u>162</u> 153
	1200	007		1290	302	153	1355	298	150
	1865	419	185	1970	416	183	1970	395	176
-10	1700 1500	386 348	178 169	1800 1600	384 347	176 168	1800 1600	363 331	169 161
	1300	315	158	1400	315	158	1400	302	151
	1225	303	153	1275	297	151	1335	293	148
	1865	416	183	1970	414	181	1970	392	174
-20	1700 1500	384 345	176 167	1800 1600	382 344	174 166	1800 1600	360 328	167 159
20	1300	313	156	1400	313	156	1400	299	150
	1210	299	151	1265	292	149	1315	287	145
	1865	414	181	1970	411	179	1970	388	172
-30	1700 1500	382 343	174 165	1800 1600	379 341	172 164	1800 1600	357 325	166 157
	1300	311	154	1400	310	155	1400	296	148
	1210	296	149	1250	288	146	1305	282	143
	1865	412	178	1970 1800	408 376	176	1970 1800	385 355	170
-40	1700 1500	380 342	172 163	1600	339	170 162	1600	322	164 156
	1300	309	152	1400	307	153	1400	293	147
	1215	295	148	1230	282	143	1295	278	141
	1865	410 379	176	1970	405 374	174	1970	382 352	168 162
-50	1700 1500	379 341	169 161	1800 1600	374 337	168 160	1800 1600	352 319	162 154
	1300	307	151	1400	305	151	1400	290	145
\vdash	1210	293	146	1230	280	142	1275	272	<u>139</u>
	1865 1700	409 378	175 168	1970 1800	404 373	173 167	1970 1800	381 351	167 161
-54	1500	340	160	1600	337	159	1600	317	153
	1300	306	150	1400	304	150	1400	289	144
	1205	291	144	1225	278	141	1270	271	138 G208B675-00

Figure 5-36 (Sheet 5)

WITHOUT CARGO POD CRUISE PERFORMANCE CRUISE PRESSURE ALTITUDE 10,000 FEET

CRUISE PRESSURE ALTITUDE 10,000 FEET CONDITIONS: NOTE											
8750 Pc						Do no	t exceed m	naximum	cruise		
	AL SEPAI					Real Property and the second sec	torque or 7	′40°C II I			
Refer to				otes applic							
	19	900 RPI	N	1	750 RPI	N	10	600 RPI	M		
Temp	Tarqua	Fuel		Tarqua	Fuel		Tarqua	Fuel			
∘റ്	Torque	Flow	KTAS	Torque	Flow	KTAS	Torque	Flow	KTAS		
Ū	Ft-Lbs	PPH		Ft-Lbs	PPH		Ft-Lbs	PPH			
25	1182	298	159	1261	298	158	1341	298	155		
	1266	310	164	1349	310	163	1433	310	159		
20	1235	306	162	1285	301	159	1355	299	155		
	1426	334	172	1516	334	170	1606	334	167		
10	1300	314	165	1400	316	164	1500	318	162		
	1235	303	160	1280	297	157	1355	295	154		
	1586	364	179	1685	364	177	1782	364	174		
0	1400	328	169	1500	330	168	1600	330	165		
Ŭ	1215	298	158	1300	298	157	1400	299	155		
	1745	004	10.1	1265	292	155	1340	290	152		
	1745	394	184	1854	394	182	1957	394	179		
-10	1600	365	178	1700	365	176	1800	364	173		
-10	1400 1205	<u>326</u> 294	167 155	1500 1300	<u>326</u> 295	166 155	1600 1400	<u>326</u> 296	<u>164</u> 154		
	1205	234	155	1260	290	153	1330	286	154		
	1865	416	187	1970	<u>289</u> 413	184	1970	393	177		
	1700	383	180	1800	381	178	1800	361	171		
-20	1500	343	171	1600	343	169	1600	324	162		
	1300	308	160	1400	307	160	1400	294	152		
	1195	290	153	1250	284	151	1300	279	147		
	1865	413	185	1970	410	182	1970	389	175		
	1700	381	178	1800	379	176	1800	357	169		
-30	1500	342	169	1600	341	168	1600	321	161		
	1300	305	158	1400	305	158	1400	291	151		
	1185	287	151	1230	279	148	1280	274	145		
	1865 1700	411 379	183 176	1970 1800	408 376	180 174	1970 1800	385 354	173 167		
-40	1500	340	167	1600	338	166	1600	319	159		
-0	1300	303	156	1400	302	156	1400	288	149		
	1180	284	149	1220	275	146	1275	270	143		
	1865	410	180	1970	406	178	1970	381	171		
	1700	377	173	1800	373	172	1800	352	165		
-50	1500	339	164	1600	336	164	1600	316	157		
	1300	301	154	1400	300	154	1400	285	148		
	1180	282	147	1215	272	144	1265	265	141		
	1865	409	179	1970	405	177	1970	380	170		
E 4	1700	377	173	1800	372	171	1800	351	164		
-54	1500	338	163	1600	335	163	1600	316	156		
	1300	300	153	1400	299	153	1400	284	147		
	1180	281	146	1205	270	142	1260	263	140 G208B675-00		

Figure 5-36 (Sheet 6)

WITHOUT CARGO POD CRUISE PERFORMANCE CRUISE PRESSURE ALTITUDE 12,000 FEET

CRUISE PRESSURE AL III UDE 12,000 FEE I CONDITIONS: NOTE										
8750 Pc						Do not exceed maximum cruise				
	AL SEPAI	RATOR		l			torque or 7			
				- otes applic	able to			10 0 11 1	•	
		900 RPI			750 RPI			600 RPI	1	
Temp	16	Fuel	VI		Fuel	VI		Fuel	VI	
	Torque		KTAS	Torque		KTAS	Torque			
°C	Ft-Lbs	Flow	KTAS	Ft-Lbs	Flow	KTA5	Ft-Lbs	Flow	KTAS	
		PPH	150		PPH	150		<u>PPH</u>	150	
20	1138	284	158	1213	284	156	1290	284	153	
10	1287	306	167	1369	306	165	1452	306	162	
	1220 1437	<u>295</u> 333	<u>163</u> 175	1275 1527	<u>291</u> 333	<u>160</u> 173	<u>1350</u> 1615	<u>290</u> 333	156	
0	1300	306	167	1400	309	166	1500	311	169 163	
0	1215	293	161	1260	286	157	1340	286	154	
	1586	<u> 293 </u> 361	181	1684	361	179	1778	361	175	
	1400	324	171	1500	326	170	1600	327	167	
-10	1205	288	159	1300	290	158	1400	292	156	
	1200	200	100	1255	283	155	1330	281	152	
	1708	384	185	1815	384	182	1915	384	179	
	1600	362	180	1700	362	178	1800	362	175	
-20	1400	323	169	1500	324	168	1600	324	165	
	1200	286	156	1300	288	157	1400	290	155	
	1185	284	156	1240	278	153	1305	275	150	
	1835	409	188	1947	409	186	1970	391	179	
	1700	380	182	1800	378	180	1800	359	173	
-30	1500	341	172	1600	341	171	1600	321	164	
	1300	302	161	1400	302	161	1400	287	154	
	1185	281	154	1230	274	151	1280	269	147	
	1865	414	187	1970	411	184	1970	388	177	
10	1700	378	180	1800	376	178	1800	355	171	
-40	1500	339	170	1600	338	169	1600	319	162	
	1300	300	159	1400	300	159	1400	284	152	
	1165 1865	<u>276</u> 412	<u>151</u> 184	<u>1210</u> 1970	<u>269</u> 409	148 182	1260 1970	<u>263</u> 384	<u>144</u> 175	
	1700	376	178	1800	409 373	176	1800	364 352	169	
-50	1500	338	168	1600	336	167	1600	316	160	
-30	1300	299	158	1400	299	157	1400	281	151	
	1160	273	149	1210	266	147	1250	259	142	
	1865	411	183	1970	408	181	1970	383	174	
	1700	376	177	1800	372	175	1800	351	168	
	1500	337	167	1600	335	166	1600	315	160	
-54	1300	299	157	1400	298	157	1400	280	150	
	1160	273	148	1200	265	145	1245	257	142	
			-	1190	263	145				
									G208B675-00	

Figure 5-36 (Sheet 7)

WITHOUT CARGO POD CRUISE PERFORMANCE CRUISE PRESSURE ALTITUDE 14,000 FEET

CRUISE PRESSURE AL III UDE 14,000 FEET CONDITIONS: NOTE											
8750 Pc						Do not exceed maximum cruise					
	AL SEPA	RATOR		l			torque or 7				
				L otes applic	able to			10 0 11 1			
		900 RPI			750 RPI			600 RPI	И		
Temp	1,	Fuel	VI	1	Fuel	VI		Fuel	VI		
	Torque			Torque			Torque				
°C	Ft-Lbs	Flow	KTAS	Ft-Lbs	Flow	KTAS	Ft-Lbs	Flow	KTAS		
		PPH			PPH	. = 0		PPH			
15	1087	270	155	1159	270	153	1232	270	149		
10	1157	280	161	1232	280	159	1307	280	155		
0	1297	304	170	1379	304	168	1460	304	164		
	1210	287	164	1265	283	160	1335	282	156		
	1434	330	177	1523	330	174	1610	330	171		
-10	1300	303	168	1400	306	167	1500	309	165		
	1190	281	161	1240	276	157	1325	277	154		
	1553	352	181	1649	352	179	1741	352	175		
-20	1400	322	173	1500	323	172	1600	325	169		
20	1200	282	160	1300	285	160	1400	287	158		
	1180	278	158	1235	273	156	1315	272	152		
	1666	374	185	1768	374	182	1865	374	179		
	1500	340	176	1600	340	175	1700	341	172		
-30	1300	300	165	1400	302	164	1500	303	162		
	1160	273	156	1225	269	153	1300	269	150		
							1285	266	150		
	1790	400	188	1899	399	186	1970	393	181		
	1600	358	179	1700	357	177	1800	357	174		
-40	1400	319	169	1500	319	168	1600	319	165		
	1200	280	156	1300	281	157	1400	283	155		
	1150	269	153	1210	264	151	1270	261	147		
	1865	413	189	1970	411	186	1970	389	179		
	1700	378	182	1800	376	180	1800	353	172		
-50	1500	336	172	1600	335	171	1600	316	163		
	1300	298	161	1400	298	161	1400	281	153		
	1125	264	150	1195	260	148	1245	254	144		
	1865	412	188	1970	409	185	1970	387	178		
	1700	378	181	1800	376	179	1800	352	171		
-54	1500	336	171	1600	335	170	1600	316	163		
-04	1300	297	160	1400	297	160	1400	280	153		
	1115	262	148	1200	260	148	1245	253	144		
			-	1180	257	147					
	-						-		G208B675-00		

Figure 5-36 (Sheet 8)

WITHOUT CARGO POD CRUISE PERFORMANCE CRUISE PRESSURE ALTITUDE 16,000 FEET

B750 Pounds INERTIAL SEPARATOR NORMAL Do not exceed maximum cruise torque or 740°C ITT. Refer to sheet 1 for appropriate notes applicable to this chart. Temp °C Fuel Ft-Lbs Fuel Flow PPH Torque Ft-Lbs Fuel Ft-Lbs Torque Ft-Lbs Fuel Ft-Lbs Fue		CONDITIONS:											
INERTIAL SEPARATOR NORMAL torque or 740 °C ITT. Refer to sheet 1 for appropriate notes applicable to this chart. Temp Torque Fuel Torque Fuel Fuel Fuel Torque Fuel Fuel Torque Fuel Fuel Torque Fue Fue										cruise			
Refer to sheet 1 for appropriate notes applicable to this chart. Temp °C Torque Ft-Lbs Fuel Flow PPH Torque Ft-Lbs Fuel Ft-Lbs Torque Ft-Lbs Fuel Ft-Lbs Torque Ft-Lbs Fuel Ft-Lbs Torque Ft-Lbs Fuel Ft-Lbs Fuel Ft-Lbs			RATOR										
Temp °C 1900 RPM 1750 RPM 1600 RPM Torque Ft-Lbs Fuel Flow PPH Torque Ft-Lbs Fuel Ft-Lbs Torque Ft-Lbs Fuel Ft-Lbs Torque Ft-Lbs Fuel Ft-Lbs 0 1169 277 163 1243 277 161 1317 277 157 1160 275 162 1235 275 160 1315 276 157 -10 1293 301 171 1374 301 169 1453 301 165 -10 1407 322 177 1494 322 174 1579 322 171 -20 1300 301 170 1300 284 163 1400 288 160 1130 266 157 1200 265 155 1285 266 153 -30 1510 342 181 1604 342 178 1693 341 175 -30 1622 365						cable to [.]							
Temp °C Torque Ft-Lbs Fuel Flow PPH Fuel Ft-Lbs Fuel Ft-Lbs Fuel Flow PPH Torque Ft-Lbs Fuel Ft-Lbs Fuel Flow PPH Fuel Ft-Lbs Fuel Flow PPH 10 1039 256 152 1107 256 149 1176 256 144 0 1160 275 162 1235 275 160 1315 276 157 -10 1293 301 171 1374 301 169 1453 301 165 -10 1293 301 170 1300 284 163 1400 288 160 11407 322 177 1494 322 174 1579 322 171 -20 1300 301 170 1300 284 163 1400 288 160 1130 266 157 1200 265 155 1285 266 153 -30 1510 342 181 1600					1	750 RPI	M		500 RPI	М			
C Iorque Ft-Lbs Flow PPH KTAS Flow Ft-Lbs KTAS Flow PPH KTAS Flow Ft-Lbs KTAS Flow PPH KTAS <th< td=""><td>Temp</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Temp												
PFt-LDS PPH Pt-LDS PPH Pt-LDS PPH 10 1039 256 152 1107 256 149 1176 256 144 0 1169 277 163 1243 277 161 1317 277 157 160 275 162 1235 275 160 1315 276 157 -10 1293 301 171 1374 301 169 1453 301 165 1407 322 177 1494 322 174 1579 322 171 -20 1300 301 170 1300 284 163 1400 288 160 1130 266 157 1200 265 155 1285 266 153 1400 319 175 1400 302 167 1500 304 165 1200 279 161 1200 263		-		KTAS	•	Flow	KTAS	•	Flow	KTAS			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ū	Ft-Lbs			Ft-Lbs			Ft-Lbs					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	1039		152	1107		149	1176		144			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1169	277	163	1243	277	161	1317	277	157			
-10 1140 270 160 1215 269 157 1300 271 155 -20 1300 301 170 1300 284 163 1400 288 160 1130 266 157 1200 265 155 1285 266 153 -30 1510 342 181 1604 342 178 1693 341 175 1400 319 175 1400 302 167 1500 304 165 1200 279 161 1200 263 154 1300 266 153 1115 262 155 1185 260 153 1265 260 150 1400 338 178 1600 339 176 1700 340 174 1300 298 167 1400 300 166 1500 301 163 1095 257 152 <	U	1160	275	162	1235	275	160	1315	276	157			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	1293	301	171	1374	301	169	1453	301	165			
-20 1300 301 170 1300 284 163 1400 288 160 1130 266 157 1200 265 155 1285 266 153 -30 1510 342 181 1604 342 178 1693 341 175 1400 319 175 1400 302 167 1500 304 165 1200 279 161 1200 263 154 1300 266 153 1115 262 155 1185 260 153 1265 260 150 1622 365 185 1721 365 182 1813 364 179 1500 338 178 1600 339 176 1700 340 174 -40 1300 298 167 1400 300 166 1500 301 163 1095 257 152 <	-10	1140	270	160	1215	269	157	1300	271	155			
1130 266 157 1200 265 155 1285 266 153 -30 1510 342 181 1604 342 178 1693 341 175 1400 319 175 1400 302 167 1500 304 165 1200 279 161 1200 263 154 1300 266 153 1115 262 155 1185 260 153 1265 260 150 1622 365 185 1721 365 182 1813 364 179 1500 338 178 1600 339 176 1700 340 174 -40 1300 298 167 1400 300 166 1500 301 163 1095 257 152 1200 262 153 1300 265 151 -50 1737 387 188 <		1407	322	177	1494	322	174	1579	322	171			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-20	1300	301	170	1300	284	163	1400	288	160			
-30 1400 319 175 1400 302 167 1500 304 165 1200 279 161 1200 263 154 1300 266 153 1115 262 155 1185 260 153 1265 260 150 1622 365 185 1721 365 182 1813 364 179 1500 338 178 1600 339 176 1700 340 174 -40 1300 298 167 1400 300 166 1500 301 163 1095 257 152 1200 262 153 1300 265 151 - 1165 255 150 1245 254 148 1095 257 152 1200 262 153 1300 265 151 - 1165 255 150 1245 254 1		1130	266	157	1200	265	155	1285	266	153			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1510	342	181	1604	342	178	1693	341	175			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-30	1400	319	175	1400	302	167	1500	304	165			
-40 1622 365 185 1721 365 182 1813 364 179 -40 1500 338 178 1600 339 176 1700 340 174 1300 298 167 1400 300 166 1500 301 163 1095 257 152 1200 262 153 1300 265 151 - 1165 255 150 1245 254 148 -50 1737 387 188 1842 386 185 1941 386 182 1600 359 181 1700 358 179 1800 358 176 1400 316 171 1500 316 169 1600 316 167 1200 277 158 1300 279 158 1400 281 156 1075 252 149 1145 250 <td< td=""><td>-30</td><td>1200</td><td>279</td><td>161</td><td>1200</td><td>263</td><td>154</td><td>1300</td><td>266</td><td>153</td></td<>	-30	1200	279	161	1200	263	154	1300	266	153			
-40 1500 338 178 1600 339 176 1700 340 174 -40 1300 298 167 1400 300 166 1500 301 163 1095 257 152 1200 262 153 1300 265 151 - 1165 255 150 1245 254 148 1737 387 188 1842 386 185 1941 386 182 1600 359 181 1700 358 179 1800 358 176 1400 316 171 1500 316 169 1600 316 167 1200 277 158 1300 279 158 1400 281 156 1075 252 149 1145 250 147 1225 249 145 -54 1737 386 187 1842 385 <td< td=""><td></td><td>1115</td><td>262</td><td></td><td>1185</td><td></td><td>153</td><td>1265</td><td>260</td><td>150</td></td<>		1115	262		1185		153	1265	260	150			
-40 1300 298 167 1400 300 166 1500 301 163 1095 257 152 1200 262 153 1300 265 151 1165 255 150 1245 254 148 1737 387 188 1842 386 185 1941 386 182 1600 359 181 1700 358 179 1800 358 176 -50 1400 316 171 1500 316 169 1600 316 167 1200 277 158 1300 279 158 1400 281 156 1075 252 149 1145 250 147 1225 249 145 1737 386 187 1842 385 184 1943 384 181 1600 358 180 1700 357 178 1800													
1095 257 152 1200 262 153 1300 265 151 1165 255 150 1245 254 148 1737 387 188 1842 386 185 1941 386 182 1600 359 181 1700 358 179 1800 358 176 1400 316 171 1500 316 169 1600 316 167 1200 277 158 1300 279 158 1400 281 156 1075 252 149 1145 250 147 1225 249 145 1737 386 187 1842 385 184 1943 384 181 1600 358 180 1700 357 178 1800 357 175 -54 1400 315 170 1500 316 169 1600 315		1500	338	178	1600	339	176	1700	340	174			
-50 1737 387 188 1842 386 185 1941 386 182 -50 1600 359 181 1700 358 179 1800 358 176 -50 1400 316 171 1500 316 169 1600 316 167 1200 277 158 1300 279 158 1400 281 156 1075 252 149 1145 250 147 1225 249 145 -54 1737 386 187 1842 385 184 1943 384 181 -54 1600 358 180 1700 357 178 1800 357 175 -54 1400 315 170 1500 316 169 1600 315 166 1200 276 157 1300 278 157 1400 280 156	-40												
-50 1737 387 188 1842 386 185 1941 386 182 -50 1600 359 181 1700 358 179 1800 358 176 1400 316 171 1500 316 169 1600 316 167 1200 277 158 1300 279 158 1400 281 156 1075 252 149 1145 250 147 1225 249 145 1737 386 187 1842 385 184 1943 384 181 1600 358 180 1700 357 178 1800 357 175 -54 1400 315 170 1500 316 169 1600 315 166 1200 276 157 1300 278 157 1400 280 156		1095	257	152									
-50 1600 359 181 1700 358 179 1800 358 176 1400 316 171 1500 316 169 1600 316 167 1200 277 158 1300 279 158 1400 281 156 1075 252 149 1145 250 147 1225 249 145 1737 386 187 1842 385 184 1943 384 181 1600 358 180 1700 357 178 1800 357 175 -54 1400 315 170 1500 316 169 1600 315 166 1200 276 157 1300 278 157 1400 280 156													
-50 1400 316 171 1500 316 169 1600 316 167 1200 277 158 1300 279 158 1400 281 156 1075 252 149 1145 250 147 1225 249 145 1737 386 187 1842 385 184 1943 384 181 1600 358 180 1700 357 178 1800 357 175 -54 1400 315 170 1500 316 169 1600 315 166 1200 276 157 1300 278 157 1400 280 156													
1200 277 158 1300 279 158 1400 281 156 1075 252 149 1145 250 147 1225 249 145 1737 386 187 1842 385 184 1943 384 181 1600 358 180 1700 357 178 1800 357 175 -54 1400 315 170 1500 316 169 1600 315 166 1200 276 157 1300 278 157 1400 280 156													
107525214911452501471225249145173738618718423851841943384181160035818017003571781800357175-54140031517015003161691600315166120027615713002781571400280156	-50												
173738618718423851841943384181160035818017003571781800357175140031517015003161691600315166120027615713002781571400280156													
-54160035818017003571781800357175140031517015003161691600315166120027615713002781571400280156													
-54 1400 315 170 1500 316 169 1600 315 166 1200 276 157 1300 278 157 1400 280 156													
1200 276 157 1300 278 157 1400 280 156													
	-54												
1070 251 148 1140 248 146 1215 246 144													
		1070	251	148	1140	248	146	1215	246	144 G208B675-00			

Figure 5-36 (Sheet 9)

WITHOUT CARGO POD CRUISE PERFORMANCE CRUISE PRESSURE ALTITUDE 18,000 FEET

CRUISE PRESSURE AL ITTUDE 18,000 FEET											
CONDI							NO.				
8750 Po	ounds					Do no	t exceed m	naximum	cruise		
INERTI	AL SEPAI	RATOR	NORMA	L			torque or 7	′40℃ ITT	-		
Refer to	sheet 1 f	or appro	opriate no	otes applic	able to	this chart	•				
		900 RPI			750 RPI			600 RPI	M		
Temp	T	Fuel		T	Fuel		T	Fuel			
℃່	Torque	Flow	KTAS	Torque	Flow	KTAS	Torque	Flow	KTAS		
Ŭ	Ft-Lbs	PPH		Ft-Lbs	PPH		Ft-Lbs	PPH			
-5	1109	263	160	1179	263	157	1249	263	152		
	1165	263	160	1239	203	162	1311	263	152		
-10	1110	263	159	1239	262	157	1285	269	157		
	1273		171								
-20	1273	294		1352 1200	294	169 157	1430 1300	294	165		
-20	1105	260	158	1165	265 257	157	1255	269	155		
	1367	312	176	1452	<u>257</u> 311	<u>154</u> 174	1534	<u>260</u> 311	<u>152</u> 170		
-30	1200	278	164	1300	282	164	1400	286			
-30									161		
	1085 1464	<u>256</u> 332	<u>155</u> 180	<u>1140</u> 1553	<u>251</u> 332	<u>151</u> 178	1250 1640	<u>257</u> 332	<u>150</u> 174		
	1300	296	170	1400	332 300	169	1500	332 302	166		
-40	1100	296 257	154	1200	261	155	1300	302 264	153		
	1070	257	154	1130	261	155	1220	250	148		
	1568	352	184	1663	352	181	1754	351	148		
	1400	317	174	1500	318	173	1600	320	170		
-50	1200	276	161	1300	278	161	1400	280	159		
	1065	250	151	1115	243	147	1200	244	145		
	1567	351	183	1660	350	147	1752	350	143		
	1400	316	174	1500	318	172	1600	319	169		
-54	1200	275	160	1300	278	160	1400	279	158		
0-	1065	249	150	1110	241	146	1200	244	145		
	1005	273	100		2 7 1	140	1185	244	143		
							1105		G208B675-00		

Figure 5-36 (Sheet 10)

WITHOUT CARGO POD CRUISE PERFORMANCE CRUISE PRESSURE ALTITUDE 20,000 FEET

CONDI	TIONS:					r í	NO.	TE	
8750 Po							t exceed m		
INERTI	AL SEPAI	RATOR	NORMA	L			torque or 7	′40℃ ITT	
Refer to				otes applic					
	19	900 RPI	N	1	750 RPI	N	10	600 RPI	M
Temp	Torque	Fuel		Torque	Fuel		Torque	Fuel	
℃	Ft-Lbs	Flow	KTAS	Ft-Lbs	Flow	KTAS	Ft-Lbs	Flow	KTAS
	FI-LDS	PPH		FI-LDS	PPH		FI-LDS	PPH	
-15	1097	259	159	1166	259	156	1233	258	151
-20	1148	268	164	1219	268	161	1289	268	156
-20	1130	264	162	1200	264	159			
	1235	284	170	1311	284	167	1386	284	163
-30	1115	260	160	1200	263	158	1285	264	155
				1180	259	157			
10	1321	302	175	1403	302	172	1482	302	168
-40	1200	276	166	1200	261	157	1300	265	155
	1095	255	157	1145	250	153	1265	258	153
	1415	321	179	1500	320	176	1582	320	172
-50	1300	296	172	1300	278	164	1400	281	161
	1100	255	156	1140	248	151	1235	250	149
	1080	251	154	1 10 1	010	475	4570	010	170
	1409	319	178	1494	318	175	1578	318	172
-54	1300	296	171	1300	277	163	1400	280	161
	1100	255	155	1135	245	150	1225	248	148
	1080	250	154						G208B675-00

Figure 5-36 (Sheet 11)

WITHOUT CARGO POD CRUISE PERFORMANCE CRUISE PRESSURE ALTITUDE 22,000 FEET

CONDITIONS: MOTE Do not exceed maximum cruise torque or 740 °C ITT. Refer to sheet 1 for appropriate notes applicable to this chart. Temp Torque Ft-Lbs Fuel Flow Torque Ft-Lbs Fuel Flow Torque Ft-Lbs Fuel Flow Torque Ft-Lbs Fuel Flow Torque Ft-Lbs Fuel Flow Torque Flow Flow KTAS -25 1071 251 162 1138 251 159 1204 250 154 -30 1060 248 161 1135 250 159 1204 258 158 -40 1092 274 171 1265 274 168 1338 274 164 -50 1100 253 162 1200 259 162 1300 263 160 -54 1100 253 161 1200 258 162 1300 263 160 -54 1000 253 161 1200 258 162 <th></th> <th colspan="11">CRUISE PRESSURE ALTITUDE 22,000 FEET</th>		CRUISE PRESSURE ALTITUDE 22,000 FEET										
INERTIAL SEPARATOR NORMAL torque or 740 °C ITT. Refer to sheet 1 for appropriate notes applicable to this chart. Temp Torque Fuel Torque												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8300 Po	ounds					Do no	t exceed m	naximum	cruise		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	INERTI	AL SEPA	RATOR	NORMA	L			torque or 7	40℃ ITT			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						able to						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									500 RPI	M		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Temn			•.			••			•.		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Torque		KIVO	Torque		KIVO	Torque		KIVO		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	υ U	Ft-Lbs		KTA5	Ft-Lbs		KTA5	Ft-Lbs		KTAS		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $. = .		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-25											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-30											
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		1060	248	161		250			254			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-40				1265							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	50											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-50			162		209	162		203	160		
-54 1100 253 161 1200 258 162 1300 263 160 1035 240 156 1085 235 152 1175 238 150 CRUISE PRESSURE ALTITUDE 24,000 FEET CONDITIONS: Refer to sheet 1 for appropriate notes applicable to this chart. Torque Flow KTAS PPH 1750 RPM 1600 RPM Temp °C Flow KTAS PPH Torque Flow KTAS PPH Flow KTAS PPH Flow KTAS PPH Flow KTAS PPH -30 999 234 162 1062 234 158 1125 234 153 -40 1074 249 168 1141 249 165 1208 249 161 -50 1000 232 160 1050 230 157 1145 236 155 -50 1000 232 159 1100 238 160 1130 230 153 -1442 263 172 1214 263 169 1285 262 165												
1035 240 156 1085 235 152 1175 238 150 CRUISE PRESSURE AL TITUDE 24,000 FEET CONDITIONS: NOTE Do not exceed maximum cruise INERTIAL SEPARATOR NORMAL Do not exceed maximum cruise Termp 1900 RPM 1750 RPM 1600 RPM Torque Fuel Torque Fuel Fuel Ft-Lbs Flow KTAS PPH Flow KTAS PPH -30 999 234 162 1062 234 158 1125 234 153 -40 1074 249 168 1141 249 165 1208 249 161 -50 1000 232 159 1100 238 160 1135 232 153 -50 1142 263 172 1214 263 169 1285 262 165 153 <th< td=""><td>-54</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	-54											
CRUISE PRESSURE ALTITUDE 24,000 FEET NOTE NOTE TORUISE PRESSURE ALTITUDE 24,000 FEET CONDITIONS: NOTE Do not exceed maximum cruise torque or 740 °C ITT. Refer to sheet 1 for appropriate notes applicable to this chart. Temp C 1900 RPM 1750 RPM 1600 RPM Torque Fuel Fuel Torque Fuel Ft-Lbs Flow KTAS Flow KTAS Flow KTAS -30 999 234 162 1062 234 158 1125 234 153 -40 1074 249 168 1141 249 165 1208 249 161 -40 990 232 160 1050 230 157 1145 236 155 -50 1000 232 159 1100 238 160 1135 232 <t< td=""><td>-34</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-34											
CONDITIONS: 7800 Pounds INERTIAL SEPARATOR NORMAL NOTE Do not exceed maximum cruise torque or 740 °C ITT. Refer to sheet 1 for appropriate notes applicable to this chart. Temp °C 1900 RPM 1750 RPM 1600 RPM Torque Ft-Lbs Fuel Flow PPH Torque Ft-Lbs Fuel Ft-Lbs Torque Ft-Lbs Fuel Flow Ft-Lbs Torque Fto-Lbs Fuel Flow Fto-Lbs Torque Fto-Lbs Fuel Flow Fto-Lbs Fuel Flow		1035							230	150		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			CRUIS	E PRES	SURE A		7 <u>C 24,00</u>					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
Refer to sheet 1 for appropriate notes applicable to this chart. Temp 1900 RPM 1750 RPM 1600 RPM Torque Fuel Torque Fuel Fuel Fuel Flow KTAS -30 999 234 162 1062 234 158 1125 234 153 -40 1074 249 168 1141 249 165 1208 249 161 -90 232 160 1050 230 157 1145 236 155 -50 1000 232 159 1100 238 160 1135 232 153 -50 1000 232 159 1040 227 155 1145 236 155 -54 1000 232 159 1040 227 155 1130 230 153												
Temp ℃ 1900 RPM 1750 RPM 1600 RPM Torque Ft-Lbs Fuel Flow KTAS PPH Torque Ft-Lbs Fuel Flow Torque Ft-Lbs Fuel Flow Torque Ft-Lbs Fuel Flow Torque Ft-Lbs Fuel Flow Torque Ft-Lbs Fuel Flow Fuel Ft-Lbs Fuel Flow Fuel Ft-Lbs												
Temp ℃ Torque Ft-Lbs Huel Flow PPH Torque Ft-Lbs Huel Ft-Lbs Torque Ft-Lbs Huel Flow PPH Torque Ft-Lbs Huel Flow PPH Fuel Flow Ft-Lbs Flow Ft-Lbs Fuel Flow Ft-Lbs Flow Ft-Lbs Fuel Flow Ft-Lbs Flow Ft-Lbs Fuel Flow Ft-Lbs Floe Flow Ft-Lbs Floe Flow Ft-Lbs Fuel Flow Ft-Lbs Floe Flow Ft-Lbs Floe Flow Ft-Lbs <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>40°C II I</td><td></td></th<>									40°C II I			
°C Iorque Ft-Lbs Flow PPH KTAS Iorque Ft-Lbs Flow PPH KTAS Iorque Ft-Lbs Flow PPH KTAS Iorque Ft-Lbs Flow PPH KTAS Flow PP		sheet 1	for appro	opriate no	otes applic		this chart	•				
C Ft-Lbs Ftow KTAS Ft-Lbs Ftow KTAS Ftow KTAS Ftow KTAS Ftow KTAS Ftow KTAS Ftow KTAS Ftow Ftow KTAS Ftow Ftow <t< td=""><td></td><td>sheet 1</td><td>for appro</td><td>opriate no</td><td>otes applic</td><td></td><td>this chart</td><td>•</td><td></td><td></td></t<>		sheet 1	for appro	opriate no	otes applic		this chart	•				
Ft-LDS PPH Ft-LDS PPH Ft-LDS PPH -30 999 234 162 1062 234 158 1125 234 153 -40 1074 249 168 1141 249 165 1208 249 161 990 232 160 1050 230 157 1145 236 155 1149 265 173 1219 264 170 1289 264 166 -50 1000 232 159 1100 238 160 1135 232 153 990 230 159 1040 227 155 1142 263 172 1214 263 169 1285 262 165 -54 1000 232 159 1100 238 160 1130 230 153	Refer to	sheet 1 f	for appro 900 RPI	opriate no	otes applic	750 RPI	this chart	10	600 RPI			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Refer to	sheet 1 t 19 Torque	for appro 900 RPI Fuel	opriate no V	otes applic 17 Torque	750 RPI Fuel	this chart M	10 Torque	600 RPI Fuel	N		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Refer to	sheet 1 t 19 Torque	for appro 900 RPI Fuel Flow	opriate no V	otes applic 17 Torque	750 RPI Fuel Flow	this chart M	10 Torque	600 RPI Fuel Flow	N		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Refer to Temp ℃	o sheet 1 f 19 Torque Ft-Lbs	for appro 900 RPI Fuel Flow PPH	priate no M KTAS	otes applic 17 Torque Ft-Lbs	750 RPI Fuel Flow PPH	this chart M KTAS	10 Torque Ft-Lbs	600 RPI Fuel Flow PPH	M KTAS		
-50 1149 265 173 1219 264 170 1289 264 166 -50 1000 232 159 1100 238 160 1135 232 153 990 230 159 1040 227 155 1142 263 172 1214 263 169 1285 262 165 -54 1000 232 159 1100 238 160 1130 230 153	Refer to Temp ℃ -30	o sheet 1 f 19 Torque Ft-Lbs 999	for appro 900 RPI Fuel Flow PPH 234	NTAS	otes applic 17 Torque Ft-Lbs 1062	750 RPI Fuel Flow PPH 234	this chart M KTAS 158	16 Torque Ft-Lbs 1125	600 RPI Fuel Flow PPH 234	M KTAS 153		
-50 1000 232 159 1100 238 160 1135 232 153 990 230 159 1040 227 155 1142 263 172 1214 263 169 1285 262 165 -54 1000 232 159 1100 238 160 1130 230 153	Refer to Temp ℃ -30	sheet 1 1 19 Torque Ft-Lbs 999 1074	for appro 900 RPI Fuel Flow PPH 234 249	M KTAS 162 168	otes applic 17 Torque Ft-Lbs 1062 1141	750 RPI Fuel Flow PPH 234 249	this chart M KTAS <u>158</u> 165	10 Torque Ft-Lbs 1125 1208	600 RPI Fuel Flow PPH 234 249	M KTAS 153 161		
990 230 159 1040 227 155 1142 263 172 1214 263 169 1285 262 165 -54 1000 232 159 1100 238 160 1130 230 153	Refer to Temp ℃ -30	sheet 1 1 19 Torque Ft-Lbs 999 1074 990	for appre 900 RPI Fuel Flow PPH 234 249 232	00000000000000000000000000000000000000	otes applic 17 Torque Ft-Lbs 1062 1141 1050	750 RPI Fuel Flow PPH 234 249 230	this chart M KTAS <u>158</u> 165 157	16 Torque Ft-Lbs 1208 1145	500 RPI Fuel Flow PPH 234 249 236	M KTAS 153 161 155		
-54 1000 232 159 1100 238 160 11285 262 165	Refer to Temp ℃ -30 -40	sheet 1 1 19 Torque Ft-Lbs 999 1074 990 1149	for appre 900 RPI Fuel Flow PPH 234 249 232 265	60000000000000000000000000000000000000	otes applic 17 Torque Ft-Lbs 1062 1141 1050 1219	750 RPI Fuel Flow PPH 234 249 230 264	this chart M KTAS <u>158</u> 165 157 170	10 Torque Ft-Lbs 1125 1208 1145 1289	500 RPI Fuel Flow PPH 234 249 236 264	M KTAS 153 161 155 166		
-54 1000 232 159 1100 238 160 1130 230 153	Refer to Temp ℃ -30 -40	sheet 1 1 19 Torque Ft-Lbs 999 1074 990 1149 1000	for appre 900 RPI Flow PPH 234 249 232 265 232	60000000000000000000000000000000000000	otes applic 17 Torque Ft-Lbs 1062 1141 1050 1219 1100	750 RPI Fuel Flow PPH 234 249 230 264 238	this chart M KTAS <u>158</u> 165 <u>157</u> 170 160	10 Torque Ft-Lbs 1125 1208 1145 1289	500 RPI Fuel Flow PPH 234 249 236 264	M KTAS 153 161 155 166		
	Refer to Temp ℃ -30 -40	sheet 1 1 19 Torque Ft-Lbs 999 1074 990 1149 1000 990	for appre 900 RPI Flow PPH 234 249 232 265 232 230	KTAS 162 168 160 173 159 159	otes applic 17 Torque Ft-Lbs 1062 1141 1050 1219 1100 1040	750 RPI Fuel Flow PPH 234 249 230 264 238 227	this chart M KTAS 158 165 157 170 160 155	10 Torque Ft-Lbs 1208 1145 1289 1135	500 RPI Fuel Flow PPH 234 249 236 264 232	M KTAS 153 161 155 166 153		
	Refer to Temp ℃ -30 -40 -50	sheet 1 1 19 Torque Ft-Lbs 999 1074 990 1149 1000 990 1142	for appre 900 RPI Flow PPH 234 249 232 265 232 230 263	KTAS 60 162 168 160 173 159 159 159 172	otes applic 17 Torque Ft-Lbs 1062 1141 1050 1219 1100 1040 1214	750 RPI Fuel Flow PPH 234 249 230 264 238 227 263	this chart M KTAS 158 165 157 170 160 155 169	10 Torque Ft-Lbs 1208 1145 1289 1135 1285	500 RPI Fuel Flow PPH 234 249 236 264 232	M KTAS 153 161 155 166 153 165		

Figure 5-36 (Sheet 12)

The following general information is applicable to all CRUISE MAXIMUM TORQUE Charts.

- 1. The highest torque shown for each temperature and RPM corresponds to maximum allowable cruise power. Do not exceed this torque, 740 ℃ ITT, or 101.6% Ng, whichever occurs first.
- With the INERTIAL SEPARATOR in BYPASS and power set below the torque limit (1865 foot-pounds), decrease the maximum cruise torque by 115 foot-pounds. Do not exceed 740°C ITT. Fuel flow for a given torque setting will be 15 pounds per hour (PPH) higher.
- 3. With the CABIN HEAT ON and power set below the torque limit (1865 foot-pounds), decrease maximum cruise torque by 80 foot-pounds. Do not exceed 740 ℃ ITT. Fuel flow for a given torque setting will be 7 PPH higher.
- 4. Where torque values have been replaced by dashes, operating temperature limits of the airplane would be greatly exceeded. Those torque values which are included, but the operation slightly exceeds the temperature limit, are provided for interpolation purposes only.

Figure 5-37 (Sheet 1 of 7)

CONDITIONS:

INERTIAL SEPARATOR NORMAL

Refer to sheet 1 for appropriate notes applicable to this chart.

		sure Alt			sure Alti		Pres	sure Alt	itude
Temp	1	000 Fee	et	2	2000 Fee	et	3	000 Fee	et
°C	Propel	ler Spee	d RPM	Propel	ler Spee	d RPM	Propel	er Spee	d RPM
	1900	1750	1600	1900	1750	1600	1900	1750	1600
50	1204	1291	1379	1151	1235	1319			
45	1314	1406	1503	1259	1348	1440	1204	1290	1378
40	1431	1530	1633	1373	1468	1567	1316	1407	1502
35	1545	1649	1757	1484	1585	1689	1425	1522	1621
30	1656	1766	1879	1592	1698	1807	1531	1632	1737
25	1769	1884	1970	1702	1813	1926	1638	1745	1853
20	1865	1970	1970	1802	1918	1970	1736	1847	1960
15	1865	1970	1970	1865	1970	1970	1835	1952	1970
10	1865	1970	1970	1865	1970	1970	1865	1970	1970
5	1865	1970	1970	1865	1970	1970	1865	1970	1970
0	1865	1970	1970	1865	1970	1970	1865	1970	1970
-5	1865	1970	1970	1865	1970	1970	1865	1970	1970
-10	1865	1970	1970	1865	1970	1970	1865	1970	1970
-15	1865	1970	1970	1865	1970	1970	1865	1970	1970
-20	1865	1970	1970	1865	1970	1970	1865	1970	1970
-25	1865	1970	1970	1865	1970	1970	1865	1970	1970
-30	1865	1970	1970	1865	1970	1970	1865	1970	1970
-35	1865	1970	1970	1865	1970	1970	1865	1970	1970
-40	1865	1970	1970	1865	1970	1970	1865	1970	1970
-45	1865	1970	1970	1865	1970	1970	1865	1970	1970
-50	1865	1970	1970	1865	1970	1970	1865	1970	1970
-54	1865	1970	1970	1865	1970	1970	1865	1970	1970

Figure 5-37 (Sheet 2)

CONDITIONS:

INERTIAL SEPARATOR NORMAL

Refer to sheet 1 for appropriate notes applicable to this chart.

	Pres	Pressure Altitude			Pressure Altitude			Pressure Altitude		
Temp	4	000 Fee	et	5	6000 Fee	et	6	000 Fee	et	
°C	Propel	er Spee	d RPM	Propel	ler Spee	d RPM	Propel	ler Spee	d RPM	
	1900	1750	1600	1900	1750	1600	1900	1750	1600	
45	1151	1233	1317							
40	1260	1347	1438	1204	1288	1375	1149	1229	1313	
35	1366	1459	1555	1309	1398	1490	1252	1337	1426	
30	1469	1567	1668	1409	1503	1600	1350	1440	1533	
25	1574	1677	1782	1511	1610	1711	1449	1545	1641	
20	1670	1777	1886	1605	1708	1812	1541	1641	1741	
15	1767	1879	1970	1700	1807	1915	1633	1737	1840	
10	1865	1970	1970	1797	1909	1970	1728	1836	1943	
5	1865	1970	1970	1865	1970	1970	1819	1932	1970	
0	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-5	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-10	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-15	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-20	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-25	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-30	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-35	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-40	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-45	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-50	1865	1970	1970	1865	1970	1970	1865	1970	1970	
-54	1865	1970	1970	1865	1970	1970	1865	1970	1970	

Figure 5-37 (Sheet 3)

CONDITIONS:

INERTIAL SEPARATOR NORMAL

Refer to sheet 1 for appropriate notes applicable to this chart.

	Pres	sure Alti			sure Alt			sure Alt	itude
Temp	7	'000 Fee	et	8	000 Fee	et	ç	000 Fee	ət
℃	Propell	er Spee	d RPM	Propel	ler Spee	d RPM	Propel	ler Spee	d RPM
	1900	1750	1600	1900	1750	1600	1900	1750	1600
40	1089	1165	1245						
35	1190	1271	1356	1130	1207	1289	1072	1146	1223
30	1284	1371	1459	1221	1303	1388	1160	1239	1320
25	1381	1472	1564	1313	1400	1489	1249	1332	1417
20	1471	1566	1662	1401	1492	1584	1334	1421	1509
15	1561	1660	1759	1487	1582	1677	1416	1507	1599
10	1652	1756	1858	1574	1673	1771	1500	1595	1689
5	1742	1851	1956	1662	1765	1867	1585	1684	1782
0	1830	1944	1970	1746	1855	1960	1666	1770	1871
-5	1865	1970	1970	1833	1947	1970	1749	1858	1962
-10	1865	1970	1970	1865	1970	1970	1829	1943	1970
-15	1865	1970	1970	1865	1970	1970	1865	1970	1970
-20	1865	1970	1970	1865	1970	1970	1865	1970	1970
-25	1865	1970	1970	1865	1970	1970	1865	1970	1970
-30	1865	1970	1970	1865	1970	1970	1865	1970	1970
-35	1865	1970	1970	1865	1970	1970	1865	1970	1970
-40	1865	1970	1970	1865	1970	1970	1865	1970	1970
-45	1865	1970	1970	1865	1970	1970	1865	1970	1970
-50	1865	1970	1970	1865	1970	1970	1865	1970	1970
-54	1865	1970	1970	1865	1970	1970	1865	1970	1970

Figure 5-37 (Sheet 4)

CONDITIONS:

INERTIAL SEPARATOR NORMAL

Refer to sheet 1 for appropriate notes applicable to this chart.

	Pres	Pressure Altitude			Pressure Altitude			Pressure Altitude			
Temp	10),000 Fe	et	11	1,000 Fe	et	12	2,000 Fe	et		
℃	Propell	er Spee	d RPM	Propel	ler Spee	d RPM	Propel	ler Spee	d RPM		
	1900	1750	1600	1900	1750	1600	1900	1750	1600		
30	1102	1177	1255	1047	1119	1194	989	1058	1129		
25	1187	1266	1348	1129	1205	1283	1068	1140	1214		
20	1270	1354	1438	1210	1290	1371	1147	1223	1301		
15	1349	1436	1524	1286	1369	1453	1220	1299	1380		
10	1430	1520	1611	1363	1450	1537	1294	1377	1460		
5	1512	1606	1700	1442	1533	1623	1370	1456	1542		
0	1590	1689	1786	1518	1612	1705	1443	1533	1622		
-5	1669	1773	1873	1594	1693	1789	1516	1611	1703		
-10	1748	1857	1960	1671	1776	1875	1591	1690	1785		
-15	1813	1925	1970	1735	1841	1943	1654	1756	1854		
-20	1865	1970	1970	1800	1911	1970	1717	1822	1920		
-25	1865	1970	1970	1865	1970	1970	1780	1889	1970		
-30	1865	1970	1970	1865	1970	1970	1843	1956	1970		
-35	1865	1970	1970	1865	1970	1970	1865	1970	1970		
-40	1865	1970	1970	1865	1970	1970	1865	1970	1970		
-45	1865	1970	1970	1865	1970	1970	1865	1970	1970		
-50	1865	1970	1970	1865	1970	1970	1865	1970	1970		
-54	1865	1970	1970	1865	1970	1970	1865	1970	1970		

Figure 5-37 (Sheet 5)

CONDITIONS:

INERTIAL SEPARATOR NORMAL

Refer to sheet 1 for appropriate notes applicable to this chart.

	Pressure Altitude		Pressure Altitude			Pressure Altitude			
Temp	13,000 Feet Propeller Speed RPM		14,000 Feet Propeller Speed RPM			15,000 Feet			
°C									
05	1900	1750	1600	1900	1750	1600	1900	1750	1600
25	1009	1078	1149	954	1020	1088			
20	1086	1158	1233	1028	1097	1168	973	1039	1107
15	1157	1233	1310	1097	1170	1243	1041	1110	1181
10	1228	1307	1387	1165	1241	1317	1106	1178	1251
5	1300	1383	1465	1234	1313	1392	1172	1247	1323
0	1372	1458	1543	1304	1386	1468	1239	1317	1396
-5	1442	1532	1620	1371	1457	1542	1303	1385	1466
-10	1514	1608	1699	1440	1530	1617	1370	1455	1539
-15	1576	1674	1768	1503	1596	1686	1432	1522	1608
-20	1636	1737	1832	1559	1655	1747	1486	1578	1666
-25	1697	1801	1898	1618	1717	1810	1542	1637	1726
-30	1758	1865	1965	1676	1779	1874	1598	1696	1788
-35	1822	1934	1970	1737	1844	1942	1656	1758	1852
-40	1865	1970	1970	1799	1909	1970	1716	1821	1919
-45	1865	1970	1970	1860	1970	1970	1774	1883	1970
-50	1865	1970	1970	1865	1970	1970	1831	1944	1970
-54	1865	1970	1970	1865	1970	1970	1833	1945	1970
	Pres	sure Alti	tude	Pres	sure Alti	tude	Pres	sure Alti	tude
Temp	Pres 16	sure Alti 6,000 Fe	tude et	Pres 1	sure Alti 7,000 Fe	tude et	Pres	sure Alti 8,000 Fe	tude et
	Pres 16 Propel	sure Alti 6,000 Fe ler Spee	tude et d RPM	Pres 1 ⁻ Propel	sure Alti 7,000 Fe ler Spee	tude et d RPM	Pres 18 Propel	sure Alti 3,000 Fe ler Spee	tude et d RPM
Temp ℃	Pres 16 Propel 1900	sure Alti 6,000 Fe ler Spee 1750	tude et d RPM 1600	Pres 1 Propel 1900	sure Alti 7,000 Fe ler Spee 1750	tude et d RPM 1600	Pres 18 Propel 1900	sure Alti 3,000 Fe ler Spee 1750	tude et
Temp ℃ 20	Pres 16 Propel 1900 923	sure Alti 6,000 Fe ler Spee 1750 986	tude et d RPM 1600 1051	Pres 1 Propel 1900 876	ssure Alti 7,000 Fe ler Spee 1750 936	tude et d RPM 1600 998	Pres 18 Propel 1900 	ssure Alti 3,000 Fe ler Spee 1750 	tude et d RPM 1600
Temp ℃ 20 15	Pres 16 Propel 1900 923 988	sure Alti 6,000 Fe ler Spee 1750 986 1054	tude et d RPM 1600 1051 1122	Pres 1 Propel 1900 876 939	sure Alti 7,000 Fe ler Spee 1750 936 1002	tude et d RPM 1600 998 1066	Pres 18 Propel 1900 892	sure Alti 3,000 Fe ler Spee 1750 952	tude et d RPM 1600 1014
Temp ℃ 20 15 10	Pres 16 Propel 1900 923 988 1050	sure Alti 5,000 Fe ler Spee 1750 986 1054 1119	tude et d RPM 1600 1051 1122 1189	Pres 1 Propel 1900 876 939 997	sure Alti 7,000 Fe ler Spee 1750 936 1002 1063	tude et d RPM 1600 998 1066 1130	Pres 18 Propel 1900 892 947	sure Alti 3,000 Fe ler Spee 1750 952 1010	tude et d RPM 1600 1014 1074
Temp ℃ 20 15 10 5	Pres 16 Propel 1900 923 988 1050 1112	sure Alti 5,000 Fe er Spee 1750 986 1054 1119 1184	tude et <u>1600</u> 1051 1122 1189 1257	Pres 1 Propel 1900 876 939 997 1057	sure Alti 7,000 Fe ler Spee 1750 936 1002 1063 1125	tude et <u>1600</u> 998 1066 1130 1195	Pres 18 Propel 1900 892 947 1004	sure Alti 3,000 Fe ler Spee 1750 952 1010 1069	tude et <u>1600</u> 1014 1074 1136
Temp ℃ 20 15 10 5 0	Pres 16 Propel 1900 923 988 1050 1112 1177	sure Alti 5,000 Fe er Spee 1750 986 1054 1119 1184 1252	tude et 1600 1051 1122 1189 1257 1327	Pres 1 Propel 1900 876 939 939 997 1057 1118	sure Alti 7,000 Fe ler Spee 1750 936 1002 1063 1125 1189	tude et 1600 998 1066 1130 1195 1261	Pres 18 Propel 1900 892 947 1004 1062	sure Alti 3,000 Fe ler Spee 1750 952 1010 1069 1130	tude et <u>1600</u> 1014 1074 1136 1199
Temp ℃ 20 15 10 5 0 -5	Pres 16 Propel 1900 923 988 1050 1112 1177 1238	sure Alti 5,000 Fe er Spee 1750 986 1054 1119 1184 1252 1316	tude et 1600 1051 1122 1189 1257 1327 1394	Pres 1 Propel 1900 876 939 997 1057 1118 1176	sure Alti 7,000 Fe ler Spee 1750 936 1002 1063 1125 1189 1251	tude et <u>1600</u> 998 1066 1130 1195 1261 1325	Pres 18 Propel 1900 892 947 1004 1062 1118	sure Alti 3,000 Fe ler Spee 1750 952 1010 1069 1130 1189	tude et <u>1600</u> 1014 1074 1136 1199 1260
Temp ℃ 20 15 10 5 0 -5 -10	Pres 16 Propel 1900 923 988 1050 1112 1177 1238 1301	sure Alti 5,000 Fe ler Spee 1750 986 1054 1119 1184 1252 1316 1382	tude et d RPM 1600 1051 1122 1189 1257 1327 1394 1462	Pres 1 Propel 1900 876 939 997 1057 1118 1176 1236	sure Alti 7,000 Fe ler Spee 1750 936 1002 1063 1125 1189 1251 1313	tude et d RPM 1600 998 1066 1130 1195 1261 1325 1390	Pres 18 Propel 1900 892 947 1004 1062 1118 1174	sure Alti 3,000 Fe ler Spee 1750 952 1010 1069 1130 1189 1248	tude et <u>1600</u> 1014 1074 1136 1199 1260 1322
Temp ℃ 20 15 10 5 0 -5 -10 -15	Pres 16 Propel 1900 923 988 1050 1112 1177 1238 1301 1363	sure Alti 5,000 Fe er Spee 1750 986 1054 1119 1184 1252 1316 1382 1448	tude et <u>1600</u> 1051 1122 1189 1257 1327 1394 1462 1531	Pres 1 Propel 1900 876 939 997 1057 1118 1176 1236 1297	ssure Alti 7,000 Fe ler Spee 1750 936 1002 1063 1125 1189 1251 1313 1377	tude et 1600 998 1066 1130 1195 1261 1325 1390 1457	Pres 18 Propel 1900 892 947 1004 1062 1118 1174 1232	sure Alti 3,000 Fe ler Spee 1750 952 1010 1069 1130 1189 1248 1309	tude et <u>1600</u> 1014 1074 1136 1199 1260 1322 1385
Temp ℃ 20 15 10 5 0 -5 -10 -15 -20	Pres 16 Propel 1900 923 988 1050 1112 1177 1238 1301 1363 1414	sure Alti 5,000 Fe er Spee 1750 986 1054 1119 1184 1252 1316 1382 1448 1501	tude et 1600 1051 1122 1189 1257 1327 1394 1462 1531 1587	Pres 1 Propel 1900 876 939 997 1057 1118 1176 1236 1297 1345	sure Alti 7,000 Fe ler Spee 1750 936 1002 1063 1125 1189 1251 1313 1377 1429	tude et <u>1600</u> 998 1066 1130 1195 1261 1325 1390 1457 1511	Pres 18 Propel 1900 892 947 1004 1062 1118 1174 1232 1281	sure Alti 3,000 Fe er Spee 1750 952 1010 1069 1130 1189 1248 1309 1360	tude et <u>1600</u> 1014 1074 1136 1199 1260 1322 1385 1439
Temp ℃ 20 15 10 5 0 -5 -10 -15 -20 -25	Pres 16 Propel 1900 923 988 1050 1112 1177 1238 1301 1363 1414 1467	sure Alti 5,000 Fe er Spee 1750 986 1054 1119 1184 1252 1316 1382 1448 1501 1557	tude et d RPM 1600 1051 1122 1189 1257 1327 1327 1394 1462 1531 1587 1643	Pres 1 Propel 1900 876 939 997 1057 1118 1176 1236 1297 1345 1395	sure Alti 7,000 Fe ler Spee 1750 936 1002 1063 1125 1189 1251 1313 1377 1429 1481	tude et d RPM 1600 998 1066 1130 1195 1261 1325 1390 1457 1511 1565	Pres 18 Propel 1900 892 947 1004 1062 1118 1174 1232 1281 1327	sure Alti 3,000 Fe ler Spee 1750 952 1010 1069 1130 1189 1248 1309 1360 1409	tude et <u>1600</u> 1014 1074 1136 1199 1260 1322 1385 1439 1490
Temp ℃ 20 15 10 5 0 -5 -10 -15 -20 -25 -30	Pres 16 Propel 1900 923 988 1050 1112 1177 1238 1301 1363 1414 1467 1520	sure Alti 5,000 Fe er Spee 1750 986 1054 1119 1184 1252 1316 1382 1448 1501 1557 1613	tude et d RPM 1600 1051 1122 1189 1257 1327 1394 1462 1531 1587 1643 1701	Pres 1 Propel 1900 876 939 997 1057 1118 1176 1236 1297 1345 1395 1446	sure Alti 7,000 Fe ler Spee 1750 936 1002 1063 1125 1189 1251 1313 1377 1429 1481 1535	tude et d RPM 1600 998 1066 1130 1195 1261 1325 1390 1457 1511 1565 1619	Pres 18 Propel 1900 892 947 1004 1062 1118 1174 1232 1281 1327 1376	sure Alti 3,000 Fe ler Spee 1750 952 1010 1069 1130 1189 1248 1309 1360 1409 1460	tude et d RPM 1600 1014 1074 1136 1199 1260 1322 1385 1439 1490 1541
Temp ℃ 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35	Pres 16 Propel 1900 923 988 1050 1112 1177 1238 1301 1363 1414 1467 1520 1575	sure Alti 5,000 Fe er Spee 1750 986 1054 1119 1184 1252 1316 1382 1448 1501 1557 1613 1672	tude et d RPM 1600 1051 1122 1189 1257 1327 1394 1462 1531 1587 1643 1701 1762	Pres 1 Propel 1900 876 939 997 1057 1057 1118 1176 1236 1297 1345 1395 1446 1498	sure Alti 7,000 Fe er Spee 1750 936 1002 1063 1125 1189 1251 1313 1377 1429 1481 1535 1590	tude et d RPM 1600 998 1066 1130 1195 1261 1325 1390 1457 1511 1565 1619 1676	Pres 18 Propel 1900 892 947 1004 1062 1118 1174 1232 1281 1327 1376 1425	sure Alti 3,000 Fe er Spee 1750 952 1010 1069 1130 1189 1248 1309 1248 1309 1248 1309 1248 1309 1409 1460 1512	tude et <u>1600</u> 1014 1074 1136 1199 1260 1322 1385 1439 1490 1541 1595
Temp ℃ 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40	Pres 16 Propel 1900 923 988 1050 1112 1177 1238 1301 1363 1414 1363 1414 1467 1520 1575 1633	sure Alti 5,000 Fe er Spee 1750 986 1054 1119 1184 1252 1316 1382 1448 1501 1557 1613 1672 1733	tude et d RPM 1600 1051 1122 1189 1257 1327 1394 1462 1531 1587 1643 1701 1762 1827	Pres 1 Propel 1900 876 939 997 1057 1118 1176 1236 1297 1345 1297 1345 1395 1446 1498 1553	sure Alti 7,000 Fe er Spee 1750 936 1002 1063 1125 1189 1251 1313 1377 1429 1481 1535 1590 1648	tude et d RPM 1600 998 1066 1130 1195 1261 1325 1390 1457 1511 1565 1619 1676 1737	Pres 18 Propel 1900 892 947 1004 1062 1118 1174 1232 1281 1327 1376 1425 1476	sure Alti 3,000 Fe er Spee 1750 952 1010 1069 1130 1189 1248 1309 1248 1309 1360 1409 1460 1512 1567	tude et <u>d RPM</u> <u>1600</u> 1014 1074 1136 1199 1260 1322 1385 1439 1490 1541 1595 1652
Temp ℃ 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35	Pres 16 Propel 1900 923 988 1050 1112 1177 1238 1301 1363 1414 1467 1520 1575	sure Alti 5,000 Fe er Spee 1750 986 1054 1119 1184 1252 1316 1382 1448 1501 1557 1613 1672	tude et d RPM 1600 1051 1122 1189 1257 1327 1394 1462 1531 1587 1643 1701 1762	Pres 1 Propel 1900 876 939 997 1057 1057 1118 1176 1236 1297 1345 1395 1446 1498	sure Alti 7,000 Fe er Spee 1750 936 1002 1063 1125 1189 1251 1313 1377 1429 1481 1535 1590	tude et d RPM 1600 998 1066 1130 1195 1261 1325 1390 1457 1511 1565 1619 1676	Pres 18 Propel 1900 892 947 1004 1062 1118 1174 1232 1281 1327 1376 1425	sure Alti 3,000 Fe er Spee 1750 952 1010 1069 1130 1189 1248 1309 1248 1309 1248 1309 1248 1309 1409 1460 1512	tude et <u>1600</u> 1014 1074 1136 1199 1260 1322 1385 1439 1490 1541 1595

Figure 5-37 (Sheet 6)

G208B675

CONDITIONS:

INERTIAL SEPARATOR NORMAL

Refer to sheet 1 for appropriate notes applicable to this chart.

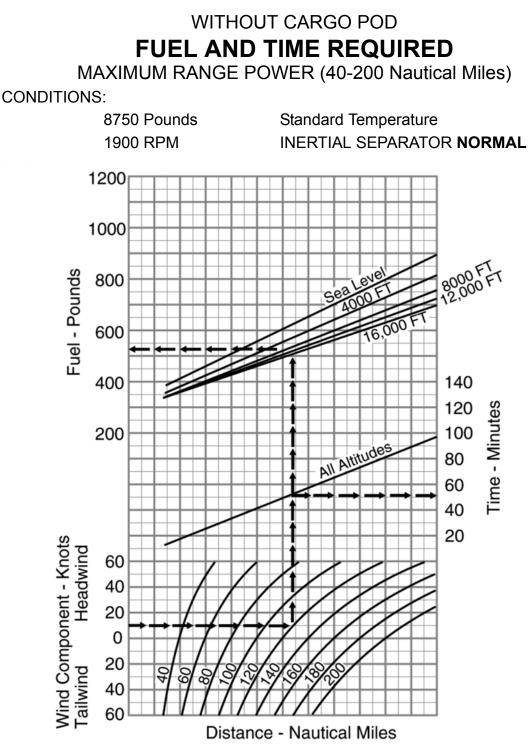
.	Pressure Altitude			Pressure Altitude			Pressure Altitude		
Temp ℃	19,000 Feet Propeller Speed RPM		20,000 Feet Propollor Spood PPM			21,000 Feet Propeller Speed RPM			
¹ U	1900			1600	1900 1750 1600				
15	847	905	963			1000	1900	1750	1000
10	900	905 960	1022	847	904	962	 797	851	906
5	900 954	1017	1022	899	904 959	1019	847	903	960 960
0	1009	1074	1140	952	1014	1076	897	956	1016
-5	1063	1131	1199	1005	1069	1134	949	1010	1072
-10	1116	1187	1257	1056	1123	1190	998	1062	1126
-15	1171	1244	1317	1109	1179	1248	1048	1115	1181
-20	1219	1295	1370	1158	1230	1302	1098	1167	1235
-25	1263	1341	1419	1200	1275	1348	1138	1209	1280
-30	1309	1389	1468	1243	1320	1396	1179	1253	1326
-35	1355	1438	1518	1288	1367	1443	1222	1297	1371
-40	1404	1490	1572	1334	1415	1494	1266	1343	1418
-45	1453	1542	1627	1382	1466	1547	1312	1392	1470
-50	1502	1594	1682	1428	1515	1600	1357	1439	1520
-54	1504	1595	1684	1429	1515	1600	1356	1438	1520
	Pres	sure Alti	tude	Pres	sure Alti	tude	Pres	sure Alti	tude
Temp	Pres 22	sure Alti 2,000 Fe	tude et	Pres 2	sure Alti 3,000 Fe	tude et	Pres 24	sure Alti 4,000 Fe	tude et
	Pres 22 Propel	sure Alti 2,000 Fe ler Spee	tude et d RPM	Pres 23 Propel	sure Alti 3,000 Fe ler Spee	tude et d RPM	Pres 2 ⁴ Propel	sure Alti 4,000 Fe ler Spee	tude et d RPM
Temp ℃	Pres 22 Propel 1900	sure Alti 2,000 Fe ler Spee 1750	tude et d RPM 1600	Pres 2: Propel 1900	sure Alti 3,000 Fe ler Spee 1750	tude et	Pres 24	sure Alti 4,000 Fe	tude et
Temp ℃ 10	Pres 22 Propel 1900 749	ssure Alti 2,000 Fe ler Spee 1750 800	tude et d RPM 1600 852	Pres 2: Propel 1900	ssure Alti 3,000 Fe ler Spee 1750 	tude et d RPM 1600 	Pres 24 Propel 1900 	sure Alti 4,000 Fe ler Spee 1750 	tude et d RPM 1600
Temp ℃ 10 5	Pres 22 Propel 1900 749 797	sure Alti 2,000 Fe ler Spee 1750 800 850	tude et d RPM 1600 852 905	Pres 23 Propel 1900 750	sure Alti 3,000 Fe ler Spee 1750 800	tude et d RPM 1600 853	Pres 2 ² Propel 1900 705	sure Alti 4,000 Fe ler Spee 1750 753	tude et d RPM 1600 802
Temp ℃ 10 5 0	Pres 22 Propel 1900 749 797 846	sure Alti 2,000 Fe ler Spee 1750 800 850 901	tude et 1600 852 905 958	Pres 23 Propel 1900 750 797	ssure Alti 3,000 Fe ler Spee 1750 800 850	tude et d RPM 1600 853 904	Pres 2 [/] Propel 1900 705 750	sure Alti 4,000 Fe ler Spee 1750 753 800	tude et d RPM 1600 802 852
Temp ℃ 10 5 0 -5	Pres 22 Propel 1900 749 797 846 895	sure Alti 2,000 Fe ler Spee 1750 800 850 901 954	tude et <u>1600</u> 852 905 958 1013	Pres 23 Propel 1900 750 797 844	sure Alti 3,000 Fe ler Spee 1750 800 850 900	tude et d RPM 1600 853 904 956	Pres 24 Propel 1900 705 750 796	sure Alti 4,000 Fe ler Spee 1750 753 800 848	tude et 1600 802 852 902
Temp ℃ 10 5 0 -5 -10	Pres 22 Propel 1900 749 797 846 895 943	sure Alti 2,000 Fe ler Spee 1750 800 850 901 954 1003	tude et 1600 852 905 958 1013 1065	Pres 23 Propel 1900 750 797 844 890	ssure Alti 3,000 Fe ler Spee 1750 800 850 900 948	tude et <u>1600</u> 853 904 956 1007	Pres 2 ² Propel 1900 705 750 796 841	sure Alti 4,000 Fe ler Spee 1750 753 800 848 896	tude et 1600 802 852 902 951
Temp ℃ 10 5 0 -5 -10 -15	Pres 22 Propel 1900 749 797 846 895 943 991	ssure Alti 2,000 Fe ler Spee 1750 800 850 901 954 1003 1054	tude et 1600 852 905 958 1013 1065 1117	Pres 23 Propel 1900 750 797 844 890 936	ssure Alti 3,000 Fe ler Spee 1750 800 850 900 948 996	tude et 1600 853 904 956 1007 1057	Pres 24 Propel 1900 705 750 750 796 841 885	ssure Alti 4,000 Fe ler Spee 1750 753 800 848 896 942	tude et 1600 802 852 902 951 1000
Temp ℃ 10 5 0 -5 -10 -15 -20	Pres 22 Propel 1900 749 797 846 895 943 991 1040	ssure Alti 2,000 Fe 1750 800 850 901 954 1003 1054 1106	tude et 1600 852 905 958 1013 1065	Pres 23 Propel 1900 750 797 844 890 936 984	ssure Alti 3,000 Fe ler Spee 1750 800 850 900 948 996 1046	tude et 1600 853 904 956 1007 1057 1109	Pres 24 Propel 1900 705 750 796 841 885 930	sure Alti 4,000 Fe ler Spee 1750 753 800 848 896 942 989	tude et 1600 802 852 902 951 1000 1049
Temp ℃ 10 5 0 -5 -10 -15	Pres 22 Propel 1900 749 797 846 895 943 991	ssure Alti 2,000 Fe ler Spee 1750 800 850 901 954 1003 1054	tude et <u>1600</u> 852 905 958 1013 1065 1117 1171	Pres 23 Propel 1900 750 797 844 890 936	ssure Alti 3,000 Fe ler Spee 1750 800 850 900 948 996	tude et 1600 853 904 956 1007 1057	Pres 24 Propel 1900 705 750 750 796 841 885	ssure Alti 4,000 Fe ler Spee 1750 753 800 848 896 942	tude et 1600 802 852 902 951 1000
Temp ℃ 10 5 0 -5 -10 -15 -20 -25	Pres 22 Propel 1900 749 797 846 895 943 991 1040 1079	ssure Alti 2,000 Fe ler Spee 1750 800 850 901 954 1003 1054 1106 1147	tude et d RPM 1600 852 905 958 1013 1065 1117 1171 1215	Pres 23 Propel 1900 750 797 844 890 936 984 1023	ssure Alti 3,000 Fe ler Spee 1750 800 850 900 948 996 1046 1088	tude et 1600 853 904 956 1007 1057 1109 1153	Pres 2 ² Propel 1900 705 750 750 796 841 885 930 970	ssure Alti 4,000 Fe ler Spee 1750 753 800 848 896 942 989 1032	tude et 1600 802 852 902 951 1000 1049 1094
Temp ℃ 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40	Pres 22 Propel 1900 749 797 846 895 943 991 1040 1079 1119	sure Alti 2,000 Fe 1750 800 850 901 954 1003 1054 1106 1147 1189	tude et 1600 852 905 958 1013 1065 1117 1171 1215 1259	Pres 23 Propel 1900 750 797 844 890 936 984 1023 1061	ssure Alti 3,000 Fe ler Spee 1750 800 850 900 948 996 1046 1088 1128 1168 1209	tude et 1600 853 904 956 1007 1057 1109 1153 1195 1237 1279	Pres 24 Propel 1900 705 750 796 841 885 930 970 1006	sure Alti 4,000 Fe 1750 753 800 848 896 942 989 1032 1070	tude et 1600 802 852 902 951 1000 1049 1094 1134
Temp ℃ 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45	Pres 22 Propel 1900 749 797 846 895 943 991 1040 1079 1119 1159 1201 1245	ssure Alti 2,000 Fe 1750 800 850 901 954 1003 1054 1106 1147 1189 1231 1274 1321	tude et 1600 852 905 958 1013 1065 1117 1215 1259 1302 1346 1396	Pres 23 Propel 1900 750 797 844 890 936 984 1023 1061 1099 1139 1181	ssure Alti 3,000 Fe 1750 800 850 900 948 996 1046 1088 1128 1168 1209 1254	tude et 1600 853 904 956 1007 1057 1109 1153 1195 1237 1279 1324	Pres 24 Propel 1900 705 750 796 841 885 930 970 1006 1043 1080 1120	ssure Alti 4,000 Fe 1750 753 800 848 896 942 989 1032 1070 1109 1147 1189	tude et 1600 802 852 902 951 1000 1049 1094 1134 1174 1215 1257
Temp ℃ 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40	Pres 22 Propel 1900 749 797 846 895 943 991 1040 1079 1119 1159 1201	ssure Alti 2,000 Fe ler Spee 1750 800 850 901 954 1003 1054 1106 1147 1189 1231 1274	tude et d RPM 1600 852 905 958 1013 1065 1117 1215 1259 1302 1346	Pres 23 Propel 1900 750 797 844 890 936 984 1023 1061 1099 1139	ssure Alti 3,000 Fe ler Spee 1750 800 850 900 948 996 1046 1088 1128 1168 1209	tude et 1600 853 904 956 1007 1057 1109 1153 1195 1237 1279	Pres 2 [/] Propel 1900 705 750 796 841 885 930 970 1006 1043 1080	ssure Alti 4,000 Fe ler Spee 1750 753 800 848 896 942 989 1032 1070 1109 1147	tude et 1600 802 852 902 951 1000 1049 1094 1134 1174 1215

Figure 5-37 (Sheet 7)

WITHOUT CARGO POD FUEL AND TIME REQUIRED MAXIMUM CRUISE POWER (40-200 Nautical Miles) CONDITIONS: 8750 Pounds Standard Temperature 1900 RPM INERTIAL SEPARATOR NORMAL A39947 1200 1000 Fuel - Pounds 2,000 FT 800 600 400 140 120 Time - Minutes 200 100 80 60 16,000 40 20 8000 Wind Component - Knots Headwind 60 FT 40 20 0 20 Tailwind 40 60 **Distance - Nautical Miles**

NOTE

- 1. Fuel required includes the fuel used for engine start, taxi, takeoff, maximum climb from sea level, descent to sea level and 45 minutes reserve. Time required includes the time during a maximum climb and descent.
- With INERTIAL SEPARATOR in BYPASS, increase time by 4% and fuel by 2%, or CABIN HEAT ON, increase time by 3% and fuel by 2%. Figure 5-38 (Sheet 1 of 2)

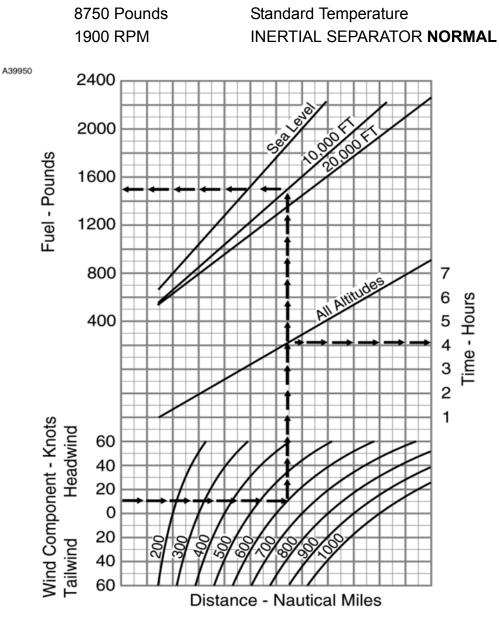

WITHOUT CARGO POD FUEL AND TIME REQUIRED

MAXIMUM CRUISE POWER (200-1000 Nautical Miles) CONDITIONS:

8750 Pounds Standard Temperature 1900 RPM INERTIAL SEPARATOR NORMAL 2400 A39948 2000 Fuel - Pounds 1600 1200 800 7 e 6 Time - Hours Sea 5 400 4 3 2 1 Wind Component - Knots Headwind 60 40 20 0 20 **Failwind** 40 60 **Distance - Nautical Miles** NOTE

- 1. Fuel required includes the fuel used for engine start, taxi, takeoff, maximum climb from sea level, descent to sea level and 45 minutes reserve. Time required includes the time during a maximum climb and descent.
- With INERTIAL SEPARATOR in BYPASS, increase time by 5% and fuel by 2%, or CABIN HEAT ON, increase time by 4% and fuel by 3%. Figure 5-38 (Sheet 2)

208BPHBUS-01

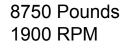

NOTE

- 1. Fuel required includes the fuel used for engine start, taxi, takeoff, maximum climb from sea level, descent to sea level and 45 minutes reserve. Time required includes the time during a maximum climb and descent.
- With INERTIAL SEPARATOR in BYPASS, increase time by 1% and fuel by 2%, or CABIN HEAT ON, increase time by 1% and fuel by 3%. Figure 5-39 (Sheet 1 of 2)

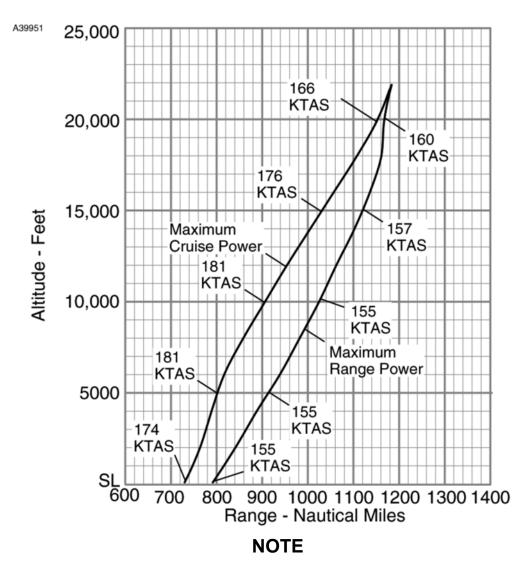
WITHOUT CARGO POD FUEL AND TIME REQUIRED

MAXIMUM RANGE POWER (200-1000 Nautical Miles)

CONDITIONS:

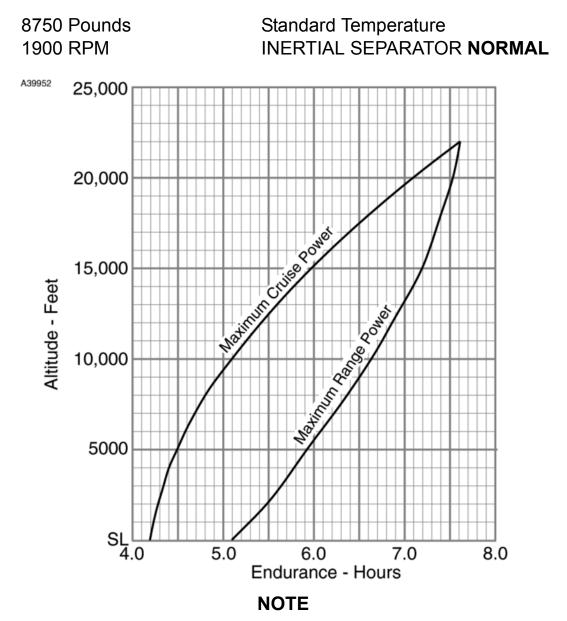

NOTE

- 1. Fuel required includes the fuel used for engine start, taxi, takeoff, maximum climb from sea level, descent to sea level and 45 minutes reserve. Time required includes the time during a maximum climb and descent.
- With INERTIAL SEPARATOR in BYPASS, increase time by 1% and fuel by 2%, or CABIN HEAT ON, increase time by 1% and fuel by 3%. Figure 5-39 (Sheet 2)


SECTION 5 PERFORMANCE

WITHOUT CARGO POD RANGE PROFILE 45 MINUTES RESERVE 2224 POUNDS USABLE FUEL

CONDITIONS:


Standard Temperature INERTIAL SEPARATOR **NORMAL** Zero Wind

- 1. This chart allows for the fuel used for engine start, taxi, takeoff, climb and descent. The distance during a maximum climb and the distance during descent are included.
- With INERTIAL SEPARATOR in BYPASS, decrease range by 2%, or CABIN HEAT ON, decrease range by 3%. Figure 5-40

WITHOUT CARGO POD ENDURANCE PROFILE 45 MINUTES RESERVE 2224 POUNDS USABLE FUEL

CONDITIONS:

- 1. This chart allows for the fuel used for engine start, taxi, takeoff, climb and descent. The time during a maximum climb and the time during descent are included.
- 2. With INERTIAL SEPARATOR in BYPASS, decrease endurance by 2%, or CABIN HEAT ON, decrease endurance by 3%.

Figure 5-41

208BPHBUS-01

WITHOUT CARGO POD TIME, FUEL, AND DISTANCE TO DESCEND

CONDITIONS: Flaps **UP** Zero Wind 8750 Pounds 1900 RPM 140 KIAS Above 16,000 Feet

160 KIAS Below 16,000 Feet

Power Set for 800 Feet per Minute Rate of Descent

Pressure	Descent to Sea Level					
Altitude Feet	Time Minutes	Fuel Pounds	Dist NM			
24,000	30	116	91			
20,000	25	101	75			
16,000	20	85	59			
12,000	15	64	43			
8000	10	44	28			
4000	5	23	14			
Sea Level	0	0	0			

NOTE

The following general information is applicable to all SHORT FIELD LANDING DISTANCE Charts.

- 1. Use short field landing technique as specified in Section 4.
- Decrease distances by 10% for each 11 knots headwind. For operation with tailwind up to 10 knots, increase distances by 10% for each 2 knots.
- 3. For operation on a dry, grass runway, increase distances by 40% of the "Ground Roll" figure.
- 4. If a landing with flaps UP is necessary, increase the approach speed by 15 KIAS and allow for 40% longer distances.
- 5. Use of maximum reverse thrust after touchdown reduces ground roll distance by approximately 10%.
- 6. Where distance values have been replaced by dashes, operating temperature limits of the airplane would be greatly exceeded. Those distances which are included but the operation slightly exceeds the temperature limit are provided for interpolation purposes only.

Figure 5-43 (Sheet 1 of 5)

CONDITIONS: Flaps **FULL** Zero Wind Maximum Braking PROP RPM Lever **MAX** Paved, Level, Dry Runway

POWER Lever **IDLE** after clearing obstacles. **BETA** range (lever against spring) after touchdown.

Refer to Sheet 1 for appropriate notes applicable to this chart.

8500 Pound			Speed at		78 KIAS	
	-1()℃	0	°C	10	℃
Pressure Altitude	Grnd Roll	Total Dist To Clear 50	Grnd Roll	Total Dist To Clear 50	Grnd Roll	Total Dist To Clear 50
Feet	Feet	Foot Obst	Feet	Foot Obst	Feet	Foot Obst
Sea Level 2000 4000 6000 8000 10,000	870 935 1005 1080 1165 1260	1675 1770 1870 1980 2100 2230	900 970 1040 1125 1210 1310	1725 1820 1925 2040 2160 2295	935 1005 1080 1165 1255 1355	1770 1870 1980 2095 2220 2360
12,000	1360	2365	1415	2435	1465	2505
	20	°℃	30	°C	40	°C
Pressure Altitude Feet	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst
Sea Level 2000 4000	965 1040 1120	1820 1920 2035	1000 1075 1155	1865 1970 2085	1030 1110 1195	1910 2020 2140
6000 8000 10,000	1205 1300 1405	2155 2285 2425	1245 1345 1450	2210 2345 2490	1285 1390 	2265 2405

Figure 5-43 (Sheet 2)

CONDITIONS: Flaps **FULL** Zero Wind Maximum Braking PROP RPM Lever **MAX** Paved, Level, Dry Runway

POWER Lever **IDLE** after clearing obstacles. **BETA** range (lever against spring) after touchdown.

Refer to Sheet 1 for appropriate notes applicable to this chart.

8000 Pound	le ·		Speed at 50 Feet: 75 KIAS					
)°C		°℃	10			
		Total	0	Total		Total		
Pressure	Grnd	Dist To	Grnd	Dist To	Grnd	Dist To		
Altitude	Roll	Clear 50	Roll	Clear 50		Clear 50		
Feet	Feet	Foot	Feet	Foot	Feet	Foot		
	1 001	Obst	1 001	Obst	1 001	Obst		
Sea Level	815	1605	845	1650	880	1695		
2000	880	1695	910	1740	945	1790		
4000	945	1790	980	1840	1015	1890		
6000	1020	1895	1055	1950	1095	2000		
8000	1100	2005	1140	2065	1180	2120		
10,000	1185	2130	1230	2190	1275	2250		
12,000	1280	2260	1330	2325	1380	2390		
	20	°C	30)°C	40	°C		
Pressure		Total		Total		Total		
	Grnd	Dist To	Grnd	Dist To	Grnd	Dist To		
Altitude Feet	Roll	Clear 50	Roll	Clear 50	Roll	Clear 50		
гееі	Feet	Foot	Feet	Foot	Feet	Foot		
		Obst		Obst		Obst		
		0051		0.00.				
Sea Level	910	1740	940	1785	970	1830		
Sea Level 2000	910 980		940 1010		970 1045	1830 1930		
		1740		1785				
2000	980	1740 1835	1010	1785 1885	1045	1930		
2000 4000	980 1055	1740 1835 1940	1010 1090	1785 1885 1995	1045 1125	1930 2045		
2000 4000 6000	980 1055 1135	1740 1835 1940 2055	1010 1090 1175	1785 1885 1995 2110	1045 1125 1210	1930 2045 2165		

Figure 5-43 (Sheet 3)

CONDITIONS: Flaps **FULL** Zero Wind Maximum Braking PROP RPM Lever **MAX** Paved, Level, Dry Runway

POWER Lever **IDLE** after clearing obstacles. **BETA** range (lever against spring) after touchdown.

Refer to Sheet 1 for appropriate notes applicable to this chart.

7500 Pound			Speed at		73 KIAS	
	-1()°C	0	$^{\circ}$ C	10	0°(
Pressure	Grnd	Total Dist To	Grnd	Total Dist To	Grnd	Total Dist To
Altitude Feet	Roll	Clear 50	Roll	Clear 50	Roll	Clear 50
reel	Feet	Foot	Feet	Foot	Feet	Foot
		Obst		Obst		Obst
Sea Level	765	1530	795	1570	825	1615
2000	825	1610	855	1655	885	1705
4000	885	1705	920	1750	955	1800
6000	955	1800	990	1855	1030	1905
8000	1030	1910	1070	1965	1110	2020
10,000	1115	2025	1155	2080	1200	2140
12,000	1205	2150	1250	2210	1295	2275
	20)°C	30)°C	40)°C
Pressure		Total		Total		Total
Pressure	Grnd	Total Dist To	Grnd	Total Dist To	Grnd	Total Dist To
Altitude	Grnd Roll	Total Dist To Clear 50	Grnd Roll	Total Dist To Clear 50	Grnd Roll	Total Dist To Clear 50
	Grnd	Total Dist To Clear 50 Foot	Grnd	Total Dist To Clear 50 Foot	Grnd	Total Dist To Clear 50 Foot
Altitude Feet	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst
Altitude Feet Sea Level	Grnd Roll Feet 855	Total Dist To Clear 50 Foot Obst 1655	Grnd Roll Feet 885	Total Dist To Clear 50 Foot Obst 1695	Grnd Roll Feet 910	Total Dist To Clear 50 Foot Obst 1740
Altitude Feet	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet 910 980	Total Dist To Clear 50 Foot Obst 1740 1835
Altitude Feet Sea Level 2000 4000	Grnd Roll Feet 855 920 990	Total Dist To Clear 50 Foot Obst 1655 1750 1850	Grnd Roll Feet 885 950 1020	Total Dist To Clear 50 Foot Obst 1695 1795 1895	Grnd Roll Feet 910 980 1055	Total Dist To Clear 50 Foot Obst 1740 1835 1945
Altitude Feet Sea Level 2000 4000 6000	Grnd Roll Feet 855 920 990 1065	Total Dist To Clear 50 Foot Obst 1655 1750 1850 1955	Grnd Roll Feet 885 950 1020 1100	Total Dist To Clear 50 Foot Obst 1695 1795 1895 2005	Grnd Roll Feet 910 980 1055 1140	Total Dist To Clear 50 Foot Obst 1740 1835 1945 2055
Altitude Feet Sea Level 2000 4000	Grnd Roll Feet 855 920 990	Total Dist To Clear 50 Foot Obst 1655 1750 1850	Grnd Roll Feet 885 950 1020	Total Dist To Clear 50 Foot Obst 1695 1795 1895	Grnd Roll Feet 910 980 1055	Total Dist To Clear 50 Foot Obst 1740 1835 1945
Altitude Feet Sea Level 2000 4000 6000	Grnd Roll Feet 855 920 990 1065	Total Dist To Clear 50 Foot Obst 1655 1750 1850 1955	Grnd Roll Feet 885 950 1020 1100	Total Dist To Clear 50 Foot Obst 1695 1795 1895 2005	Grnd Roll Feet 910 980 1055 1140	Total Dist To Clear 50 Foot Obst 1740 1835 1945 2055

Figure 5-43 (Sheet 4)

CONDITIONS:
Flaps FULL
Zero Wind
Maximum Braking
PROP RPM Lever MAX
Paved, Level, Dry Runway

POWER Lever **IDLE** after clearing obstacles. **BETA** range (lever against spring) after touchdown.

Refer to Sheet 1 for appropriate notes applicable to this chart.

7000 Pound		• • •	Speed at	71 KIAS		
	-1()℃		°C	10)°C
Pressure Altitude Feet	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst	Grnd Roll Feet	Total Dist To Clear 50 Foot Obst
Sea Level 2000 4000 6000	715 770 825 890	1455 1530 1620 1710	740 795 860 925	1495 1575 1665 1760	770 825 890 960	1535 1620 1710 1810
8000 10,000 12,000	960 1035 1120	1810 1920 2040	995 1075 1165	1865 1975 2095	1035 1115 1205	1915 2030 2155
,	_		1100	2000	1200	2100
		°C)°C		0°C
Pressure Altitude Feet	20 Grnd Roll Feet		30 Grnd Roll Feet			
Altitude Feet Sea Level	20 Grnd Roll Feet 795	°℃ Total Dist To Clear 50 Foot Obst 1575	30 Grnd Roll Feet 825	P℃ Total Dist To Clear 50 Foot Obst 1615	40 Grnd Roll Feet 850)℃ Total Dist To Clear 50 Foot Obst 1650
Altitude Feet	20 Grnd Roll Feet	°℃ Total Dist To Clear 50 Foot Obst	30 Grnd Roll Feet	P℃ Total Dist To Clear 50 Foot Obst	40 Grnd Roll Feet)℃ Total Dist To Clear 50 Foot Obst
Altitude Feet Sea Level 2000	20 Grnd Roll Feet 795 855	°℃ Total Dist To Clear 50 Foot Obst 1575 1660	30 Grnd Roll Feet 825 885	P℃ Total Dist To Clear 50 Foot Obst 1615 1705	40 Grnd Roll Feet 850 915)℃ Total Dist To Clear 50 Foot Obst 1650 1745
Altitude Feet Sea Level 2000 4000	20 Grnd Roll Feet 795 855 920	P℃ Total Dist To Clear 50 Foot Obst 1575 1660 1755	30 Grnd Roll Feet 825 885 950	P℃ Total Dist To Clear 50 Foot Obst 1615 1705 1800	40 Grnd Roll Feet 850 915 985	P℃ Total Dist To Clear 50 Foot Obst 1650 1745 1845
Altitude Feet Sea Level 2000 4000 6000	20 Grnd Roll Feet 795 855 920 990	°C Total Dist To Clear 50 Foot Obst 1575 1660 1755 1855	30 Grnd Roll Feet 825 885 950 1025	©℃ Total Dist To Clear 50 Foot Obst 1615 1705 1800 1905	40 Grnd Roll Feet 850 915 985 1060)℃ Total Dist To Clear 50 Foot Obst 1650 1745 1845 1950

Figure 5-43 (Sheet 5)

CESSNA

SECTION 6 MODEL 208B G1000 WEIGHT & BALANCE/EQUIPMENT LIST

WEIGHT AND BALANCE/ EQUIPMENT LIST

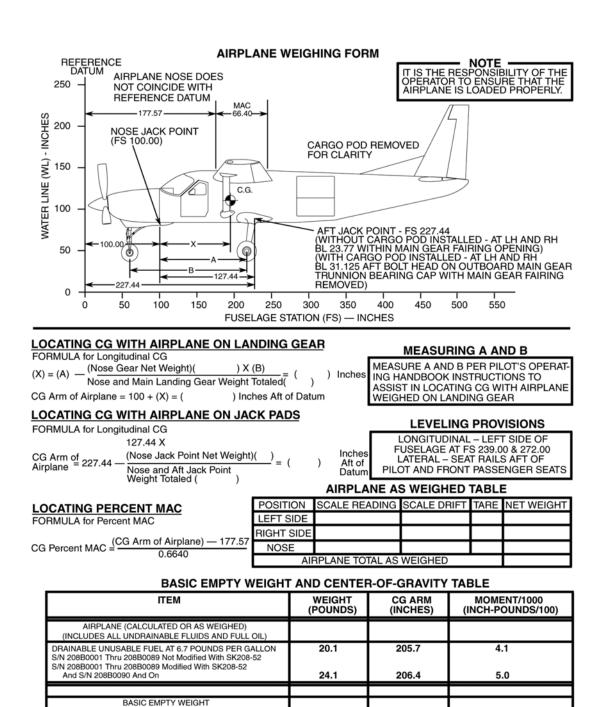
TABLE OF CONTENTS

	Page
Introduction	6-3
Airplane Weighing Form	6-4
Sample Weight and Balance Record	6-5
Airplane Weighing Procedures	6-6
Weight and Balance.	6-8
Weight and Balance Plotter.	
Weight and Balance Record (Load Manifest)	6-11
Crew and Passenger Loading	
Baggage/Cargo Loading	6-17
Cabin Cargo Area	
Cargo Pod.	
Maximum Zone/Compartment Loadings	6-22
Center of Gravity Precautions	
Cargo Load Restraint.	6-24
Prevention of Movement	. 6-24
Transportation of Hazardous Materials	6-26
Equipment List.	6-26
Cabin Internal Dimensions.	6-27
Pod Internal Dimensions and Load Markings	6-29
Cabin Internal Load Markings	6-30
Cargo Barrier and Barrier Nets	6-31
Cargo Partition Net	6-32
Maximum Cargo Sizes.	6-33
Cargo Tie-Down Attachments	6-34
Cabin Internal Loading Arrangements	
Cargo Pod Loading Arrangement	6-39
Loading-Tie-Down by Zone and Load	6-40
Typical Cargo Restraint Methods	6-41
Weight and Moment Tables	6-42
Sample Loading Problem	6-49
Center of Gravity Limits	
Center of Gravity Moment Envelope	6-52

SECTION 6 WEIGHT & BALANCE/EQUIPMENT LIST

INTRODUCTION

This section describes the procedure for establishing the basic empty weight and moment of the airplane. Sample forms are provided for reference. Procedures for calculating the weight and moment for various operations are also provided.


In order to achieve the performance and flight characteristics which are designed into the airplane, it must be flown within approved weight and center of gravity limits. although the airplane offers flexibility of loading, it cannot be flown with full fuel tanks and a full complement of passengers or a normal crew and both cabin and cargo pod (if installed) loading zones filled to maximum capacity. The pilot must utilize the loading flexibility to ensure the airplane does not exceed its maximum weight limits and is loaded within the center of gravity range before takeoff.

Weight is important because it is a basis for many flight and structural characteristics. As weight increases, takeoff speed must be greater since stall speeds are increased, the rate of acceleration decreases, and the required takeoff distance increases. Weight in excess of the maximum takeoff weight may be a contributing factor to an accident, especially when coupled with other factors such as temperature, field elevation, and runway conditions, all of which may adversely affect the airplane's performance. Climb, cruise, and landing performance will also be affected. Flights at excess weight are possible, and may be within the performance capability of the airplane, but loads for which the airplane was not designed may be imposed on the structure, especially during landing.

The pilot should routinely determine the balance of the airplane since it is possible to be within the maximum weight limit and still exceed the center of gravity limits. An airplane loading which exceeds the forward center of gravity limit may place heavy loads on the nose wheel, and the airplane will be slightly more difficult to rotate for takeoff or flare for landing. If the center of gravity is too far aft, the airplane may rotate prematurely on takeoff, depending on trim settings.

AIRPLANE WEIGHING FORM

A30620

2685T1099

			3ASIC	IGHT	MOMENT INCH- POUND/1000											
	ice)	PAGE NUMBER:	RUNNING BASIC EMPTY WEIGHT		WEIGHT MG											
	and Bala	PA			. 8											
	g Weight			REMOVED (-)	ARM MOMENT INCH POUND/100											
	nt Affectinc		CHANGE	REN	WEIGHT AI											
	or Equipmer		WEIGHT CHANGE		MOMENT INCH- POUND/1000											
נ נ נ	ucture	UMBER		ADDED (+)												
	es in Stru	SERIAL NUMBER:			WEIGHT ARM POUNDS INCH											
ontinuous History o	EL:			DESCHIPTION OR ARTICLE OF MODIFICATION	As Delivered											
))	AIRPLANE MODEL:	ITEM NO.		OUT											
		LANE			Z Ⅲ											
		AIRP			DATE											

WEIGHT AND BALANCE RECORD

rigure 6-2

WEIGHT AND BALANCE RECORD

INTRODUCTION (Continued)

A properly loaded airplane, however, will perform as intended. Before the airplane is licensed, a basic empty weight, center of gravity (C.G.) and moment are computed. Specific information regarding the weight, arm, moment, and installed equipment for this airplane as delivered from the factory can be found in the plastic envelope in the back of this POH/AFM. Using the basic empty weight and moment, the pilot can determine the weight and moment for the loaded airplane by computing the total weight and moment and then determining whether they are within the approved Center of Gravity Moment Envelope

WARNING

It is the responsibility of the pilot to make sure that the airplane is loaded correctly. Operation outside of prescribed weight and balance limitations could result in an accident and serious or fatal injury.

AIRPLANE WEIGHING PROCEDURES

- 1. Preparation:
 - a. Remove all snow, ice or water which may be on the airplane.
 - b. Inflate tires to recommended operating pressure.
 - c. Lock open fuel tank sump quick-drains and fuel reservoir quick-drain to drain all fuel.
 - d. For aircraft with non-standard (optional) equipment installed, see the appropriate POH/AFM supplement for additional weighing procedures.
 - e. Service engine oil as required to obtain a normal full indication (MAX HOT or MAX COLD, as appropriate, on dipstick).
 - f. Slide to move pilot and front passenger seats to position the seat locking pins on the back legs of each seat at Fuselage Station 145.0. Aft passenger seats (if installed) have recommended fixed positions and should be located, using a Fuselage Station location code on the seat rails, as described in the Cabin Internal Loading Arrangements figure. In the event the aft seats were moved to accommodate a custom loading, they should be returned to the standard locations prior to weighing.
 - g. Raise flaps to fully retracted positions.
 - h. Place all control surfaces in neutral position.

AIRPLANE WEIGHING PROCEDURES (Continued)

- 2. Leveling:
 - a. Place scales under each wheel (minimum scale capacity, 2000 pounds nose, 4000 pounds each main). The main landing gear must be supported by stands, blocks, etc., on the main gear scales to a position at least four inches higher than the nose gear as it rests on an appropriate scale. This initial elevated position will compensate for the difference in waterline station between the main and nose gear so that final leveling can be accomplished solely by deflating the nose gear tire.
 - b. Deflate the nose tire to properly center the bubble in the level (see Airplane Weighing Form). Since the nose gear strut contains an oil snubber for shock absorption rather than an air/oil strut, it can not be deflated to aid in airplane leveling.
- 3. Weighing:
 - a. Weigh airplane in a closed hangar to avoid errors caused by air currents.
 - b. With the airplane level and brakes released, record the weight shown on each scale. Deduct the tare from each reading.
- 4. Measuring:
 - a. Obtain measurement A by measuring horizontally (along airplane centerline) from a line stretched between the main wheel centers to a plumb bob dropped from the center of the nose jack point located below the firewall and housed within the nose strut fairing.
 - b. Obtain measurement B by measuring horizontally and parallel to the airplane centerline, from center of nose wheel axle, left side, to a plumb bob dropped from the line between the main wheel centers. Repeat on right side and calculate the average of the measurements.
- 5. Using weights from step 3 and measurements from step 4, the airplane weight and C.G. can be determined.
- 6. Basic Empty Weight may be determined by completing the Airplane Weighing Form in this section.

WEIGHT AND BALANCE

The following information will enable you to operate your Cessna within the prescribed weight and center of gravity limitations. To figure weight and balance, use the sample Loading Problem, Weight and Moment Tables, and Center of Gravity Moment Envelope as follows:

1. Take the basic empty weight and moment from appropriate weight and balance records carried in your airplane, and enter them in the column titled, "YOUR AIRPLANE" on the Sample Loading Problem.

NOTE

In addition to the basic empty weight and moment noted on these records, the C.G. arm (Fuselage Station) is also shown, but need not be used on the Sample Loading Problem. the moment which is shown must be divided by 1000 and this value used as the moment/1000 on the loading problem.

2. Use the Weight and Moment Tables to determine the moment/ 1000 for each additional item to be carried, then list these on the loading problem.

NOTE

Information on the Weight and Moment Tables for different fuel grades is based on average fuel density at fuel temperatures of 60°F. However, fuel weight increases approximately 0.1 pounds per gallon for each 25°F decrease in fuel temperature. Therefore, when environmental conditions are such that the fuel temperature is different than shown in the chart heading, a new fuel weight calculation should be made using the 0.1 pounds per gallon increase in fuel weight for each 25°F decrease in fuel temperature. Assume the tanks are completely filled and the fuel temperature is at 35°F (25°F below the 60°F noted on the chart).

WEIGHT AND BALANCE (Continued)

3. Calculate the revised fuel weight by multiplying the total usable fuel by the sum of the average density (stated on chart) plus the increase in density estimated for the lower fuel temperature. In this particular sample, as shown by the calculation below, the resulting fuel weight increase due to lower fuel temperature will be 33.6 pounds over the 2224 pounds (for 332 gallons) shown on the chart, which might be significant in an actual loading situation:

332 gallons X (6.7 + 0.1 pounds per gallon) = 2257.6 pounds revised fuel weight.

Then calculate the revised fuel moment. the revised moment is in direct proportion to the revised fuel weight:

X (revised moment)	= 2257.6 (revised weight)
451.7 (average moment)	2224 (average weight)
X = (451.7 X	2257.6) / 2224

The revised moment of X = 458.5. This value would be used on the Sample Loading Problem as the moment/1000 in conditions represented by this sample.

WEIGHT AND BALANCE (Continued)

NOTE

Information on the Weight and Moment Tables for crew, passenger, and cargo is based on the pilot and front passenger sliding seats positioned for average occupants (e.g., Fuselage Station 135.5), the aft passenger fixed seats (if installed) in the recommended position, and the baggage or cargo uniformly loaded around the center (e.g., Fuselage Station 172.1 in Zone 1) of the zone fore and aft boundaries (e.g., Fuselage Stations 155.4 and 188.7 in Zone 1) shown on the Cabin Internal Loading Arrangements figure. For loadings which may differ from these, the Loading Arrangements figure and Sample Loading Problem lists Fuselage Stations for these items to indicate their forward and aft C.G. range limitations. Additional moment calculations, based on the actual weight and C.G. arm (Fuselage Station) of the item being loaded, must be made if the position of the load is different from that shown on the Weight and Moment Tables. For example, if seats are in any position other than stated on the Cabin Internal Loading Arrangements figure, the moment must be calculated by multiplying the occupant weight times the arm in inches. A point nine inches forward of the intersection of the seat bottom and seat back (with cushions compressed) can be assumed to be the occupant C.G. For a reference in determining the arm, the forward face of the raised aft cargo floor is Fuselage Station 332.0.

Total the weights and moments/1000 and plot these values on the Center of Gravity Moment Envelope to determine whether the point falls within the envelope, and if the loading is acceptable.

WARNING

It is the responsibility of the pilot to ensure that the airplane is loaded properly. Operation outside of prescribed weight and balance limitations could result in an accident and serious or fatal injury.

WEIGHT AND BALANCE PLOTTER

A Weight and Balance Plotter is available to quickly determine the weight and balance of the airplane when loading cargo. If the plotter shows a marginal condition developing, or if there is a question concerning the results in any way, then a more precise weight and balance should be determined using the weight and balance procedure in this section. Instructions for use of the plotter are included on the plotter.

WEIGHT AND BALANCE RECORD (LOAD MANIFEST)

A Weight and Balance Record (Load Manifest) is available for recording the cargo loading configuration of each flight and verifying that the airplane weight and takeoff center of gravity in terms of % Mean Aerodynamic Chord (MAC) is acceptable. A sample of this record is shown in this section. The procedure for using this record is summarized below.

- 1. Enter flight date and number, point of departure and destination, and airplane identification in spaces provided.
- 2. Enter weight of cargo in each cabin cargo zone in appropriate ITEM WEIGHT spaces. Total cabin cargo weights in space provided as a check that maximum allowable cabin cargo weight of 3400 pounds is not exceeded. Refer to other portions of the POH/AFM for additional limitations which must be observed.
- 3. Enter weight of cargo in cargo pod and weight of pilot, copilit, and TKS fluid (if installed).
- 4. Complete ITEM INDEX column for all cargo, pilot, passenger, and TKS fluid (if installed) by referring to adjacent WEIGHT INDICES listing. For each cargo or personnel weight recorded previously, read across horizontally to the vertical column having an identical weight at the top. The number shown at this intersection is the weight index for the recorded weight. As an example, 300 pounds of cargo loaded in cabin Zone 1 has a weight index of 988, and this number should be entered under ITEM INDEX for cabin Zone 1.

WEIGHT AND BALANCE RECORD (LOAD MANIFEST) (Continued)

NOTE

If weight to be loaded does not match one of the weight increments provided, and a more precise weight index is needed, use the LOAD ITEM INDEX formula on the backside of the Weight and Balance Record (Load Manifest) to calculate the index. However, as shown in the sample calculation below for a 315-pound load (instead of 300 pounds) in cabin Zone 1, minor weight variables do not affect the weight index significantly. The ARM used in the following calculation is the centroid of cabin Zone 1 as shown on the diagram on the backside of the record.

> <u>315 X (172.1 - 192)</u> = -12.5 500 1000 - 12.5 = 987.5

The weight index of 987.5, when rounded to the next highest number, would still result in the 988 given in the example above for a 300-pounds load.

- 5. Add weight of pod cargo, pilot, passenger, and TKS fluid (if installed) to sub-total weight for cabin cargo and enter this value as the weight of the total payload; the sum of all item indices recorded is the item index for the total payload. For calculation purposes, enter only the last three digits of the total in the ITEM INDEX columns.
- 6. Enter basic empty weight (from airplane weight and balance information) in ITEM WEIGHT column for aircraft empty weight. Calculate weight index using the BASIC AIRPLANE INDEX formula on the backside of the Weight and Balance Record (Load Manifest). The sample calculation below is for an airplane with a basic empty weight of 5005 pounds and a C.G. arm of 185.69.

$$5005 \times (185.69 - 192) + 500 = 436.84$$

500

In the aircraft empty weight spaces for the airplane in this sample, a weight of 5005 and an index of 437 would be entered.

WEIGHT AND BALANCE RECORD (LOAD MANIFEST)

(Continued)

- 7. Add aircraft empty weight and index to payload weight and index to acquire a zero fuel weight and index. A plot of this weight and index on the adjacent chart indicates the location of the zero fuel weight center of gravity in terms of % MAC. A C.G. % MAC space is provided to enter this value. If the zero fuel weight C.G. falls well within clear area of chart envelope, the loading will likely be acceptable. however, if the C.G. at this weight fall near or within shaded area, a careful recheck of the loading and C.G. is important.
- 8. The weight available for takeoff fuel is the difference between zero fuel weight and takeoff weight. A FUEL INDICES table at bottom of Weight and Balance Record (Load Manifest) provides an index for the weight of fuel to be carried. The fuel weight and this index should be entered for takeoff fuel. When calculating takeoff fuel, 35 pounds of additional fuel can be allowed as taxi fuel under average conditions. A space for taxi fuel weight is provided.
- 9. Add takeoff fuel weight and index to zero fuel weight and index to acquire a takeoff weight and index which can be plotted to determine the takeoff C.G. location in terms of % MAC. A C.G. % MAC space is provided for this value.
- 10.Enter 8750 pounds as the maximum allowable takeoff weight for this airplane. The additional 35 pounds of taxi fuel provides a maximum ramp weight of 8785 pounds.

SECTION 6 WEIGHT & BALANCE/EQUIPMENT LIST

WEIGHT AND BALANCE RECORD (LOAD MANIFEST)

A30621

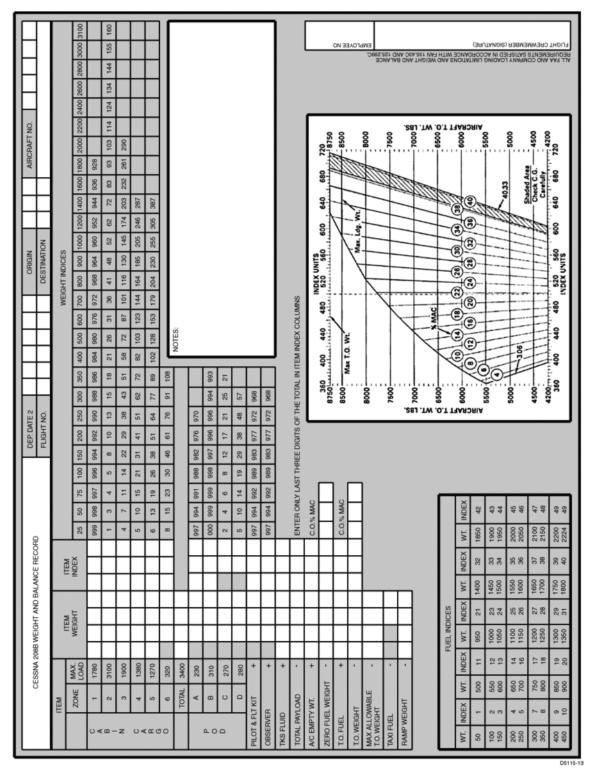
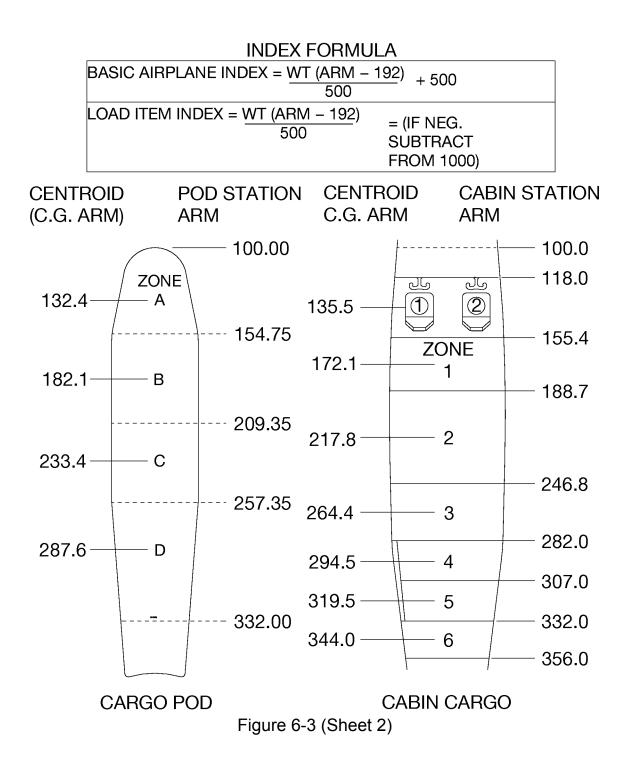



Figure 6-3 (Sheet 1 of 2)

WEIGHT AND BALANCE RECORD (LOAD MANIFEST)

A72484

MAXIMUM STRUCT	URAL WEIGHTS
MAX RAMP	8785 LBS
MAX TAKEOFF	8750 LBS
MAX LANDING	8500 LBS

CREW AND PASSENGER LOADING

The pilot and front passenger positions in all airplanes have six-way adjustable seats. These seats slide fore and aft on tracks that have adjustment holes for seat position.

The Passenger Version has aft passenger seating with two configurations of Commuter Seating.

The first Commuter Seating configuration has three individual, fixedposition passenger seats in the left side of the cabin, and three two place fixed-position, bench seats located in the right side of the cabin in a side-by-side arrangement.

The second Commuter Seating configuration includes four individual, fixed-position, passenger seats on the left side of the cabin and four individual, fixed-position passenger seats on the right side of the cabin in a side-by-side arrangement.

WARNING

None of the airplane seats are approved for installation facing aft.

BAGGAGE/CARGO LOADING

CABIN CARGO AREA

Cargo may be carried in the cabin of either the Cargo Version or the Passenger Version. The cabin interior of the Cargo Version is specifically equipped for the carriage of cargo. However, after seat removal and the installation of miscellaneous equipment, the Passenger Version will also fulfill the requirements of cargo missions. The following paragraphs generally describe the cargo area of both versions.

To facilitate the carrying of large or bulky items, all aft seats (Passenger Version Only) and the front passenger seat may be removed from the airplane. If a cargo barrier and its three barrier nets are available for installation, removal of the front passenger seat may not be desired. Mission requirements will dictate whether the barrier is to be used and the number of seats removed. If seats are removed for hauling cargo and the cargo barrier and its nets added, the basic empty weight and C.G. moment of the airplane should be adjusted so that these values accurately represent the weight and moment of the airplane before loading.

To calculate the new weight and moment, refer to the airplane equipment list and acquire the weight and C.G. arm of each item of equipment to be removed or added, then record these values on the Sample Weight and Balance Record, to assist in the calculation. For each item of equipment, multiply its weight by its C.G. arm to provide the moment for that item. Subtract weights of removed items (seats) and add weights of installed items (cargo barrier and its nets) to the original basic empty weight to provide a new basic empty weight. Likewise, subtract the moments of removed items and add the moments of installed items to the original moment to provide a new airplane moment. Remember that the moment value is to be divided by 1000 to reduce the number of digits. The new basic empty weight and moment/1000 can be used as illustrated in the Sample Loading Problem when figuring airplane loading with the selected items of equipment removed/installed.

CABIN CARGO AREA (Continued)

With all seats except the pilot's seat removed, a large cabin volume is available for baggage/cargo. If a cargo barrier is installed, the total volume available for cargo behind the barrier is 340 cubic feet. Cargo can be loaded through the large, almost square, two-piece cargo door. The floor is flat from the firewall at Fuselage Station 100.0, except in the rudder pedal area, to the aft side of the cargo door (Fuselage Station 332.0), and has a 200 pound per square foot allowable loading. Strategically located nutplates are provided which will allow the installation of plywood flooring (standard equipment on Cargo Versions) for ease of loading and distribution of concentrated loads. Between Fuselage Stations 332.0 and 356.0, additional cargo space with a capacity of 320 pounds is provided on a floorboard raised approximately five inches above the main floorboard.

In the area of the removed front passenger seat, "I" section seat tracks are installed from Fuselage Station 125.00 to 159.98, and tie-down block assemblies which clamp to the tracks can be installed to serve as tie-down attach points. From Fuselage Station 158.00 aft to the raised baggage/cargo floor, seat tracks are provided and are designed to receive guick-release tie-down fittings which can be snapped into the tracks at intervals of 1 inch. The raised baggage/cargo floor contains eight anchor plates to which quick-release tie-down fittings can be attached. If rope, cable or other fittings are used for tie-downs, they should be rated at a minimum of 2100 pounds when used with all fittings noted in the table on the Cargo Tie-Down Attachments figure, except the double-stud quick-release tie-downs which require a 3150 pound rating. Maximum allowable cargo loads will be determined by the individual zone weight limitation and by the airplane weight and C.G. limitations. The number of tie-downs required is dependent on the load(s) to be secured. The Cargo Tie-Down Attachments figure, shows the maximum allowable cargo weight for each type of cargo tie-down attachment.

On Cargo Versions, the sidewalls in the cargo area are marked with vertical lines to facilitate the identification of six loading zones. Markings located on the sidewalls between the lines identify each zone by number and display the maximum load which can be carried within the zones. Refer to Cabin Internal Load Markings (Cargo Version) figure for maximum zone weight limits.

CABIN CARGO AREA (Continued)

CAUTION

The maximum load values marked in each zone are predicated on all cargo being tied down within the zones.

On Cargo Versions, a horizontal line labeled "75%" is prominently marked along each sidewall as a loading reference. As indicated on a placard on the lower cargo door, zones forward of the last loaded zone must be at least 75% full by volume. Whenever possible, each zone should be loaded to its maximum available volume prior to loading the next zone. An additional placard located on the right sidewall between Zones 5 and 6 cautions that if the load in Zone 5 exceeds 400 pounds, a cargo partition net (if available) is required aft of the load or the load must be secured to the floor.

A cargo barrier and three barrier nets may be installed directly behind the pilot's and front passenger's seats. The barrier and nets preclude loose cargo from moving forward into the pilot's and front passenger's stations during an abrupt deceleration. The barrier consists of a Ushaped assembly of honeycomb composite construction. The assembly attaches to the four pilot and front passenger seat rails at the bottom at Fuselage Station 153.0 and to cabin top structure at approximately Fuselage Station 166.0. The cargo barrier nets consist of three nets, one for the left sidewall, one for the right sidewall, and one for the center. The left and right nets fill in the space between the barrier assembly and the airplane sidewalls. The side nets are fastened to the airplane sidewalls and the edge of the barrier with six quickrelease fasteners each, three on each side. The center net fills in the opening in the top center of the barrier. The center net is fastened with four fasteners, two on each side. Horizontal lines labeled 75% are marked on the aft side of the cargo barrier. Placards above the horizontal lines caution that the maximum allowable load behind the barrier is 3400 pounds total, and that zones forward of the last loaded zone must be at least 75% full by volume. Refer to the Cargo Barrier and Barrier Nets figure for additional details.

CABIN CARGO AREA (Continued)

WARNING

- When utilized, the cargo barrier and its attached nets provide cargo forward crash load restraint and protection of the pilot and front passenger; however, the cargo must still be secured to prevent it from shifting due to takeoff, flight, taxi accelerations landing. and and decelerations. On the passenger version, if passengers, as well as cargo, are located aft of cargo placement the barrier. must allow movement and exit of the passengers and the cargo must be secured for crash load restraint conditions. Refer to Cargo Load Restraint in this section for additional information concerning cargo restraint with and without a cargo barrier.
- Make sure the barrier net fasteners are secured for takeoff, flight, and landing operations, and are momentarily detached only for movement of the nets for loading or unloading of items through the crew area.

Cargo partition nets are available and can be installed to divide the cargo area into convenient compartments. Partitions may be installed in all of the five locations at Fuselage Stations 188.7, 246.8, 282.0, 307.0 and 332.0. The cargo partitions are constructed of canvas with nylon webbing reinforcement straps crisscrossing the partition for added strength. The ends of the straps have quick-release fasteners which attach to the floor tracks and two floor-mounted anchor plates located just forward of the raised cargo floor and other anchor plates on the sidewalls and ceiling. Four straps have adjustable buckles for tightening the straps during installation of the partition. Refer to the Cargo Partition Nets figure for additional details.

Zones divided by cargo partitions can be loaded without additional tiedowns if a total loaded density for each partitioned zone does not exceed 7.9 pounds per cubic foot and the zone is more than 75% full. Cargo loading that does not meet these requirements must be secured to the cabin floor.

CABIN CARGO AREA (Continued)

CAUTION

The maximum cargo partition load is the sum of any two zones. No more than two adjacent zones can be divided by one partition. The partitions are designed to prevent the cargo from shifting forward and aft in flight. They should not be considered adequate to withstand crash loads and do not replace the need for a cargo barrier.

Various tie-down belt assemblies and tie-down ring anchors are available for securing cargo within the airplane. The belts may also be used for tying down the airplane. A standard configuration is offered and contains three 3000-pound rated belt assemblies with ratchet-type adjusters and six single-stud, quick-release tie-down ring anchors. A heavy-duty configuration consists of three 5000-pound rated belts with ratchet-type adjusters and six double-stud, quick-release anchors. Three 5000-pound rated belts with over center-type locking devices are also available for heavy-duty use. The six single-stud and double-stud tie-down ring anchors are also available separately. The single-stud anchors can be attached to any tie-down point in the airplane which isn't placarded for attachment for partition nets only, whereas the double-stud anchors can be attached to the aft seat tracks only. See the Cargo Tie-Down Attachments figure for maximum load ratings and tie-down ring anchor spacing restrictions.

Refer to Maximum Zone/Compartment Loading for maximum zone weight limits.

CARGO POD

The airplane may be equipped with a 111.5 cubic foot capacity cargo pod attached to the bottom of the fuselage. The pod is divided into four compartments (identified as Zones A, B, C, and D) by bulkheads and has a maximum floor loading of 30 pounds per square foot and maximum load weight limit of 1090 pounds. Each compartment has a loading door located on the left side of the pod. The doors are hinged at the bottom, and each has two latches. When the latch handles are rotated to the horizontal position with the doors closed, the doors are secured. Refer to the Pod Internal Dimension and Load Markings and Cargo Pod Loading Arrangements figures for additional details.

MAXIMUM ZONE/COMPARTMENT LOADINGS

Maximum zone loadings are as follows:

WEIGHT LIMITS (Pounds)

	ZONE/ COMPART- MENT	VOLUME (CUBIC FEET)	*SECURED BY TIE-DOWNS	**UNSECURED USING PARTITIONS OR IN CARGO POD	C.G. (STATION LOCATION)
FUSELAGE	1	52.9	1780	415	172.1
	2	109.0	3100	860	217.8
	3	63.0	1900	495	264.4
	4	43.5	1380	340	294.5
	5	40.1	1270	315	319.5
	6	31.5	320	245	344.0
CARGO POD	Α	23.4		230	132.4
	В	31.5		310	182.1
	С	27.8		270	233.4
	D	28.8		280	287.6

* THIS IS THE MAXIMUM CARGO ALLOWED IN THE BAY INDICATED.

**DENSITY MUST BE 7.9 LBS/FT³ OR LESS AND BAY 75% OR MORE FULL.

CENTER OF GRAVITY PRECAUTIONS

Since the airplane can be used for cargo missions, carrying various types of cargo in a variety of loading configurations, precautions must be taken to protect the forward and aft C.G. limits. Load planning should include a careful comparison of the mission requirements with the volume and weight limitation in each loading zone and the final airplane C.G. Cargo loaded in the forward zones may need to be balanced by loading cargo in one or more aft zones. Conversely, loadings can not be concentrated in the rear of the airplane, but must be compensated by forward cargo to maintain balance. Under ideal conditions, loadings should be accomplished with heavy items on the bottom and the load distributed uniformly around the C.G. of the cabin cargo area zone and/ or cargo pod compartment. Loading personnel must maintain strict accountability for loading correctly and accurately, but may not always be able to achieve an ideal loading. A means of protecting the C.G. aft limit is provided by supplying an aft C.G. location warning area between 38.33% MAC and the maximum allowable aft C.G. of 40.33% MAC. The warning area is indicated by shading on the Center of Gravity Moment Envelope and C.G. Limits figures.

CAUTION

- This shaded area should be used only if accurate C.G. determination can be obtained.
- Exercise caution while loading or unloading heavy cargo through the cargo doors. An ideal loading in every other respect can still cause tail tipping and structural damage if proper weight distribution is ignored. For example, heavy cargo loaded trough the doors and placed momentarily in zones 4 and 5, plus the weight of personnel required to move it to a forward zone, could cause an out-of-balance condition during loading.

CARGO LOAD RESTRAINT

PREVENTION OF MOVEMENT

Cargo restraint requires the prevention of movement in five principal directions: forward, aft, upward (vertical), left (side), and right (side). These movements are the result of forces exerted upon the cargo due to acceleration or deceleration of the airplane in takeoffs and landings as well as forces due to air turbulence in flight. Correct restraint provides the proper relationship between airplane configuration (with or without barrier), weight of the cargo, and the restraint required. Restraint is required for flight, landing, taxi loads, and for crash loads.

Cargo must be tied down for flight, landing, and taxi load, and/or crash load. When a cargo barrier is not installed, all cargo must be prevented from movement in the five principal directions and secured to provide crash load restraint. The maximum rated loads specified for loadings without a barrier in the table in the Cargo Tie-Down Attachments figure should be used for each tie-down. Consistent use of these loading criteria is important, and it is the responsibility of the pilot to make sure the cargo is restrained properly. When a cargo barrier is installed, cargo aft of the barrier must also be secured to prevent movement in the five principal directions, but only to the extent that shifting due to flight, landing, and taxi loads is provided. The maximum rated loads specified for loadings with a barrier installed shown in the table in the Cargo Tie-Down Attachments figure should be used for each tie-down. With a barrier installed, all cargo must be loaded such that loading zones forward of the last loaded zone must be 75% full by volume.

PREVENTION OF MOVEMENT (Continued)

WARNING

In special loading arrangements which allow the carriage of passengers as well as cargo behind the barrier in the passenger version, all cargo must be secured to prevent movement in the five principal directions and provide the same crash load restraint as though a barrier was not installed using the maximum rated loads specified for loading without a barrier. In this arrangement, cargo placement must allow for movement and exit of the passengers. The pilot must be responsible to make sure proper load restraint in all loadings.

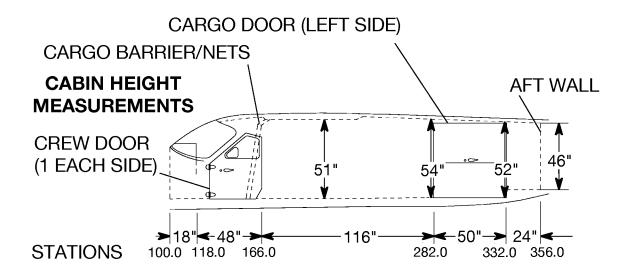
Refer to the Typical Cargo Restraint Methods figure for diagrams of typical cargo tie-down methods for prevention of movement. Also, the cargo partition nets available for the airplane can be installed at Fuselage Stations 188.7, 246.8, 282.0, 307.0 and 332.0 to divide the cabin cargo area into compartments. If the partitions are used, they must be used in conjunction with the cargo barrier. Since partitions are not designed to withstand crash loads, they cannot be considered as a replacement for the barrier. Each partition will withstand the forward and aft operational loads applied during takeoff, flight, and landing by any two zones forward or aft of the partition. Use of the partitions will allow loading of the zones without tying down cargo if the load density is no more than 7.9 pounds per cubic foot and the zone is more than 75% full. Cargo loading that does not meet these requirements must be secured to the cabin floor.

LOADING OF PIERCING OR PENETRATING ITEMS

Regardless of cargo location, items of a piercing or penetrating nature shall be located so that other cargo is loaded between the barrier/nets, cargo partitions, and rear wall and the piercing or penetrating items to provide a buffer. The density of this cargo shall be sufficient to restrain the piercing or penetrating items from passing through the barrier/nets, partitions, and rear wall under critical emergency landing conditions. If the condition cannot be complied with, the piercing or penetrating items shall be tied down separately.

TRANSPORTATION OF HAZARDOUS MATERIALS

Special protection of the airplane and training of personnel are key considerations in conducting approved transportation of hazardous materials.


Protection against hazardous materials has been provided in the fuselage bilge area under the cargo compartment from Fuselage Station 168.0 to 356.0, and these materials may be carried in any location within this area.

In addition to the pilot-in-command and flight crew member (if used), other personnel such as cargo receiving and loading personnel should be properly trained concerning the acceptance, handling, storage, loading and unloading of hazardous materials if these materials are to be carried. Information and regulations pertaining to the air transportation of hazardous materials is outlined in the Code of Federal Regulation (CFR) Title 49 and in the International Civil Aviation Organization (ICAO) Technical Instructions for the Safe Transport of Dangerous Goods by Air. Additional details on training subject matter and location references for this information are included in the Cargo Loading Manual for this airplane. Some general guidelines important to safe carriage of hazardous materials are also described in the Cargo Loading Manual.

EQUIPMENT LIST

For a complete list of equipment installed in the airplane as delivered from the manufacturer, refer to the equipment list furnished with the airplane. CESSNA

CABIN INTERNAL DIMENSIONS (CARGO VERSION)

DOOR OPENING DIMENSIONS

	WIDTH (TOP)		WIDTH (BOTTOM)			_
	(DVERALL)	(OVERALL	
CREW DOORS	11 7/8"	35 5/8"	31 7/8"	24 3/8"	41 3/4"	44 3/4"
CARGO DOOR	49"	49"	49"	50"	50"	50"

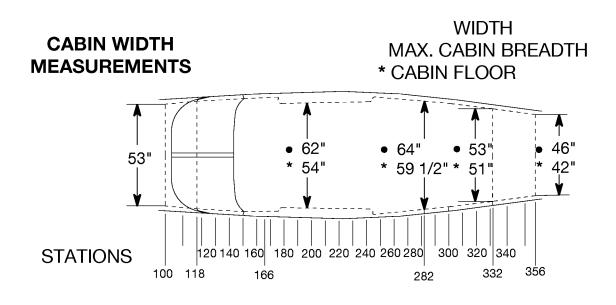
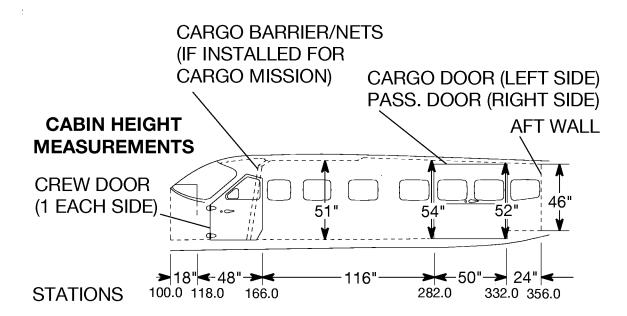
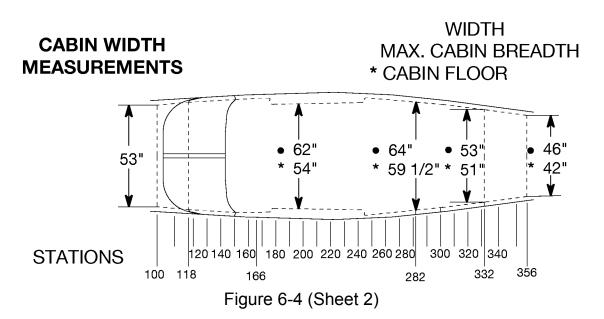



Figure 6-4 (Sheet 1 of 2)

208BPHBUS-00


U.S. 6-27

CABIN INTERNAL DIMENSIONS (PASSENGER VERSION)

DOOR OPENING DIMENSIONS

	WIDTH (TOP)		WIDTH (BOTTOM)			HEIGHT (REAR)
	· (OVERALL)	· ·		OVERALL)	
CREW DOORS	11 7/8"	35 5/8"	31 7/8"	24 3/8"	41 3/4"	44 3/4"
CARGO DOOR	49"	49"	49"	50"	50"	50"
PASSENGER DOOR	24"	24"	24"	50"	50"	50"

POD INTERNAL DIMENSIONS AND LOAD MARKINGS

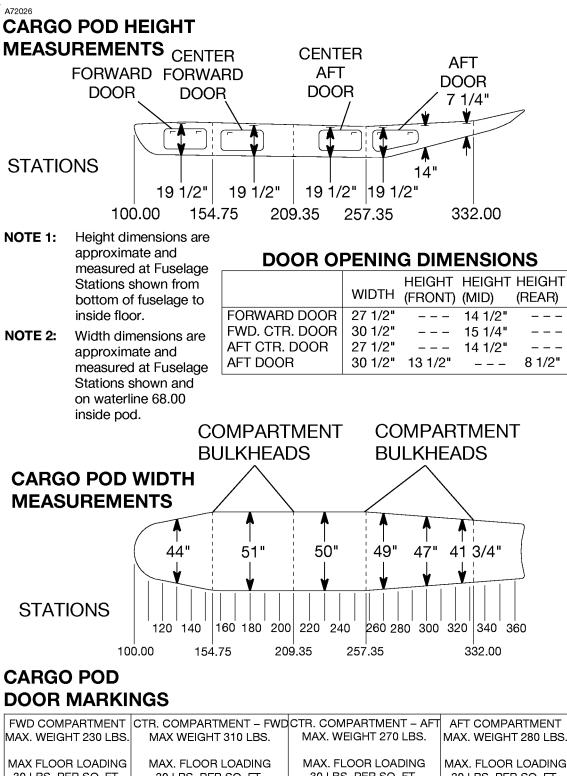
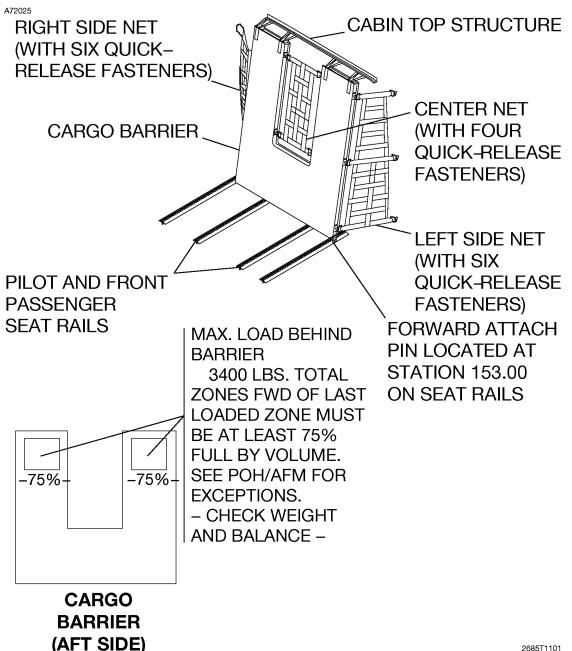


Figure 6-5

CABIN INTERNAL LOAD MARKINGS (CARGO VERSION)

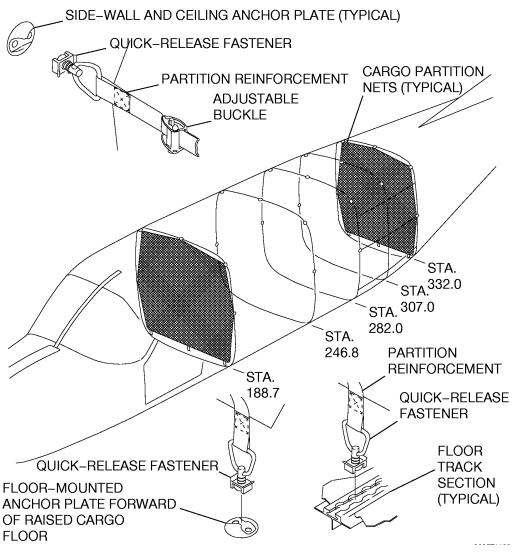


CESSNA MODEL 208B G1000

SECTION 6 WEIGHT & BALANCE/EQUIPMENT LIST

CARGO BARRIER AND BARRIER NETS

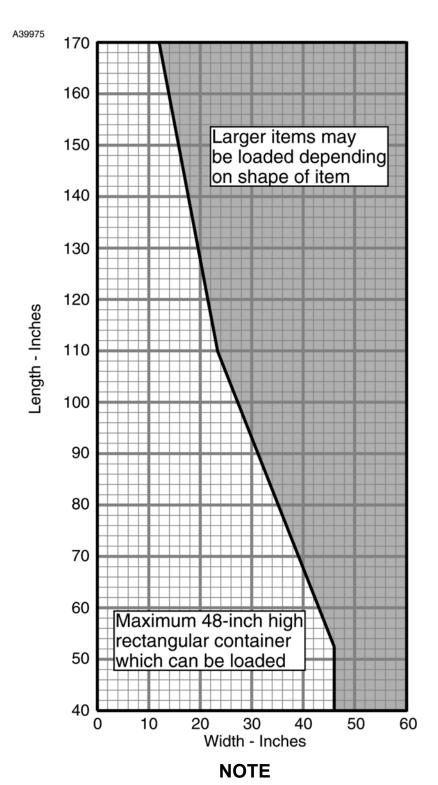
2685T1101


NOTE

- 1. Installation of the fire extinguisher on the cargo barrier is not shown.
- 2. The cargo barrier and attached barrier nets must be installed to provide forward crash load restraint.
- 3. The guick-release fasteners which secure the center and side barrier nets allow momentary detachment of the nets for loading and unloading of items through the crew area.

Figure 6-7

SECTION 6 WEIGHT & BALANCE/EQUIPMENT LIST


CARGO PARTITION NETS

- NOTE
- 1. Partition nets are available for installation at Fuselage Stations 188.7, 246.8, 282.0, 307.0 and 332.0.
- 2. If partitions are used, they must be used in conjunction with the cargo barrier. Partitions are not designed to withstand crash loads, therefore they cannot be considered as a replacement for the barrier.
- 3. Each partition will withstand the forward and aft operational loads applied during takeoff, flight, and landing by any two zones forward or aft of the partition. Use of the partitions will allow loading of the zones without tying down the cargo if the load density is no more than 7.9 pounds per cubic foot and the zone is more than 75% full. Cargo loading that does not meet these requirements must be secured to the cabin floor.

Figure 6-8

CESSNA MODEL 208B G1000

MAXIMUM CARGO SIZES

- 1. Approximately one inch clearance allowed from sidewall and ceiling.
- 2. Subtract roller height and pallet thickness, if applicable.

Figure 6-9

208BPHBUS-00

U.S. 6-33

SECTION 6 WEIGHT & BALANCE/EQUIPMENT LIST

CARGO TIE-DOWN ATTACHMENTS

A72104

		* Maximum Rate	d Load (Pounds)
Item	Location	Without Cargo	With Cargo
item.		Barrier/Nets	Barrier Nets
		Installed	Installed
Tie-down block on seat track	On front passenger seat tracks	100	100
Single-stud quick-release Tie-down on seat track	On aft passenger seat tracks	100	200
Single-stud quick-release Tie-down on baggage floor Anchor plates	On raised baggage floor	100	200
Double-stud quick-release Tie-down on seat track	On aft passenger seat tracks	150	300

When utilizing the aft seat rails for tying down cargo, minimum spacing for single-stud quick release tiedown rings is 12 inches.

*Tie-downs are required toward and aft of cargo load to prevent the load form shifting. The type of tiedowns available, the sum of their individual rated loads, and the height and length of the load whether configured with or without a cargo barrier/nets, and whether passengers are carried aft of the cargo barrier/nets, are the determining factors in selecting the number of tie-downs needed.

FOR EXAMPLE:

A 600-pound load which has a height dimension that is equal to or less than its length dimension requires a minimum of six tie-downs (three forward and three aft). When the cargo barrier/nets are installed, the number of tie-downs can be reduced by 1/2 as long as load shifting can be prevented. The minimum number of tie-downs for this example would then be four (three plus one, to utilize an even number of tie-downs). Regardless of whether the cargo barrier/nets are installed, if the cargo height is greater than its Length, then the minimum number of tie-downs must be doubled. If passengers are carried aft of the cargo barrier/nets, cargo must be secured per the requirements without the barrier/nets installed. Refer to Cargo Load Restraint in this section for additional information.

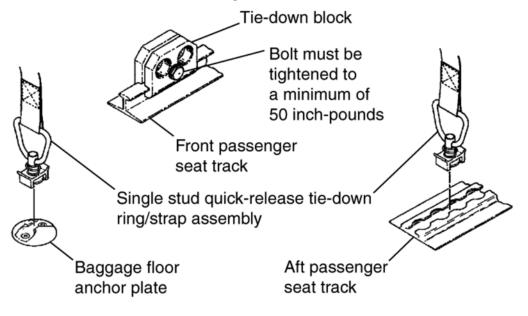


Figure 6-10 (Sheet 1 of 2)

CESSNA MODEL 208B G1000

CARGO TIE-DOWN ATTACHMENTS

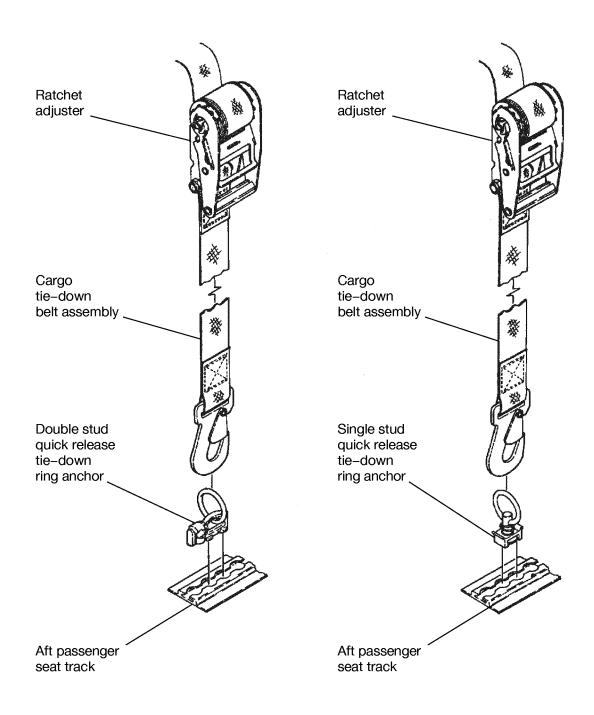
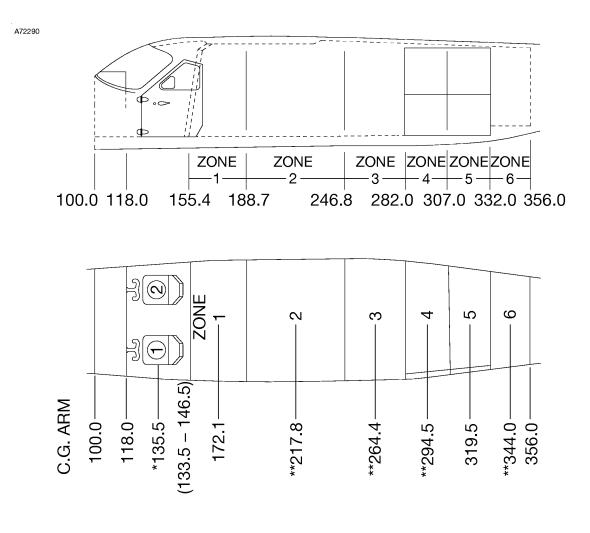
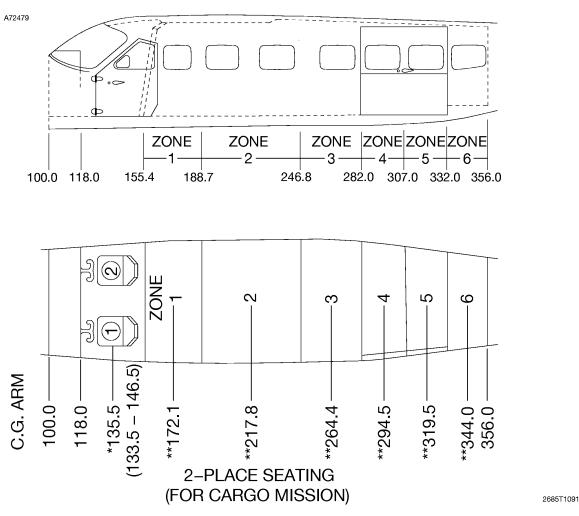



Figure 6-10 (Sheet 2)

208BPHBUS-00

CABIN INTERNAL LOADING ARRANGEMENTS (CARGO VERSION)


2685T1091

NOTE

- 1. *Pilot or front passenger center of gravity on adjustable seats positioned for an average occupant with the seat locking pin at Fuselage Station 145.0. Numbers in parentheses indicate forward and aft limits of occupant center of gravity range.
- 2. **Cargo area center of gravity in Zones 1 thru 6 based on the mid point of the zone.
- 3. Vertical lines marked on the cargo area sidewalls or the forward face of the raised floor (Fuselage Station 332.0) can be used as a convenient reference point for determining the location of occupant or cargo Fuselage Station.

Figure 6-11 (Sheet 1 of 3)

CABIN INTERNAL LOADING ARRANGEMENTS (PASSENGER VERSION)

NOTE

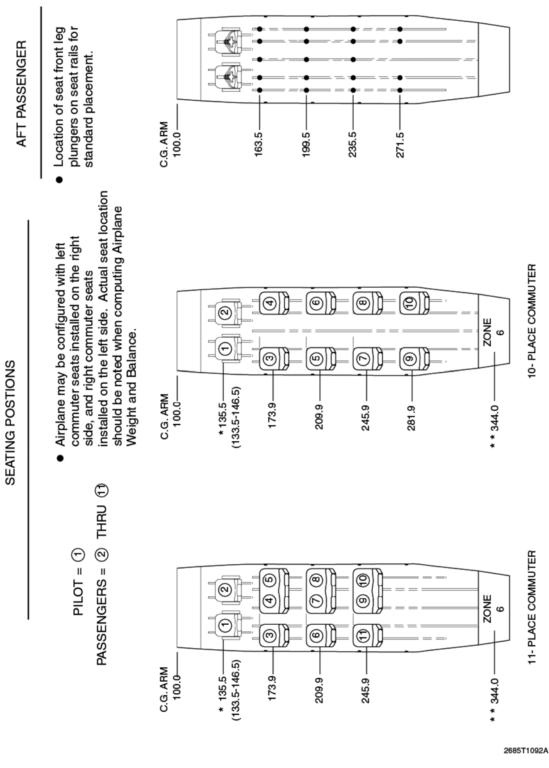
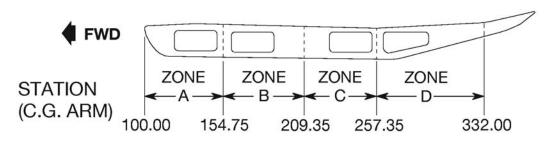
- 1. *Pilot or front passenger center of gravity on adjustable seats positioned for an average occupant with the seat locking pin at Fuselage Station 145.0. Numbers in parentheses indicate forward and aft limits of occupant center of gravity range.
- 2. **Cargo area center of gravity in Zones 1 thru 6 based on the mid point of the zone.
- 3. The forward face of the raised floor (Fuselage Station 332.0) can be used as a convenient reference point for determining the location of occupant or cargo Fuselage Stations.
- 4. When a cargo barrier is installed, two-place Commuter seat 4 and 5 or individual Commuter seats 3 and 4 must be removed. Mission requirements will dictate if any aft passenger seating is to remain installed.

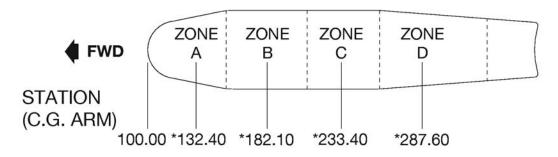
Figure 6-11 (Sheet 2)

208BPHBUS-00

CABIN INTERNAL LOADING ARRANGEMENTS (PASSENGER VERSION)

A71511

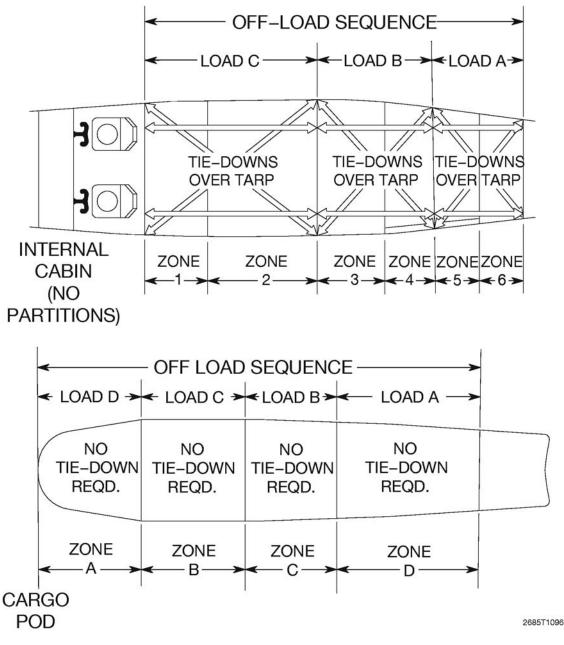

Figure 6-11 (Sheet 3)

CARGO POD LOADING ARRANGEMENT

CARGO POD (VIEW LOOKING INBOARD)

CARGO POD (VIEW LOOKING DOWN)

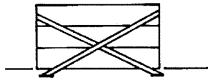
2685T1098

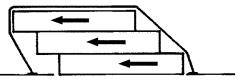

NOTE

- 1. *Cargo bay center of gravity in Zones A, B, C, and D.
- Compartment bulkheads that separate Zones A and B (Station 154.75), Zones B and C (Station 209.35), and Zones C and D (Station 257.35) can be used as a reference point for determining the location of cargo Fuselage Station.

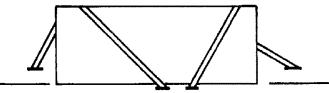
Figure 6-12

LOADING/TIE-DOWN BY ZONE AND LOAD (OFF-LOADING SEQUENCE)

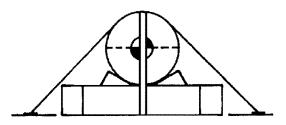


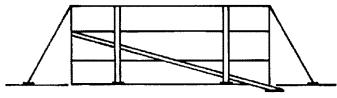

NOTE

- 1. If cargo partitions are not utilized, individual loads must be secured by adequate tie-downs over tarps.
- 2. Protection against hazardous materials has been provided in the fuselage bilge area under the cargo compartment from Fuselage Station 168.0 to 356.0. These materials can be carried in any location within this area.


TYPICAL CARGO RESTRAINT METHODS

Cargo properly tied, no shifts occur


Cargo improperly tied, shifts occur


Multiple forces secured by fewer straps

Upward cargo restraint

Cylindrical cargo tie-down

Proper tie-down for all forces

Figure 6-14

WEIGHT AND MOMENT TABLES **PILOT AND FRONT PASSENGER CARGO VERSION**

Weight PoundsMoment Inch-Pound/1000 (Arm = 135.50 Inch)10.120.30.10.1			
Pounds (Arm = 135.50 Inch) 1 0.1 2 0.3			
1 0.1 2 0.3			
2 0.3			
3 0.4			
4 0.5			
5 0.7			
6 0.8			
7 0.9			
8 1.1			
9 1.2			
10 1.4			
20 2.7			
30 4.1			
40 5.4			
50 6.8			
60 8.1			
70 9.5			
80 10.8			
90 12.2			
100 13.6			
200 27.1			
300 40.7			
EXAMPLE:			
To obtain moments for a 170 pounds pilot, add moments			
shown for 100 pounds (13.6) and 70 pounds (9.5) for a			
total moment of 23.1 inch-pound/1000.			

Figure 6-15 (Sheet 1 of 7)

WEIGHT AND MOMENT TABLES 11 PLACE COMMUTER

Crew and Passengers (Single/ Bench Commuter Seating)

(Single/ Dench Commuter Seating)					
	Pilot/ Front	Aft	Passengers Se	eats	
Weight Pounds	Passenger Seats 1 and 2 (Arm = 135.5 Inch)	3, 4, and 5 (Arm = 173.9 Inch)	6, 7, and 8 (Arm = 209.9 Inch)	9, 10, and 11 (Arm = 245.9 Inch)	
			-Pound/1000)		
1 2 3 4 5 6 7	0.1 0.3 0.4 0.5 0.7	0.2 0.3 0.5 0.7 0.9	0.2 0.4 0.6 0.8 1.0	0.2 0.5 0.7 1.0 1.2	
	0.8 0.9 1.1 1.2	1.0 1.2 1.4 1.6	1.3 1.5 1.7 1.9	1.5 1.7 2.0 2.2	
10 20 30	1.4 2.7 4.1	1.7 3.5 5.2	2.1 4.2 6.3	2.5 4.9 7.4	
40 50 60	5.4 6.8 8.1	7.0 8.7 10.4	8.4 10.5 12.6	9.8 12.3 14.8	
70 80 90	9.5 10.8 12.2	12.2 13.9 15.7	14.7 16.8 18.9	17.2 19.7 22.1	
100 200 300	13.6 27.1 40.7	17.4 34.8 52.2	21.0 42.0 63.0	24.6 49.2 73.8	
EXAMPLE: To obtain moments for a 185 pounds passenger in seat 3, add moments shown for 100 pounds (17.4), 80 pounds (13.9), and 5 pounds (0.9) for a total moment of 32.2 inch-pound/1000.					
		NOTE			

NOTE

The airplane may be configured with left single commuter seats installed on the right side, and right bench commuter seats installed on the left side. Actual seat location should be noted when computing airplane weight and balance.

Figure 6-15 (Sheet 2)

WEIGHT AND MOMENT TABLES 10 PLACE COMMUTER

Crew and Passengers (Single Commuter Seating)

Pilot/ Front Aft Passengers Seats					
	Pilot/ Front				
Weight Pounds	Passenger Seats 1 and 2 (Arm = 135.5 Inch)	3 and 4 (Arm = 173.9 Inch)	5 and 6 (Arm = 209.9 Inch)	7 and 8 (Arm = 245.9 Inch)	9 and 10 (Arm = 281.9 Inch)
			(Inch-Pound		
1 2 3 4 5	0.1 0.3 0.4 0.5 0.7	0.2 0.3 0.5 0.7 0.9	0.2 0.4 0.6 0.8 1.0	0.2 0.5 0.7 1.0 1.2	0.3 0.6 0.8 1.1 1.4
6	0.8	1.0	1.3	1.5	1.7
5 6 7 8 9 10 20 30 40 50 60	0.9 1.1 1.2 1.4 2.7 4.1 5.4 6.8 8.1	1.2 1.4 1.6 1.7 3.5 5.2 7.0 8.7 10.4	1.5 1.7 1.9 2.1 4.2 6.3 8.4 10.5 12.6	1.7 2.0 2.2 2.5 4.9 7.4 9.8 12.3 14.8	2.0 2.3 2.5 2.8 5.6 8.5 11.3 14.1 16.9
70 80 90	9.5 10.8 12.2	12.2 13.9 15.7	14.7 16.8 18.9	17.2 19.7 22.1	19.7 22.6 25.4
100 200 300	13.6 27.1 40.7	17.4 34.8 52.2	21.0 42.0 63.0	24.6 49.2 73.8	28.2 56.4 84.6
EXAMPLE: To obtain moments for a 185 pounds paasenger in seat 5, add moments shown for 100 pounds (21.0), 80 pounds (16.8), and 5 pounds (1.0) for a total moment of 38.8 inch-pound/1000.					

NOTE

The airplane may be configured with left single commuter seats installed on the right side, and right single commuter seats installed on the left side. Actual seat location should be noted when computing airplane weight and balance.

Figure 6-15 (Sheet 3)

WEIGHT AND MOMENT TABLES FUEL (JET FUEL WITH DENSITY OF 6.7 POUNDS/GALLON AT 60 °F)

		60	•)		
		Moment			Moment
Collona	Weight	Inch-		Weight	Inch-
Gallons	Pounds	Pound/1000	Gallons	Pounds	Pound/1000
		(Arm Varies)			(Arm Varies)
5	34	6.8	175	1173	238.4
10	67	13.6	180	1206	245.2
15	101	20.4	185	1240	252.0
20	134	27.2	190	1273	258.8
25	168	34.0	195	1307	265.7
30	201	40.8	200	1340	272.5
35	235	47.6	205	1374	279.3
40	268	54.4	210	1407	286.1
45	302	61.2	215	1441	292.9
50	335	68.0	220	1474	299.7
55	369	74.8	225	1508	306.5
60	402	81.6	230	1541	313.3
65	436	88.4	235	1575	320.1
70	469	95.2	240	1608	326.9
75	503	102.0	245	1642	333.7
80	536	108.8	250	1675	340.5
85	570	115.7	255	1709	347.3
90	603	122.5	260	1742	354.1
95	637	129.3	265	1776	360.9
100	670	136.1	270	1809	367.7
105	704	142.9	275	1843	374.5
110	737	149.7	280	1876	381.2
115	771	156.6	285	1910	388.0
120	804	163.4	290	1943	394.8
125	838	170.2	295	1977	401.6
130	871	177.0	300	2010	408.4
135	905	183.8	305	2044	415.2
140	938	190.6	310	2077	422.0
145	972 1005	197.5	315	2111	428.8
150	1005	204.3	320	2144	435.6
155	1039	211.1	325	2178	442.4
160 165	1072	217.9	327	2189	444.7
165	1106	224.7	330	2211	449.1
170	1139	231.5	332	2224	451.7

Figure 6-15 (Sheet 4)

WEIGHT AND MOMENT TABLES FUEL (AVIATION GASOLINE WITH DENSITY OF 6.0 POUNDS/GALLON AT 60 °F)

		Moment		,	Moment
	Weight	Inch-		Weight	Inch-
Gallons	Pounds	Pound/1000	Gallons	Pounds	Pound/1000
		(Arm Varies)		1 001100	(Arm Varies)
5	30	6.1	175	1050	213.5
10	60	12.2	180	1080	219.6
15	90	18.3	185	1110	225.7
20	120	24.4	190	1140	231.8
25	150	30.5	195	1170	237.9
30	180	36.5	200	1200	244.0
35	210	42.6	205	1230	250.1
40	240	48.7	210	1260	256.2
45	270	54.8	215	1290	262.3
50	300	60.9	220	1320	268.4
55	330	67.0	225	1350	274.5
60	360	73.1	230	1380	280.6
65	390	79.2	235	1410	286.7
70	420	85.3	240	1440	292.8
75	450	91.4	245	1470	298.9
80	480	97.5	250	1500	304.9
85	510	103.6	255	1530	311.0
90	540	109.7	260	1560	317.1
95	570	115.8	265	1590	323.2
100	600	121.9	270	1620	329.2
105	630	128.0	275	1650	335.3
110	660	134.1	280	1680	341.4
115	690	140.2	285	1710	347.5
120	720	146.3	290	1740	353.6
125	750	152.4	295	1770	359.6
130	780	158.5	300	1800	365.7
135	810	164.6	305	1830	371.8
140	840	170.7	310	1860	377.9
145	870	176.8	315	1890	384.0
150	900	182.9	320	1920	390.1
155	930	189.1	325	1950	396.2
160 165	960	195.2	326	1957	397.6
165	990	201.3	330	1980	402.2
170	1020	207.4	332	1992	404.6

Figure 6-15 (Sheet 5)

SECTION 6 MODEL 208B G1000 WEIGHT & BALANCE/EQUIPMENT LIST

CARGO (CABIN LOCATIONS)						
	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6
Weight	(Arm =	(Arm =				
Pounds	172.1	217.8	264.4	294.5	319.5	344.0
	Inch)	Inch)	Inch)	Inch)	Inch)	Inch)
				-Pound/10	<i>,</i>	
1	0.2	0.2	0.3	0.3	0.3	0.3
2 3	0.3	0.4	0.5	0.6	0.6	0.7
3	0.5	0.7	0.8	0.9	1.0	1.0
4	0.7	0.9	1.1	1.2	1.3	1.4
2 6	0.9 1.0	1.1 1.3	1.3 1.6	1.5 1.8	1.6 1.9	1.7 2.1
5 6 7	1.2	1.5	1.9	2.1	2.2	2.4
	1.4	1.7	2.1	2.4	2.6	2.8
8 9	1.5	2.0	2.4	2.7	2.9	3.1
10	1.7	2.2	2.6	2.9	3.2	3.4
20	3.4	4.4	5.3	5.9	6.4	6.9
30	5.2	6.5	7.9	8.8	9.6	10.3
40	6.9	8.7	10.6	11.8	12.8	13.8
50	8.6	10.9	13.2	14.7	16.0	17.2
60 70	10.3 12.0	13.1 15.2	15.9 18.5	17.7 20.6	19.2 22.4	20.6 24.1
80	13.8	17.4	21.2	23.6	25.6	27.5
90	15.5	19.6	23.8	26.5	28.8	31.0
100	17.2	21.8	26.4	29.5	32.0	34.4
200	34.4	43.6	52.9	58.9	63.9	68.8
300	51.6	65.3	79.3	88.4	95.9	103.2
400	68.8	87.1	105.8	117.8	127.8	
500	86.1	108.9	132.2	147.3	159.8	
600	103.3	130.7	158.6	176.7	191.7	
700	120.5	152.5	185.1 211.5	206.2	223.7	
800 900	137.7 154.9	174.2 196.0	211.5 238.0	235.6 265.1	255.6 287.6	
1000	172.1	217.8	264.4	203.1	319.5	
2000		435.6	207.7	207.0	010.0	
3000		653.4				
EXAMPLE:						
To obtain	moments	for 350 p	ounds of a	cargo in Z	one 1, ado	b
		•		nds (51.6)	-	
			•	· · ·	•	
(8.6) for a total moment of 60.2 inch-pound/1000.						

WEIGHT AND MOMENT TABLES

Figure 6-15 (Sheet 6)

WEIGHT AND MOMENT TABLES CARGO (CARGO POD LOCATIONS)

			-		
	Zone A	Zone B	Zone C	Zone D	
Weight	(Arm = 132.4	(Arm = 182.1	(Arm = 233.4	(Arm = 287.6	
Pounds	Inch)	Inch)	Inch)	Inch)	
	Moment (Inch-Pound/1000)				
1	0.1	0.2	0.2	0.3	
2 3	0.3	0.4	0.5	0.6	
3	0.4	0.5	0.7	0.9	
4	0.5	0.7	0.9	1.2	
5	0.7	0.9	1.2	1.4	
6	0.8	1.1	1.4	1.7	
7	0.9	1.3	1.6	2.0	
8	1.1	1.5	1.9	2.3	
9	1.2	1.6	2.1	2.6	
10	1.3	1.8	2.3	2.9	
20	2.6	3.6	4.7	5.8	
30	4.0	5.5	7.0	8.6	
40	5.3	7.3	9.3	11.5	
50	6.6	9.1	11.7	14.4	
60	7.9	10.9	14.0	17.3	
70	9.3	12.7	16.3	20.1	
80	10.6	14.6	18.7	23.0	
90	11.9	16.4	21.0	25.9	
100	13.2	18.2	23.3	28.8	
200	26.5	36.4	46.7	57.5	
300		54.6			
EXAMPLE:					
To obtain moments for 48 pounds of cargo in Zone A, add					
moments sho	wn in Zone A	for 40 pounds	s (5.3) and 8 p	ounds (1.1)	
		•	· · ·	、 ,	
for a total moment of 6.4 inch-pound/1000.					

Figure 6-15 (Sheet 7)

SECTION 6 WEIGHT & BALANCE/EQUIPMENT LIST

SAMPLE LOADING PROBLEM					
	SAMP	LE AIRPLANE	YOU	R AIRPLANE	
(CARGO LOADING SHOWN)	Weight	Moment	Weight	Moment	
	Pounds	Inch-Pound/1000	Pounds	Inch-Pound/1000	
1. Basic Empty Weight (Use the data					
pertaining to your airplane as it is	5005	000.4			
presently equipped (includes	5005	929.4			
unusable fuel and full oil).					
2. Usable Fuel (332 Gallons Max)	2224	451.7			
3. Pilot (Seat 1)	170	00.1			
(STA. 133.5 to 146.5)	170	23.1			
4. Front Passenger (Seat 2)					
(STA. 133.5 to 146.5)					
5. Aft Passengers					
(Commuter Seating):					
STA. 173.9					
STA. 209.9					
STA. 245.9					
STA. 281.9					
6. Baggage/Cargo					
(Cabin Locations):					
Zone 1 (STA. 155.40 to 188.70)	120	20.6			
Zone 2 (STA. 188.70 to 246.80)	416	90.6			
Zone 3 (STA. 246.80 to 282.00)	200	52.9			
Zone 4 (STA. 282.00 to 307.00)	200	58.9			
Zone 5 (STA. 307.00 to 332.00)	200	63.9			
Zone 6 (STA. 332.00 to 356.00)	50	17.2			
7. Baggage/Cargo					
(Cargo Pod Locations):					
Zone A (STA. 100.00 to 154.75)	50	6.6			
Zone B (STA. 154.75 to 209.35)	50	9.1			
Zone C (STA. 209.35 to 257.35)	50	11.7			
Zone D (STA. 257.35 to 332.00)	50	14.4			
8. RAMP WEIGHT AND MOMENT	8785	1750.1			
9. Fuel Allowance	-35	-7.0			
(for engine start, taxi, and runup)	-35	-7.0			
10. TO WEIGHT AND MOMENT	0750	1740.1			
(Subtract Step 9 from Step 8)	8750	1743.1			
11. Locate this point (8750 at 1743.1) of	on the Cente	r of Gravity Moment	Envelope, a	and since	

SAMPLE LOADING PROBLEM

11. Locate this point (8750 at 1743.1) on the Center of Gravity Moment Envelope, and since this point falls within the envelope, the loading is acceptable.

NOTE

Refer to the Weight and Moment Tables for weight and moment of crew, passengers, usable fuel, and cargo being carried. Refer to Cabin Internal Loading Arrangements for aft passengers seating arrangements.

Figure 6-16 (Sheet 1 of 2)

	SAMPLE LOADING PROBLEM						
			R AIRPLANE		R AIRPLANE		
Weight Boundo	Moment	Weight Boundo	Moment	Weight Pounds	Moment Inch-Pound/1000		
Pounds	Inch-Pound/1000	Pounds	Inch-Pound/1000	Pounus	Incri-Pound/1000		
	eral loading configura						
	or more of the above	e columns so	o that the specific loa	adings are a	vailable at a		
glance.		v	VARNING				
It is the rea	poneibility of the pilo			adad propa	rly Operations		

SAMPLE LOADING PROBLEM

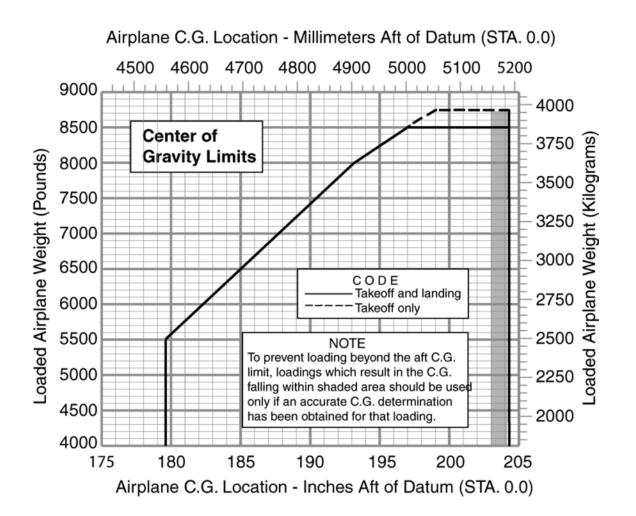
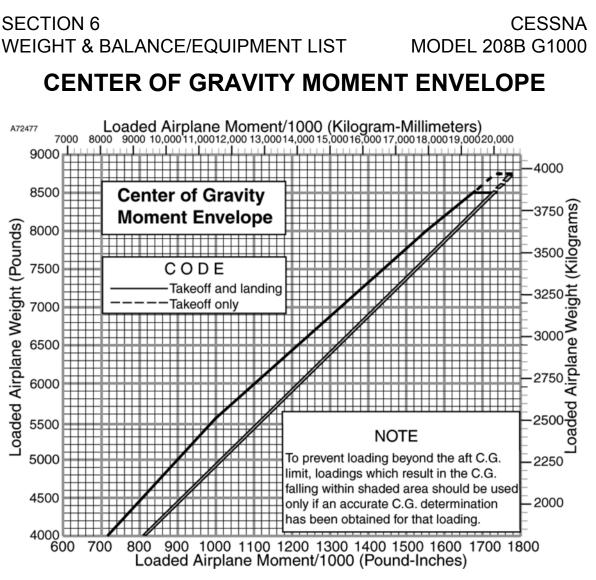

It is the responsibility of the pilot to ensure that the airplane is loaded properly. Operations outside of prescribed weight and balance limitations could result in an accident and serious or fatal injury.

Figure 6-16 (Sheet 2)

CESSNA MODEL 208B G1000 SECTION 6 WEIGHT & BALANCE/EQUIPMENT LIST

CENTER OF GRAVITY LIMITS


A72476

WARNING

It is the responsibility of the pilot to make sure that the airplane is loaded correctly. Operation outside of prescribed weight and balance limitations could result in an accident and serious or fatal injury.

Figure 6-17

WARNING

- Because loading personnel may not always be able to achieve an ideal loading, a means of protecting the C.G envelope is provided by supplying an aft C.G. location warning (shaded area) between 38.33% mac and the maximum aft c.g. of 40.33% mac on the center of gravity moment envelope. Points falling within this shaded area should be used only if accurate C.G. determination for cargo loadings can be obtained.
- It is the responsibility of the pilot to make sure that the airplane is loaded correctly. Operation outside of prescribed weight and balance limitations could result in an accident and serious or fatal injury.

CESSNA MODEL 208B G1000

SECTION 7 AIRPLANE AND SYSTEMS DESCRIPTION

SECTION 7 AIRPLANE & SYSTEMS DESCRIPTIONS

TABLE OF CONTENTS	PAGE
Introduction	7-7
Airframe	7-7
Cargo Pod	7-8
Flight Controls	7-9
Trim Systems	7-9
Flight Control and Trim System	.7-10
Instrument Panel	.7-13
Garmin Interfaces	.7-13
Panel Layout	.7-14
Control Pedestal	.7-14
Typical Instrument Panel	
Left Sidewall Switch and Circuit Breaker Panel	.7-17
Overhead Panel	.7-17
Overhead Panel	.7-18
Typical Left Sidewall Switch	
and Circuit Breaker Panel	.7-19
CAS Messages	
Ground Control	.7-22
Minimum Turning Radius	.7-23
Wing Flap System	
Landing Gear System	.7-25
Baggage/Cargo Compartment	
Seats	
Pilot's and Copilot's Seats	
Aft Passengers' Seat (Commuter) (Passenger Version)	
Aft Passengers' Seat (Utility) (Passenger Version)	
Headrests	.7-27
Seat Belts and Shoulder Harnesses figure	
Seat Belts and Shoulder Harnesses	
Seat Belts, Strap, and Shoulder Harnesses (Pilot and Copilot's	
seats)	
Cabin Entry Doors	
Crew Entry Doors	
Passenger Entry Door (Passenger Version Only)	.7-34

SECTION 7 AIRPLANE AND SYSTEMS DESCRIPTION	CESSNA MODEL 208B G1000
TABLE OF CONTENTS (Continued)	Page
	-
Cabin Windows	
Control Locks	
Typical Engine Components	
Power Lever	
Emergency Power Lever	
Propeller Control Lever	
Fuel Condition Lever	
Quadrant Friction Lock	
Engine Instrument System (EIS)	
Torque Indications	
Propeller RPM Indications	
ITT Indicator	
Gas Generator RPM Indications	7-47
Fuel Flow Indications	7-48
Oil Pressure Indication	7-48
Oil Temperature Gage	
New Engine Break-In and Operation	
Engine Lubrication System.	
Ignition System.	
Air Induction System	
Inertial Separator System	
Engine Air Flow	
Exhaust System	
Engine Fuel System	
Cooling System	
Starting System	
Engine Accessories	
Oil Pump	
Fuel Pump Number	
N _g Tachometer-Generator	
Propeller Tachometer-Generator	
Torquemeter.	
Starter/Generator	
Interstage Turbine Temperature Sensing Syste	
Propeller Governor	7-59

(Continued Next Page)

7-2

CESSNA

TABLE OF CONTENTS (Continued)	Page
Propeller Overspeed Governor	-
Engine Fire Detection System.	
Engine Gear Reduction System	
Chip Detectors	
Oil Breather Drain Can	
Propeller	
Overspeed Governor Test Switch	
•	
Fuel System	
Fuel System Figure	
Fuel Quantity Data	
Fuel Selectors off Warning System	
Fuel Boost Pump Switch	
Fuel Quantity Indicators	
Wing Tank Fuel Low CAS Message	
Reservoir Fuel Low CAS Message	
Fuel Pressure Low Warning CAS Message	
Fuel Boost Pump On CAS Message	
Drain Valves	
Fuel Drain Can	
Fuel Pump Drain Reservoir	7-69
Brake System	7-70
Electrical System	7-71
Standby Electrical System	
Generator Control Unit	7-72
Ground Power Monitor	7-72
Battery Switch	7-72
Starter Switch	
Ignition Switch	7-73
Generator Switch	
Standby Alternator Power Switch	
Avionics Power Switches	
Avionics Standby Power Switch	
Avionics Bus Tie Switch	
Typical Electrical System	
,	

(Continued Next Page)

7-3

SECTION 7 AIRPLANE AND SYSTEMS DESCRIPTION	CESSNA MODEL 208B G1000
TABLE OF CONTENTS (Continued) External Power Switch. Circuit Breakers. Voltage and Amperage Display Ground Service Plug Receptacle. Lighting Systems Exterior Lighting. Navigation Lights Landing Lights Strobe Lights Flashing Beacon Light	
Courtesy Lights Interior Lighting	
Cabin Heating, Ventilating And Defrosting Systen Bleed Air Heat Switch Temperature Selector Knob Cabin Heating, Ventilating and Defrosting System (Cargo Version) figure Mixing Air Push-Pull Control Aft/Forward Cabin Push-Pull Control Defrost/Forward Cabin Push-Pull Control Cabin Heat Firewall Shutoff Knob Vent Air Control Knobs Instrument Panel Vent Knobs Ventilating Outlets	7-85 7-85 7-86 7-88 7-88 7-89 7-89 7-89 7-89 7-89 7-89 7-89 7-89 7-89 7-90 7-90 7-90 7-90

CESSNA MODEL 208B G1000	AIRPLANE AND SYSTEMS DI	SECTION 7 ESCRIPTION
TABLE OF CONTENTS (Page
•	struments	
Vertical Speed Indicato	۲S	
	rument Panel)	
	uments	
	dby Instrument Panel)	
	Flag	
	ent	
	nstallations	
Auxiliary Audio Input Ja	ack	
Cabin Features		
Cabin Fire Extinguishe	r	
Chart and Storage Con	npartments	
Miscellaneous Equipment	· · · · · · · · · · · · · · · · · · ·	
	d Propeller Anchors	
	nbly	
	3	
	~	
-	g Net	
• •	vn Equipment	

CESSNA SECTION 7 MODEL 208B G1000 AIRPLANE AND SYSTEMS DESCRIPTION

INTRODUCTION

This section provides description and operation of the airplane and its systems. Refer to Section 9, Supplements for details of other supplemental systems and equipment.

WARNING

Complete familiarity with the airplane and its systems will not only increase the pilot's proficiency and ensure optimum operation, but could provide a basis for analyzing system malfunctions in case an emergency is encountered. Information in this section will assist in that familiarization. The responsible pilot will want to be prepared to make proper and precise responses in every situation.

AIRFRAME

The airplane is an all-metal, high-wing, single-engine airplane equipped with tricycle landing gear and designed for general utility purposes. The construction of the fuselage is a conventional formed sheet metal bulkhead, stringer, and skin design referred to as semimonocoque. Major items of structure are the front and rear carry-through spars to which the wings are attached, a bulkhead and forgings for main landing gear attachment and a bulkhead with attaching plates at its base for the strut-to-fuselage attachment of the wing struts.

The externally braced wings, having integral fuel tanks, are constructed of a front and rear spar with formed sheet metal ribs, doublers, and stringers. The entire structure is covered with aluminum skin. The front spars are equipped with wing-to-fuselage and wing-to-strut attach fittings. The aft spars are equipped with wing-to-fuselage attach fittings. The integral fuel tanks are formed by the front and rear spars, upper and lower skins, and inboard and outboard closeout ribs. Extensive use of bonding is employed in the fuel tank area to reduce fuel tank sealing.

Round-nosed ailerons and single-slot type flaps are made from conventional formed sheet metal ribs and smooth aluminum skin construction. A slot lip spoiler, mounted above the outboard end of each flap, is of conventional construction. The left aileron incorporates a servo tab while the right aileron incorporates a trimmable servo tab, both mounted on the outboard end of the aileron trailing edge.

AIRFRAME (Continued)

The empennage (tail assembly) consists of a conventional vertical stabilizer, rudder, horizontal stabilizer, and elevator. The vertical stabilizer consists of a forward and aft spar, sheet metal ribs and reinforcements, four skin panels, formed leading edge skins, and a dorsal fin. The rudder is constructed of a forward and aft spar, formed sheet metal ribs and reinforcements, and a wrap-around skin panel. The top of the rudder incorporates a leading edge extension which contains a balance weight. The horizontal stabilizer is constructed of a forward and aft spar, ribs and stiffeners, four upper and four lower skin panels, and two left and two right wrap-around skin panels which also form the leading edges. The horizontal stabilizer also contains dual jack screw type actuators for the elevator trim tabs. Construction of the elevator consists of a forward and aft spar, sheet metal ribs, upper and lower skin panels, and wrap-around skin panels for the leading and trailing edges. An elevator trim tab is attached to the trailing edge of each elevator by full length piano-type hinges. Dual pushrods from each actuator located in the horizontal stabilizer transmit actuator movement to dual horns on each elevator trim tab to provide tab movement. Both elevator tip leading edge extensions provide aerodynamic balance and incorporate balance weights. A row of vortex generators on the top of the horizontal stabilizer just forward of the elevator enhances nose down elevator and trim authority.

To assure extended service life of the airplane, the entire airframe is corrosion proofed. Internally, all assemblies and sub-assemblies are coated with a chemical film conversion coating and are then epoxy primed. Steel parts in contact with aluminum structure are given a chromate dip before assembly. Externally, the complete airframe is painted with an overall coat of polyurethane paint which enhances resistance to corrosive elements in the atmosphere. Also, all control cables for the flight control system are of stainless steel construction.

CARGO POD

The airplane may be equipped with a cargo pod which provides additional cargo space. The pod attaches to the bottom of the fuselage with screws and can be removed, if desired, for increased performance and useful load. The pod is fabricated with a Nomex inner housing, a layer of Kevlar, and an outer layer of fiberglass. Complete instructions for removal and installation of the cargo pod are contained in the Maintenance Manual.

CARGO POD (Continued)

The volume of the cargo pod is 111.5 cubic feet and has a load-carrying capacity of 1090 pounds. The pod has aluminum bulkheads that divide it into four separate compartments. Each compartment has a door on the left side of the pod that is hinged at the bottom. Each door has two handles that latch the doors in the closed position when rotated 90 degrees to the horizontal position.

FLIGHT CONTROLS

The airplane's flight control system (see Flight Control And Trim Systems figure) consists of conventional aileron, elevator and rudder control surfaces and a pair of spoilers mounted above the outboard ends of the flaps. The control surfaces are manually operated through mechanical linkage using a control wheel for the ailerons, spoilers and elevator and rudder/brake pedals for the rudder. The wing spoilers improve lateral control of the airplane at low speeds by disrupting lift over the appropriate flap. The spoilers are interconnected with the aileron system through a push-rod mounted to an arm on the aileron bell crank. Spoiler travel is proportional to aileron travel for aileron deflections in excess of 5° up. The spoilers are retracted throughout the remainder of aileron travel. Aileron servo tabs provide reduced maneuvering control wheel forces.

TRIM SYSTEMS

Manually-operated aileron, elevator, and rudder trim systems are provided (see Flight Control And Trim Systems figure). Aileron trimming is achieved by a trimmable servo tab attached to the right aileron and connected mechanically to a knob located on the control pedestal. Rotating the trim knob to the right (clockwise) will trim right wing down; conversely, rotating it to the left (counterclockwise) will trim left wing down.

Elevator trimming is accomplished through two elevator trim tabs by utilizing the vertically mounted trim control wheel on the top left side of the control pedestal. Forward rotation of the control wheel will trim nose-down; conversely, aft rotation will trim nose-up. the airplane is also equipped with an electric elevator trim system.

Rudder trimming is accomplished through the nose wheel steering bungee connected to the rudder control system and a trim control wheel mounted on the control pedestal by rotating the horizontally mounted trim control wheel either left or right to the desired trim position. Rotating the trim wheel to the right will trim nose-right; conversely; rotating it to the left will trim nose-left.

SECTION 7 AIRPLANE AND SYSTEMS DESCRIPTION MODEL 208B G1000

CESSNA

FLIGHT CONTROL AND TRIM SYSTEMS

A39391

AILERON/SPOILER CONTROL SYSTEM

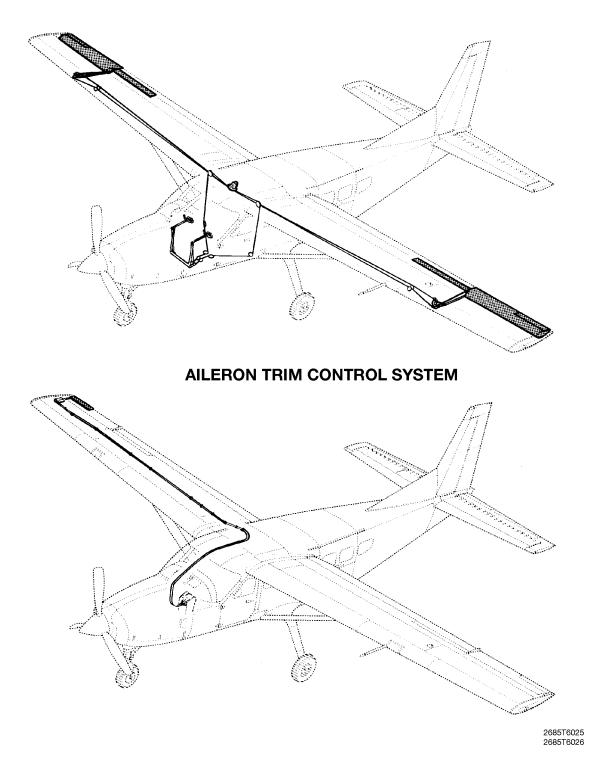
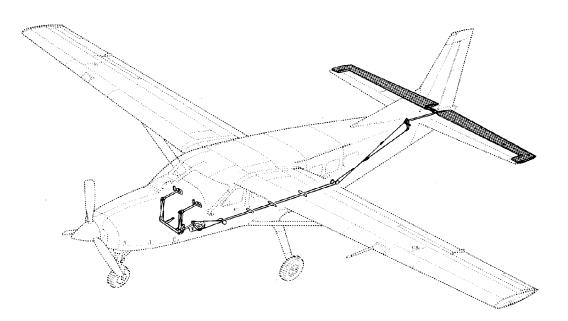
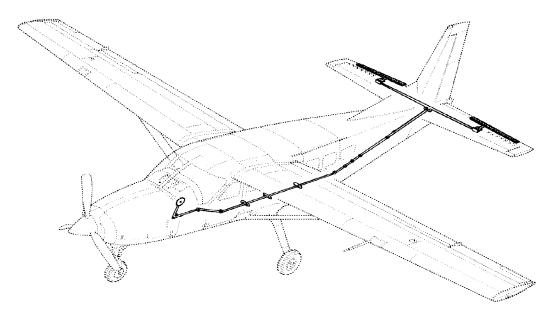


Figure 7-1 (Sheet 1 of 3)


CESSNA

SECTION 7 MODEL 208B G1000 AIRPLANE AND SYSTEMS DESCRIPTION


FLIGHT CONTROL AND TRIM SYSTEMS

A39392

ELEVATOR CONTROL SYSTEM

ELEVATOR TRIM CONTROL SYSTEM

2685T6027 2685T6028

SECTION 7 AIRPLANE AND SYSTEMS DESCRIPTION MODEL 208B G1000

CESSNA

FLIGHT CONTROL AND TRIM SYSTEMS

A39393

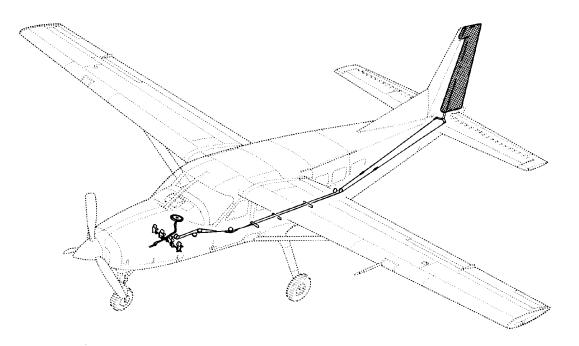


Figure 7-1 (Sheet 3 of 3)

INSTRUMENT PANEL

The instrument panel is designed around the Garmin G1000 Integrated Avionics System. The instrument panel is of all metal construction and is installed in sections so equipment can be easily removed for maintenance. Equipment mounted on this panel is illustrated in the Typical Instrument Panel figure. Additional controls and displays are mounted on a pedestal extending from the center of the instrument panel to the floor, on a separate panel mounted on the left sidewall, and on an overhead panel.

GARMIN INTERFACES

The interfaces to the Garmin system are three Garmin Display Units (GDUs), an audio panel, and an autopilot mode controller. The three GDUs are configured as two Primary Flight Displays (PFDs) and one Multifunction Flight Display (MFD). Refer to the Garmin G1000 CRG for specific operating information on all Garmin equipment.

The PFDs, centered above the yokes in front of the pilot and copilot, show the primary flight instruments and display any Crew Alert System (CAS) messages and alerts. During reversionary operation (MFD or PFD 1 failure) or when the DISPLAY BACKUP switch is selected, the Engine Indication System (EIS) is shown on the PFD.

The MFD, located between the two PFDs, depicts EIS information along the left side of the display and shows navigation, terrain, lightning and traffic data on the moving map. Flight management or display configuration information can be shown on the MFD in place of the moving map pages.

The Garmin audio panel is located between the pilot PFD and the MFD. It integrates all of the communication and navigation digital audio signals, intercom system and marker beacon controls. A pushbutton switch labeled DISPLAY BACKUP allows manual selection of reversionary mode for the PFDs and MFD.

The Garmin autopilot mode controller, located above the MFD, is the pilot interface with the autopilot system.

PANEL LAYOUT

To the left of the pilot PFD is a switch panel which has many of the switches necessary to operate the airplane systems. At lower left are a circuit breaker panel for avionics systems, the left fresh air outlet and pull knob, test switches for prop overspeed, fire detection, and fuel selection warning systems, microphone and headset jacks and an alternate static source valve.

Below the MFD are standby indicators for airspeed, attitude, altitude, and torque. Below these indicators are the parking brake, light dimming controls, inertial separator control, and cabin heat controls. Provisions are included for optional air conditioning controls and HF and ADF displays.

At lower right are the map compartment, right fresh air outlet and pull knob, and microphone and headset jacks. At upper right are the hour meter and ELT remote switch. Mounted above the glare shield is a magnetic compass. For details concerning the instruments, switches, and controls on this panel, refer in this section to the description of the systems to which these items are related.

CONTROL PEDESTAL

A control pedestal, extending from the center of the instrument panel to the floor, contains the EMERGENCY POWER Lever, power lever, PROP RPM Lever, FUEL CONDITION Lever, WING FLAP selector and position indicator, elevator, rudder and aileron trim controls with position indicators, the fuel shutoff valve control, cabin heat firewall shutoff valve control, a microphone, 12VDC power outlet, and an auxiliary audio input jack

Equipment mounted on this panel is illustrated in the Typical Instrument Panel figure. For details concerning the instruments, switches, and controls on the pedestal, refer in this section to the description of the systems to which these items are related. CESSNA

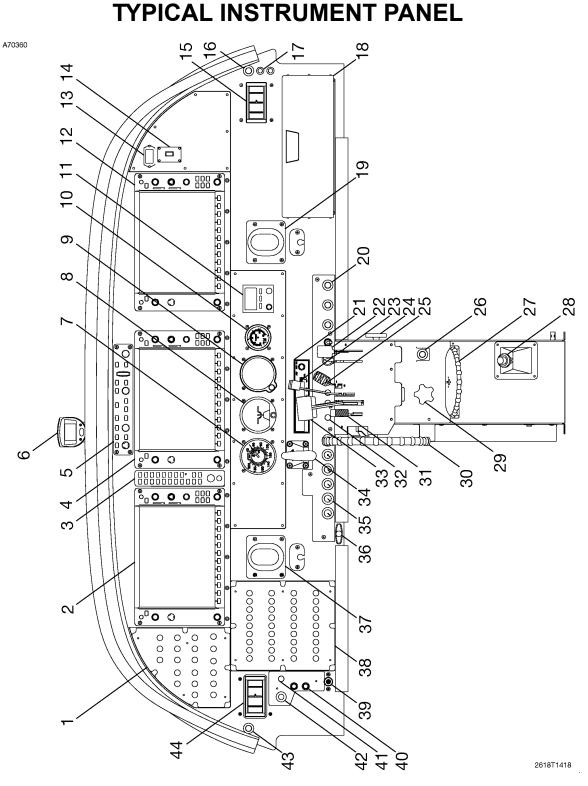


Figure 7-2 (Sheet 1 of 2)

U.S. 7-15

	2. Primary Flight Display (PFD), Pilot	24. Quadi
	3. Audio Panel	25. Fuel (
	4. Multi-Function Display (MFD)	26. Fuel S
-	5. Autopilot Mode Controller	27. Rudd
:	6. Magnetic Compass	28. Cabin
	7. Airspeed Indicator (Backup)	29. Ailero
. 7	8. Attitude Indicator (Backup)	30. Eleva
0	9. Altimeter (Backup)	31. Emerg
(0	10. Torque Indicator (Backup)	32. Air Co
	11. HF Radio Control Head (Optional)	33. Powe
	12. Primary Flight Display (PFD), Co-pilot	34. Inertis
	13. Flight Hourmeter	35. Lighti
- 4	14. ELT Remote Switch	36. Parkir
	15. Instrument Panel Ventilation Outlet	37. Pilot's
	16. Instrument Panel Ventilation Control	38. Avion
	17 Binht Auvilian, Min and Dhona Tanka	20 Ctatio

Figure 7-2 (Sheet 1 of 2)

or Trim Control Wheel and Position Indicator er Trim Control Wheel and Position Indicator 41 Fuel Shutoff Warning and Fire Detect Test Switch n Trim Control Knob and Position Indicator 39. Static Pressure Alternate Source Valve Pilot's Auxiliary Mic and Phone Jacks 43. Instrument Panel Ventilation Control onditioning Switches (Optional) Heat Firewall Shutoff Control 44. Instrument Panel Ventilation Outlet 42. Overspeed Governor Test Switch Control Wheel Location ics Circuit Breaker Panel al Separator Control gency Power Lever ant Friction Lock 23. Propeller Control Lever ng Brake Handle Condition Lever shutoff Control ng Rheostats r Lever 40. 21. ADF Receiver (Optional) 22. Wing Flap Selector Lever and Position Indicator Hight Auxiliary Ivlic and Phone Jacks 19. Co-Pilot's Control Wheel Location 20. Cabin Heat Controls 18. Map Compartment 1. Switch Panel

SECTION 7 AIRPLANE AND SYSTEMS DESCRIPTION

TYPICAL INSTRUMENT PANEL

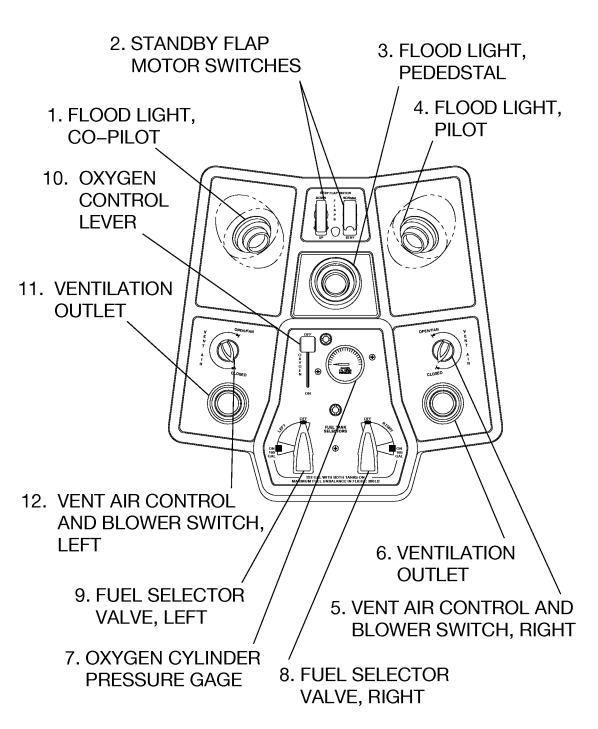
U.S.

208BPHBUS-00

LEFT SIDEWALL SWITCH AND CIRCUIT BREAKER PANEL

Most of the engine control switches and non-avionics circuit breakers are located on a separate panel mounted on the left cabin sidewall adjacent to the pilot. Switches and controls on this panel are illustrated in the Typical Left Sidewall Switch and Circuit Breaker Panel figure. For details concerning the instruments, switches, and controls on this panel, refer to the ELECTRICAL EQUIPMENT descriptions in this section.

OVERHEAD PANEL


The overhead panel, located above and between the pilot and copilot, contains fuel selector controls, oxygen control and pressure gage, vent outlets and controls, overhead lighting, and standby flap controls. Equipment mounted on this panel is illustrated in the Overhead Panel figure. For details concerning the instruments, switches, and controls on the overhead panel, refer in this section to the description of the systems to which these items are related.

SECTION 7 AIRPLANE AND SYSTEMS DESCRIPTION MODEL 208B G1000

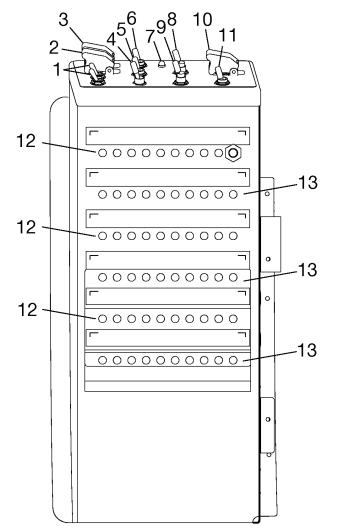
CESSNA

OVERHEAD PANEL

A70354

2614T1411

TYPICAL LEFT SIDEWALL SWITCH AND CIRCUIT BREAKER PANEL


A70353

1. AVIONICS POWER SWITCH/BREAKERS (2)

2. AVIONICS BUS TIE SWITCH/BREAKER

3. AVIONICS STANDBY POWER SWITCH/BREAKER

- 4. STARTER SWITCH
- **5. IGNITION SWITCH**
- 6. STANDBY POWER SWITCH
- 7. STANDBY POWER INDICATOR LIGHT
- 8. FUEL BOOST SWITCH
- 9. GENERATOR SWITCH
- **10. EXTERNAL POWER SWITCH**
- 11. BATTERY SWITCH
- 12. GENERAL CIRCUIT BREAKER BUS 1
- 13. GENERAL CIRCUIT BREAKER BUS 2

208BPHBUS-00

2618T1417

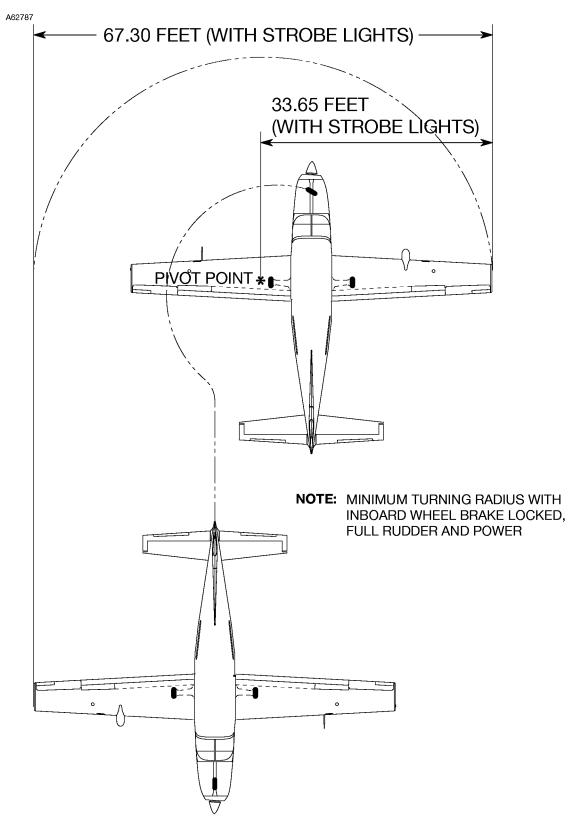
CAS MESSAGES

- 1. OIL PRESS LOW (RED) Indicates engine oil pressure is less than 40 psi.
- 2. VOLTAGE LOW (RED) Indicates electrical system bus voltage is less than 24.5 volts and power is being supplied from the battery.
- 3. VOLTAGE HIGH (RED) Indicates electrical system bus voltage is greater than 32.0 volts.
- 4. ENGINE FIRE (RED) Indicates an excessive temperature condition and/or fire has occurred in the engine compartment.
- 5. RSVR FUEL LOW (RED) Indicates the fuel level in the reservoir tank is approximately one-half or less. There is adequate fuel in the fuel reservoir for approximately 3 minutes of maximum continuous power or approximately 9 minutes at idle power.
- 6. EMERG PWR LVR (RED) Indicates when the Emergency Power Lever is out of the stowed (Normal) position prior to and during the engine start (ITT in the OFF and STRT modes ONLY).
- 7. FUEL SELECT OFF (RED) Indicates left and right fuel selectors are both OFF at any time, or left fuel selector is OFF when right tank is low, or right fuel selector is OFF when the left tank is low; or that either left or right selectors are OFF when starter switch is ON. It can also indicate that the FUEL SEL WARN circuit breaker has been pulled.
- 8. GENERATOR OFF (AMBER) Indicates that the generator is not connected to the aircraft bus.
- 9. DOOR UNLATCHED (AMBER) Indicates the upper cargo door and/or upper aft passenger door (passenger version only) are not latched.
- 10.L FUEL LEVEL LOW (AMBER) Indicates fuel quantity in the left fuel tank is 25 gallons (170 lbs) or less.

CAS MESSAGES (Continued)

- 11.R FUEL LEVEL LOW (AMBER) Indicates fuel quantity in the right fuel tank is 25 gallons (170 lbs) or less.
- 12.L-R FUEL LEVEL LOW (AMBER) Indicates fuel quantity in both the left and right fuel tanks is 25 gallons (170 lbs) or less.
- 13.FUEL BOOST ON (AMBER) Indicates the auxiliary fuel pump is operating.
- 14.STBY PWR INOP (AMBER) Indicates electrical power is not available from the standby alternator.
- 15.PROP DE-ICE (AMBER) Indicates that one or more propeller blades are not heating, there is a malfunction in the monitoring system, or that the PROP ANTI-ICE circuit breaker is pulled.
- 16.FUEL PRESS LOW (AMBER) Indicates fuel pressure in the fuel manifold assembly is below 4.75 psi.
- 17.STARTER ON (AMBER) Indicates the starter-generator is operating in starter mode.
- 18.CHIP DETECT (AMBER) Indicates that metal chips have been detected in either or both the accessory gearbox or reduction gearbox.
- 19.L P/S HEAT (AMBER) Indicates that either the left side pitot/ static vane heater system has malfunctioned or that the LEFT PITOT HEAT circuit breaker is pulled.
- 20.R P/S HEAT (AMBER) Indicates that either the right side pitot/ static vane heater system has malfunctioned or that the RIGHT PITOT HEAT circuit breaker is pulled.
- 21.L-R P/S HEAT (AMBER) Indicates that either both pitot/static vane heater systems (left and right) have malfunctioned or that both the LEFT and RIGHT PITOT HEAT circuit breakers are pulled.
- 22.STALL HEAT (AMBER) Indicates that the stall warning heater system has malfunctioned or the STALL WARN circuit breaker is pulled in conditions below 19°C (66°F) or above 52°C (125°F).

CAS MESSAGES (Continued)


- 23.GENERATOR AMPS (AMBER) Indicates that the generator output is less than -10 amps or greater than 200 amps (-15/300 with 300 amp starter generator).
- 24.ALTNR AMPS (AMBER) Indicates that the alternator output is less than -10 amps or greater than 75 amps.
- 25.IGNITION ON (WHITE) Indicates electrical power is being supplied to the engine ignition system.
- 26.STBY PWR ON (WHITE) Indicates that the standby alternator is generating electrical power.
- 27.SPD NOT AVAIL (WHITE) Indicates that the "SPD" key was pressed on Autopilot Mode Control panel.

GROUND CONTROL

Effective ground control while taxiing is accomplished through nose wheel steering by using the rudder pedals; left rudder pedal to steer left and right rudder pedal to steer right. When a rudder pedal is depressed, a spring-loaded steering bungee (which is connected to the nose gear and to the rudder bars) will turn the nose wheel through an arc of approximately 15° each side of center. By applying either left or right brake, the degree of turn may be increased up to 51.5°.

Moving the airplane by hand is most easily accomplished by attaching a tow bar (stowed in aft cargo compartment) to the nose gear fork axle holes. If a tow bar is not available, or pushing is required, use the wing struts as push points. Do not use the propeller blades or spinner to push or pull the airplane. If the airplane is to be towed by vehicle, never turn the nose wheel beyond the steering limit marks either side of center. If excess force is exerted beyond the turning limit, a red overtravel indicator block (frangible stop) will fracture and the block, attached to a cable, will fall into view alongside the nose strut. This should be checked routinely during preflight inspection to prevent operation with a damaged nose gear.

The minimum turning radius of the airplane, using differential braking and nose wheel steering during taxi, is as shown in the Minimum Turning Radius figure. CESSNA

MINIMUM TURNING RADIUS

Figure 7-5

WING FLAP SYSTEM

The wing flaps are large span, single-slot type (see Wing Flap System figure) and incorporate a trailing edge angle and leading edge vortex generators to reduce stall speed and provide enhanced lateral stability. The flaps are driven by an electric motor. They are extended or retracted by positioning the WING FLAP selector lever on the control pedestal to the desired flap deflection position. The selector lever is moved up or down in a slotted panel that provides mechanical stops at the 10° and 20° positions. For flap deflections greater than 10°, move the selector lever to the right to clear the stop and position it as desired. A scale and white-tipped pointer on the left side of the selector lever provides a flap position indication. The wing flap system is protected by a "pull-off" type circuit breaker, labeled FLAP MOTOR, on the left sidewall switch and circuit breaker panel.

A standby system can be used to operate the flaps in the event the primary system should malfunction. The standby system consists of a standby motor, a guarded standby flap motor switch and a standby flap motor up/down switch located on the overhead panel. Both switches have guards which are safetied in the closed position, with breakable copper wire.

The guarded standby flap motor switch has NORM and STBY positions. The guarded NORM position of the switch permits operation of the flaps using the control pedestal mounted selector; the STBY position is used to disable the dynamic braking of the primary flap motor when the standby flap motor system is operated.

The standby flap motor up/down switch has UP, center OFF and DOWN positions. The switch is guarded in the center off position. To operate the flaps with the standby system, lift the guard breaking safety wire, and place the standby flap motor switch in STBY position; then, lift the guard, breaking safety wire and actuate the standby flap motor up/ down switch momentarily to UP or DOWN, as desired. Observe the flap position indicator to obtain the desired flap position. Since the standby flap motor up/down switch should be terminated before the flaps reach full up or down travel. After actuation of the standby flap motor system, switch guards should be resafetied to the closed position by maintenance personnel when maintenance action is accomplished. The standby flap system is protected by a "pull-off" type circuit breaker, labeled STBY FLAP MOTOR, located on the left sidewall switch and circuit breaker panel.

CESSNA MODEL 208B G1000

SECTION 7 AIRPLANE AND SYSTEMS DESCRIPTION

WING FLAP SYSTEM

A39400

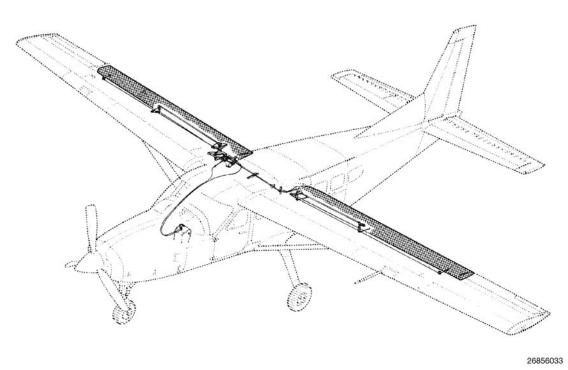


Figure 7-6

LANDING GEAR SYSTEM

The landing gear is of the tricycle type with a steerable nose wheel and two main wheels. Shock absorption is provided by the tubular springsteel main landing gear struts, an interconnecting spring-steel tube between the two main landing gear struts, and the nose gear oil-filled shock strut and spring-steel drag link. Each main gear wheel is equipped with a hydraulically-actuated single-disc brake on the inboard side of each wheel. To improve operation from unpaved runways, and in other conditions, the standard nose gear fork can be replaced with a three-inch extended nose gear fork.

BAGGAGE/CARGO COMPARTMENT

In the passenger version, the space normally used for baggage consists of the raised area from the back of the cargo doors to the aft cabin bulkhead. Access to the baggage area is gained through the cargo doors, the aft passenger door or from within the cabin. Quick-release tie-down ring/strap assemblies are provided for securing baggage and are attached to baggage floor anchor plates provided in the airplane When utilizing the airplane as a cargo carrier, refer to Section 6 for complete cargo loading details. When loading aft passengers in the passenger version, they should not be placed in the baggage area unless the airplane is equipped with special seating for this area. Also any material that might be hazardous to the airplane. For baggage/cargo area and door dimensions, refer to Section 6.

SEATS

Standard seating consists of both a pilot's and copilot's six-way adjustable seat. Additional cabin seating is available in the passenger version in two different Commuter configurations and one Utility configuration. One Commuter configuration consists of three rows of two-place fixed seats and two (or three) rows of one-place fixed seats. A second Commuter configuration consists of four rows of one-place fixed seats on each side of the cabin. The Utility configuration consists of four rows of one-place, fixed-position collapsible seats on each side of the cabin.

WARNING

None of the airplane seats are approved for installation facing aft.

PILOT'S AND COPILOT'S SEATS

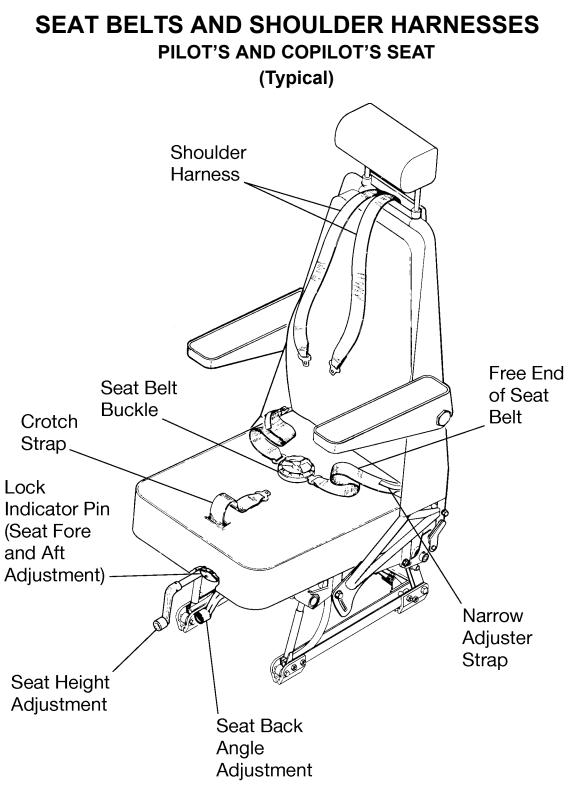
The six-way adjustable pilot's or copilots seats may be moved forward or aft, adjusted for height, and the seat back angle changed. Position the seat by pulling on the small T-handle under the center of the seat bottom and slide the seat into position; then release the handle, and check that the seat is locked in place by attempting to move the seat and by noting that the small pin on the end of the T-handle sticks out.

PILOT'S AND COPILOT'S SEATS (Continued)

The seat is not locked if the pin is retracted or only partially extends. Raise or lower the seat by rotating a large crank under the front right corner of the seat. Seat back angle is adjusted by rotating a small crank under the front left corner of the seat. The seat bottom angle will change as the seat back angle changes, providing proper support. Seats are equipped with armrests which can be moved to the side and raised to a position beside the seat back for stowage.

AFT PASSENGERS' SEATS (COMMUTER) (Passenger Version)

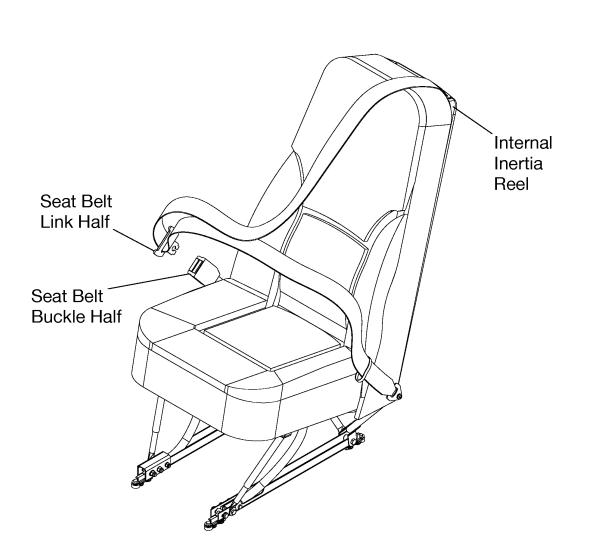
The third, sixth and eleventh seats of one Commuter configuration and all aft seats of the second Commuter configuration are individual fixedposition seats with fixed seat backs. Seats for the fourth and fifth, seventh and eighth, and ninth and tenth positions of the first Commuter configuration are two-place, fixed-position bench type seats with fixed seat backs. All seats are fastened with quick-release fasteners in the fixed position to the seat tracks. The seats are lightweight and quickremovable to facilitate cargo hauling.


AFT PASSENGERS' SEATS (UTILITY) (Passenger Version)

Individual collapsible seats are available for the aft eight passenger positions. The seats, when not in use, are folded into a compact space for stowage in the aft baggage area. When desired, the seats can be unfolded and installed in the passenger area. The seats are readily fastened with quick-release fasteners to the seat tracks in any one of the eight seat positions.

HEADRESTS

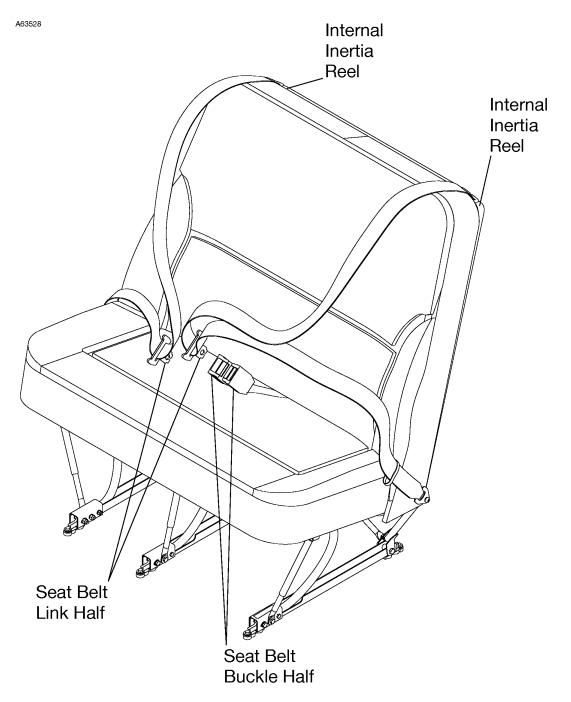
Headrests are available for all pilot and passenger seat configurations, except the Utility aft passenger seats. To adjust a pilot's seat or copilot seat headrest, apply enough pressure to it to raise or lower it to the desired level. The aft passenger seat headrests are not adjustable. SECTION 7 AIRPLANE AND SYSTEMS DESCRIPTION


CESSNA MODEL 208B G1000

CESSNA

SEAT BELTS AND SHOULDER HARNESSES **AFT PASSENGERS' SEATS** (Individual Commuter Seating Shown)

A63522


U.S.

26191158

SEAT BELTS AND SHOULDER HARNESSES

AFT PASSENGERS' SEATS

(Dual Commuter Seating Shown)

26191159

Figure 7-7 (Sheet 3 of 3)

U.S. 7-30

208BPHBUS-00

CESSNASECTION 7MODEL 208B G1000AIRPLANE AND SYSTEMS DESCRIPTION

SEAT BELTS AND SHOULDER HARNESSES

All seat positions are equipped with seat belts and shoulder harnesses. The pilot's and copilot's seat positions are equipped with shoulder harnesses with inertia reels.

WARNING

Failure to correctly use seat belts and shoulder harnesses could result in serious or fatal injury in the event of an accident.

SEAT BELTS, STRAP, AND SHOULDER HARNESSES (PILOT AND COPILOT SEATS)

Both the pilot's and copilot's seat positions are equipped with a fivepoint restraint system which combines the function of conventional type seat belts, a crotch strap, and an inertial reel equipped double-strap shoulder harness in a single assembly. The seat belts and crotch strap attach to fittings on the lower seat frame and the inertia reel for the shoulder harness attaches to the frame of the seat back.

The right half of the seat belt contains the buckle, which is the connection point for the left belt half, crotch strap, and shoulder harnesses. The left belt, crotch strap, and shoulder harnesses are fitted with links which insert into the buckle. Both halves of the seat belt have adjusters with narrow straps to enable the belt halves to be lengthened prior to fastening.

SECTION 7 AIRPLANE AND SYSTEMS DESCRIPTION

SEAT BELTS, STRAP, AND SHOULDER HARNESSES (PILOT AND COPILOT SEATS) (Continued)

To use the restraint system, lengthen each half of the belt as necessary by pulling the buckle (or connecting link) to the lap with one hand while pulling outward on the narrow adjuster strap with the other hand. Insert the left belt link into the left slot of the buckle. Bring the crotch strap upward and insert its link into the bottom slot in the buckle. Finally, position each strap of the shoulder harness over the shoulders and insert their links into the upper slots in the buckle. the seat belts should be tightened for a snug fit by grasping the free end of each belt and pulling up and inward.

During flight operations, the inertia reel allows complete freedom of upper body movement; however, in the event of a sudden deceleration, the reel will lock automatically to protect the occupant.

WARNING

Failure to correctly use seat belts and shoulder harnesses could result in serious or fatal injury in the event of an accident.

Release of the belts, strap, and shoulder harnesses is accomplished by simply twisting the front section of the buckle in either direction and pulling all connecting links free.

CESSNA SECTION 7 MODEL 208B G1000 AIRPLANE AND SYSTEMS DESCRIPTION

CABIN ENTRY DOORS

Entry to, and exit from the airplane is accomplished through a door on each side of the cabin at the pilot's and copilot's positions and, on the Passenger Version only, through a two-piece, airstair-type door on the right side of the airplane aft of the wing (refer to Section 6 for cabin and cabin entry door dimensions). A cargo door on the left side of the airplane aft of the wing, also can be used for cabin entry.

CREW ENTRY DOORS

The left door for crew entry has a conventional exterior door handle, a key-operated door lock, a conventional interior door handle, a lock override knob, and an openable window. The right door for crew entry has a conventional exterior door handle, a conventional interior door handle, and a manually-operated inside door lock. To open either entry door from outside the airplane (if unlocked), rotate the handle down and forward to the OPEN position. To close the door from inside the airplane, use the conventional door handle and door pull. The inside door handle is a three-position handle with OPEN, CLOSE and LATCHED positions. Place the handle forward to the LATCHED position. When the handle is rotated to the LATCHED position, an over-center action will hold it in that position.

CAUTION

Failure to correctly close and latch the left and right crew entry doors may cause the doors to open in flight.

A lock override knob on the inside of the left door for crew entry provides a means of overriding the outside door lock from inside the airplane. To operate the override, pull the knob and rotate it in the placarded direction to unlock or lock the door. Both crew doors should be latched before flight, and should not be opened intentionally during flight. To lock the doors for crew entry when leaving the airplane, lock the right door with the manually-operated inside door lock, close the left door, and, using the key, lock the door.

PASSENGER ENTRY DOOR (Passenger Version Only)

The entry door for passengers consists of an upper and lower section. When opened, the upper section swings upward and the lower section drops down providing integral steps to aid in boarding or exiting the airplane. The upper door section incorporates a conventional exterior door handle with a separate key-operated lock, a pushbutton exterior door release, and an interior door handle which snaps into a locking receptacle. The lower door section features a flush handle which is accessible from either inside or outside the airplane. This handle is designed so that when the upper door is closed, the handle cannot be rotated to the OPEN position. The lower door also contains integral door support cables and a door-lowering device. A cabin door unlatched warning system is provided as a safety feature so that if the upper door is not properly latched, an Amber DOOR UNLATCHED CAS MSG located on the PFD illuminates to alert the pilot.

To enter the airplane through the passenger entry door, depress the exterior pushbutton door release, rotate the exterior door handle on the upper door section counterclockwise to the open position, and raise the door section to the overcenter position. Following this action, the automatic door lift with the telescoping gas spring raises the door to the full up position. When the upper section is open, release the lower section by pulling up on the inside door handle and rotating the handle to the OPEN position. Lower the door section until it is supported by the integral support cables. The door steps deploy automatically from their stowed positions.

WARNING

The outside proximity of the lower door section must be clear before opening the door.

CESSNA SECTION 7 MODEL 208B G1000 AIRPLANE AND SYSTEMS DESCRIPTION

PASSENGER ENTRY DOOR (Passenger Version Only) (Continued)

To close the passenger entry door from the inside of the airplane, grasp the support cables of the lower door section and pull the door up until the top edge is within reach, then grasp the center of the door and pull inboard until the door is held snugly against the fuselage door frame. Rotate the inside handle forward to the CLOSE position and latch the lower door section.

Check that the lower front and rear latches are correctly engaged. After the lower door section is secured, grasp the pull strap on the upper door section and pull down and inboard. As the door nears the closed position, pull inboard firmly to make sure the latching pawls engage correctly. When the latching pawls are engaged, rotate the inside handle counterclockwise to the horizontal (latched) position, but do not use excessive force. If the handle will not rotate easily, the door is not fully closed. Use a more firm closing motion to get the latching pawls to engage and rotate the door handle again to the latched position. Then snap the interior handle into its locking receptacle.

CAUTION

Refer to Section 3, Emergency Procedures, for proper operational procedures to be followed if the passenger entry door should inadvertently open in flight.

To exit the airplane through the passenger entry door, pull the upper door section inside handle from its locked position receptacle, rotating the handle clockwise to the open position as you push the door outward. When the door is partially open, the automatic door lift will raise the upper door section to the fully open position. Next, rotate the door handle of the lower section up and aft to the open position and push the door outward. The telescoping gas spring will lower the door to its fully open position and the integral steps will deploy.

WARNING

The outside proximity of the lower door section must be clear before opening the door.

PASSENGER ENTRY DOOR (Passenger Version Only) (Continued)

To close the passenger entry door from outside the airplane, raise the lower door section until the door is held firmly against the door frame in the fuselage. Rotate the inside handle of the lower door section forward and down to the CLOSE position. After the lower door section is secured, grasp the pull strap on the upper door section and pull down. As the door nears the closed position, grasp the edge of the door and push inward firmly to make sure the latching pawls engage correctly. When engaged, rotate the outside door handle clockwise to the horizontal (latched) position. After entering the airplane, snap the interior handle of the upper door into its locking receptacle (unless cargo obstructs access to the door). If desired when leaving the airplane parked, use the key in the outside key lock to lock the handle in the horizontal position.

WARNING

Do not use the outside key lock to lock the door prior to flight. The door could not be opened from the inside if it were needed as an emergency exit.

CAUTION

Failure to properly latch the upper passenger door section will result in illumination of the Amber DOOR WARNING CAS MSG. Inattention to this safety feature may allow the upper cargo door to open in flight.

The exterior pushbutton-type lock release located on the upper door section just forward of the exterior door handle operates in conjunction with the interior door handle. It is used whenever it is desired to open the door from outside the airplane while the interior door handle is in the locked position. Depress the pushbutton to release the lock of the interior door handle and to allow the exterior door handle to function normally to open the door.

CESSNA	SECTION 7
MODEL 208B G1000	AIRPLANE AND SYSTEMS DESCRIPTION

CARGO DOORS

A two-piece cargo door is installed on the left side of the airplane just aft of the wing trailing edge. The cargo door is divided into an upper and a lower section. When opened, the upper section swings upward and the lower section swings forward to create a large opening in the side of he fuselage which facilitates the loading of bulky cargo into the cabin. The upper section of the cargo door incorporates a conventional exterior door handle with a separate key-operated lock, and, on the Passenger Version only, a pushbutton exterior emergency door release and an interior door handle which snaps into a locking receptacle. The upper door also incorporates two telescoping door lifts which raise the door to the fully open position, when opened. A cargo door open warning system is provided as a safety feature so that if the upper door is not properly latched an Amber CAS MSG, labeled DOOR UNLATCHED, located on the PFD, illuminates to alert the pilot. The lower door section features a flush handle which is accessible from either inside or outside the airplane. The handle is designed so that when the upper door is closed, the handle cannot be rotated to the open position.

WARNING

In an emergency, do not attempt to exit the cargo version through the cargo doors. Because the inside of the upper door has no handle, exit from the airplane through these doors without outside assistance is not possible.

CAUTION

Failure to properly latch the upper cargo door section will result in illumination of the Amber DOOR WARNING CAS MSG. Inattention to this safety feature may allow the upper cargo door to open in flight.

To open the cargo door from outside the airplane, depress the upper door section exterior pushbutton door release (Passenger Version only) and rotate the exterior door handle clockwise to the open position. Following this action, the telescoping door lifts will automatically raise the door to the full up position. When the upper section is open, release the lower section by pulling up on the inside door handle and rotating the handle to the OPEN position. Open the door forward until it swings around next to the fuselage where it can be secured to the fuselage by a holding strap or chain.

CARGO DOORS (Continued)

To close the cargo door from outside the airplane, disconnect the holding strap or chain from the fuselage, swing the door aft to the closed position, and hold the door firmly against the fuselage door frame to assure engagement of the latching pawls. Rotate the inside handle forward and down to the CLOSE position to latch the lower door section. After the lower door section is secured, grasp the pull strap on the upper door section and pull down. As the door nears the closed position, grasp the edge of the door and push inward firmly to assure engagement of the latching pawls. When engaged, the exterior door handle can be rotated counterclockwise to the horizontal (latched) position. On the Passenger Version only, after entering the airplane, snap the upper door interior handle into its locking receptacle (unless cargo obstructs access to the door). If desired when leaving the airplane parked, use the key in the outside key lock to lock the handle in the horizontal position.

To open the cargo door from inside the airplane (Passenger Version only), pull the inside door handle of the upper door section from its locked position receptacle. Rotate the handle counterclockwise to the vertical position, and push the door outward. When the door is partially open, the automatic door lifts will raise the upper door section to the fully open position. Next, rotate the door handle of the lower section door up and aft to the open position and push the aft end of the door outward. The door may be completely opened and secured to the fuselage with the holding strap or chain from outside.

WARNING

Do not attempt to exit the cargo version through the cargo doors. Because the inside of the upper door has no handle, exit from the airplane through these doors is not possible without outside assistance.

To close the cargo door from inside the airplane (Passenger Version only), disconnect the holding strap or chain from the fuselage and secure it to the door. Pull the door aft to the closed position and hold the aft edge of the door firmly against the fuselage door frame to assure engagement of the latching pawls. Rotate the inside handle forward and down to the CLOSE position to latch the lower door section (refer to Section 2, Placards). After the lower door section is secured, grasp the pull strap on the upper door section and pull down. As the door nears the closed position, grasp the edge of the door and pull inward firmly to assure engagement of the latching pawls. When engaged, the interior door handle can be rotated clockwise to the horizontal position. Snap the handle into its locking receptacle.

CESSNA	SECTION 7
MODEL 208B G1000	AIRPLANE AND SYSTEMS DESCRIPTION

CABIN WINDOWS

The airplane is equipped with a two-piece windshield reinforced with a metal center strip. The passenger version has sixteen cabin side windows of the fixed type including one each in the two crew entry doors, two windows in the cargo door upper section, and one window in the upper section of the passenger entry door. The pilot's side window incorporates a small triangular foul weather window. The foul weather window may be opened for ground ventilation and additional viewing by twisting the latch. The cargo version has only two cabin side windows, one in each crew entry door.

CONTROL LOCKS

A control lock is provided to lock the aileron and elevator control surfaces to prevent damage to these systems by wind buffeting while the airplane is parked. The lock consists of a shaped steel rod and flag. The flag identifies it as a control lock and cautions about its removal before starting the engine. To install the control lock, align the hole in the right side of the pilot's control wheel shaft with the hole in the right side of the shaft collar on the instrument panel and insert the rod into the aligned holes. Installation of the lock will secure the ailerons in a neutral position and the elevators in a slightly trailing edge down position. Proper installation of the lock will place the flag over the left sidewall switch panel.

The Ruder Gust Lock is a positive locking device consisting of a bracket assembly and a bolt action lock attached to the rear bulkhead inside the tailcone stinger below the rudder. When engaged, the rudder is locked in the neutral position. A placard located below the lock handle shaft on the left side of the tailcone explains the operation of the rudder gust lock. The rudder gust lock is manually engaged and disengaged on the ground by turning the airfoil-shaped handle mounted on the shaft projecting from the left side of the tailcone. The lock is engaged by turning the handle downward so that its trailing edge points nearly due aft.

CONTROL LOCKS (Continued)

The Rudder Gust Lock has a fail-safe connection to the elevator control system to ensure that it will always be disengaged before the airplane becomes airborne. This fail-safe connection automatically disengages the lock when the elevator is deflected upward about one-fourth of its travel from neutral. The pilot is responsible for disengaging the Rudder Gust Lock during the preflight inspection and operating the fail-safe disengagement mechanism by momentarily deflecting the elevator to the full up position after the control lock is removed and before starting the engine. If these procedures are not followed the rudder and rudder pedals will be locked in the neutral position making ground steering impossible. In the event that the engagement of the Rudder Gust Lock goes completely unnoticed and the pilot commences a takeoff run with the rudder system locked, the upward elevator deflection during rotation will disengage the Rudder Gust Lock.

Because of the fail-safe system, the elevator lock should always be engaged prior to engaging the Rudder Gust Lock when securing the airplane after shutdown.

NOTE

The control lock and any other type of locking device should be removed or unlocked prior to starting the engine.

ENGINE

The Pratt & Whitney Canada Inc. PT6A-114A powerplant is a free turbine engine. It utilizes two independent turbines; one driving a compressor in the gas generator section, and the second driving a reduction gearing for the propeller.

Inlet air enters the engine through an annular plenum chamber formed by the compressor inlet case where it is directed to the compressor. The compressor consists of three axial stages combined with a single centrifugal stage, assembled as an integral unit.

A row of stator vanes located between each stage of compressor rotor blades diffuses the air, raises its static pressure and directs it to the next stage of compressor rotor blades. The compressed air passes through diffuser ducts which turn it 90° in direction. It is then routed through straightening vanes into the combustion chamber.

CESSNASECTION 7MODEL 208B G1000AIRPLANE AND SYSTEMS DESCRIPTION

ENGINE (Continued)

The combustion chamber liner located in the gas generator case consists of an annular reverse-flow weldment provided with varying sized perforations which allow entry of compressed air. The flow of air changes direction to enter the combustion chamber liner where it reverses direction and mixes with fuel. The location of the combustion chamber liner eliminates the need for a long shaft between the compressor and the compressor turbine, thus reducing the overall length and weight of the engine.

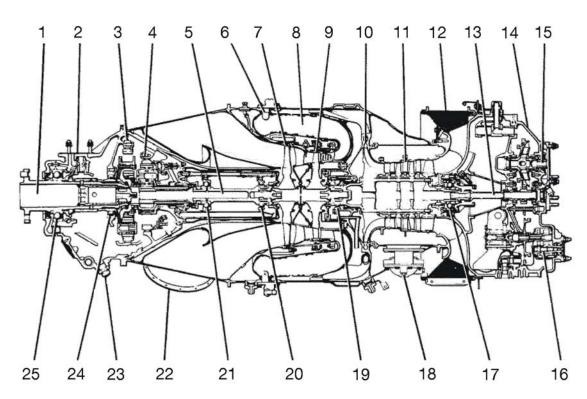
Fuel is injected into the combustion chamber liner by 14 simplex nozzles supplied by a dual manifold. the mixture is initially ignited by two spark igniters which protrude into the combustion chamber liner. The resultant gases expand from the combustion chamber liner, reverse direction and pass through the compressor turbine guide vane to the compressor turbine. The turbine guide vanes ensure that the expanding gases impinge on the turbine blades at the proper angle, with a minimum loss of energy. The still expanding gases pass forward through a second set of stationary guide vanes to drive the power turbine.

The compressor and power turbines are located in the approximate center of the engine with their shafts extending in opposite directions. The exhaust gas from the power turbine is directed through an exhaust plenum to the atmosphere via a single exhaust port on the right side of the engine.

The engine is flat rated at 675 shaft horsepower (1865 foot-pounds torque at 1900 RPM varying linearly to 1970 foot-pounds torque at 1800 RPM). The speed of the gas generator (compressor) turbine (N_g) is 37,500 RPM at 100% N_g . Maximum permissible speed of the gas generator is 38,100 RPM which equals 101.6% N_g . The power turbine speed is 33,000 RPM at a propeller shaft speed of 1900 RPM.

All engine-driven accessories, with the exception of the propeller tachometer-generator and the propeller governors, are mounted on the accessory gearbox located at the rear of the engine. These are driven by the compressor turbine with a coupling shaft which extends the drive through a conical tube in the oil tank center section.

The engine oil supply is contained in an integral tank which forms part of the compressor inlet case. The tank has a drain and fill capacity of 9.5 U.S. quarts and is provided with a dipstick and drain plug.


The power turbine drives the propeller through a two-stage planetary reduction gearbox located on the front of the engine. The gearbox embodies an integral torquemeter device which is instrumented to proved an accurate indication of the engine power output.

SECTION 7 AIRPLANE AND SYSTEMS DESCRIPTION

CESSNA MODEL 208B G1000

TYPICAL ENGINE COMPONENTS

A39403

- 1. Propeller Shaft
- 2. Propeller Governor Drive Pad
- Second Stage Planetary Gear
 First Stage Planetary Gear
- 5. Power Turbine Shaft
- 6. Fuel Nozzle
- 7. Power Turbine
- 8. Combustion Chamber
- 9. Compressor Turbine
- 10. Centrifugal Compressor Impeller
- 11. Axial-Flow Compressor Impellers (3)
- 12. Compressor Air Inlet

- 13. Accessory Gearbox Drive Shaft
- 14. Accessory Gearbox Cover
- 15. Starter-Generator Drive Shaft
- 16. Oil Scavenge Pump
- 17. Number 1 Bearing
- 18. Compressor Bleed Valve
- 19. Number 2 Bearing
- 20. Number 3 Bearing
- 21. Number 4 Bearing
- 22. Exhaust Outlet
- 23. Chip Detector
- 24. Roller Bearing
- 25. Thrust Bearing

CESSNA SECTION 7 MODEL 208B G1000 AIRPLANE AND SYSTEMS DESCRIPTION

ENGINE CONTROLS

The engine is operated by four separate controls consisting of a power lever, EMERGENCY POWER Lever, PROP RPM Lever, and a FUEL CONDITION Lever. The power and FUEL CONDITION Levers are engine controls while the PROP RPM Lever controls propeller speed and feathering.

POWER LEVER

The power lever is connected through linkage to a cam assembly mounted in front of the fuel control unit at the rear of the engine. The power lever controls engine power through the full range from maximum takeoff power back through idle to full reverse. The lever also selects propeller pitch when in the BETA range. The power lever has MAX, IDLE, and BETA and REVERSE range positions. The range from MAX position through IDLE enables the pilot to select the desired power output from the engine. The BETA range enables the pilot to control propeller blade pitch from idle thrust back through a zero or nothrust condition to maximum reverse thrust.

CAUTION

The propeller reversing linkage can be damaged if the power lever is moved aft of the idle position when the propeller is feathered.

EMERGENCY POWER LEVER

The EMERGENCY POWER Lever is connected through linkage to the manual override lever on the fuel control unit and governs fuel supply to the engine should a pneumatic malfunction occur in the fuel control unit. When the engine is operating, a failure of any pneumatic signal input to the fuel control unit will result in the fuel flow decreasing to minimum idle (about 48% N_g at sea level and increasing with altitude). The EMERGENCY POWER Lever allows the pilot to restore power in the event of such a failure. The EMERGENCY POWER Lever has NORMAL, IDLE, and MAX positions. The NORMAL position is used for all normal engine operation when the fuel control unit is operating normally and engine power is selected by the power lever. The range from IDLE position to MAX governs engine power and is used when a pneumatic malfunction has occurred in the fuel control unit and the power lever is ineffective. A mechanical stop in the lever slot requires that the EMERGENCY POWER Lever be moved to the left to clear the stop before it can be moved from the NORMAL (full aft) position to the IDLE position.

NOTE

The knob on the EMERGENCY POWER Lever has crosshatching. The crosshatching is visible when the lever is in MAX position. Also, the EMERGENCY POWER Lever is annunciated by a Red CAS message on the PFD whenever it is unstowed from the NORMAL position with the ITT indications in either of the OFF or STRT modes. These precautions are intended to preclude starting of the engine with the EMERGENCY POWER Lever inadvertently placed in any position other than NORMAL.

CAUTION

- The EMERGENCY POWER Lever and its associated manual override system are considered to be an emergency system and should be used only in the event of a fuel control unit malfunction. When attempting a normal start, the pilot must ensure that the EMERGENCY POWER Lever is in the NORMAL (full aft) position; otherwise, an over-temperature condition may result.
- When using the fuel control manual override system, engine response may be more rapid than when using the power lever. Additional care is required during engine acceleration to avoid exceeding engine limitations.

EMERGENCY POWER LEVER (Continued)

Operation of the EMERGENCY POWER Lever is prohibited with the primary power lever out of the IDLE position. The EMERGENCY POWER Lever overrides normal fuel control functions and results in the direct operation of the fuel metering valve. The EMERGENCY POWER Lever will override the automatic fuel governing and engine acceleration scheduling controlled during normal operation by the primary power lever.

CAUTION

Inappropriate use of the EMERGENCY POWER Lever may adversely affect engine operation and durability. Use of the EMERGENCY POWER Lever during normal operation of the power lever may result in engine surges, or exceeding the ITT, N_G , and torque limits.

PROPELLER CONTROL LEVER

The PROP RPM Lever is connected through linkage to the propeller governor mounted on top of the front section of the engine, and controls propeller governor settings from the maximum RPM position to full feather. The PROP RPM Lever has MAX, MIN, and FEATHER positions. The MAX position is used when high RPM is desired and governs the propeller speed at 1900 RPM. PROP RPM Lever settings from the MAX position to MIN permit the pilot to select the desired engine RPM for cruise. The FEATHER position is used during normal engine shutdown to stop rotation of the power turbine and front section of the engine. Since lubrication is not available after the gas generator section of the engine has shut down, rotation of the forward section of the engine is not desirable. Also, feathering the propeller when the engine is shut down minimizes propeller windmilling during windy conditions. A mechanical stop in the lever slot requires that the PROP RPM Lever be moved to the left to clear the stop before it can be moved into or out of the FEATHER position.

FUEL CONDITION LEVER

The FUEL CONDITION Lever is connected through linkage to a combined lever and stop mechanism on the fuel control unit. The lever and stop also function as an idle stop for the fuel control unit rod. The FUEL CONDITION Lever controls the minimum RPM of the gas generator turbine (N_g) when the power lever is in the IDLE position. The FUEL CONDITION Lever has CUTOFF, LOW IDLE, and HIGH IDLE positions. The CUTOFF position shuts off all fuel to the engine fuel nozzles. LOW IDLE positions the control rod stop to provide an RPM of 52% N_g . HIGH IDLE positions the control rod stop to provide an RPM of 65% N_g .

208BPHBUS-00

U.S. 7-45

QUADRANT FRICTION LOCK

A quadrant friction lock, located on the right side of the pedestal, is provided to minimize creeping of the engine controls once they have been set. The lock is a knurled knob which increases friction on the engine controls when rotated clockwise.

ENGINE INSTRUMENT SYSTEM (EIS)

The G1000 Engine Indication System provides graphical indicators and numeric values for engine, fuel, and electrical system parameters to the pilot. The EIS is shown in a vertical strip on the left side of the PFD during engine starts and on the MFD during normal operation. If either the MFD or PFD fails during flight, the EIS is shown on the remaining display.

The EIS consists of two pages that are selected using the ENGINE softkey. The ENGINE page provides indicators for Engine Torque, Engine ITT, Gas Generator RPM%, Propeller RPM, Oil Pressure, Oil Temperature, Fuel Quantity, Fuel Flow, Battery Amps, Bus Voltage, and either Anti-Ice Fluid Remaining or Propeller Amps. When the ENGINE softkey is pressed, the SYSTEM softkey will appear adjacent to the ENGINE softkey. The SYSTEM page provides numerical values for parameters on the ENGINE page that are shown as indicators only. Torque, ITT, N_g% and N_p RPM are displayed identically on the SYSTEM page. The SYSTEM page also provides numerical indication for fuel quantity, fuel totalizer (pounds remaining and pounds used), generator amps, standby alternator amps, battery amps, bus voltage, anti-ice remaining (gallons of fluid and hours remaining), and propeller amps.

The engine and airframe unit provides data to the EIS, which displays the data for the ENGINE page described below. Engine operation is monitored by: torque, ITT, N_g %, propeller RPM, oil pressure, oil temperature, and fuel flow.

U.S.

CESSNA SECTION 7 MODEL 208B G1000 AIRPLANE AND SYSTEMS DESCRIPTION

TORQUE INDICATIONS

Torque (TRQ) indication is displayed at the top of both the ENGINE and SYSTEM pages. The indicator is a round gage with a white pointer. The transmitter senses the difference between the engine torque pressure and the pressure in the engine case and transmits this data to the G1000. Normal operating range is indicated by a green arc that extends from 0 to redline. Redline varies from 1865 to 1970 ft-lbs depending on prop RPM.

For normal cruise flight when prop RPM is between 1600-1900, a blue torque "bug" is included on the arc. This indicates maximum allowed cruise torque per the cruise performance and maximum torque charts in section 5, Performance. The blue advisory cruise torque bug located on the EIS torque indication is not to be used as the primary means of setting cruise torque. Always refer to the appropriate performance chart in Section 5 of the POH/AFM.

PROPELLER RPM INDICATIONS

The propeller RPM (PROP RPM) is indicated numerically below Gas Generator RPM. The digits are white with RPM between 0-1599 RPM, green between 1600-1900 RPM, and white with a red background when RPM is greater than or equal to 1910. The instrument is electrically operated from the propeller tachometer-generator which is mounted on the right side of the front case.

ITT INDICATION

Interstage Turbine Temperature (ITT) is indicated below torque and is round dial gage with a white pointer. This instrument displays gas temperature between the compressor and power turbines. With the engine off or during start ITT indicator displays a green band from 100°C to 740°C, an Amber caution band from 766°C-805°C and a redline at 1090°C. The gage is graduated at 100 degree intervals from 600°C to 1100°C.

With the engine running a green arc indicates normal operating range from 100°C to 740°C, an Amber caution region from 765°C-805°C with a redline at 805°C. The gage is graduated at 50 degree intervals from 600°C-900°C. The digital readout flashes red when an over-temperature situation has occurred.

GAS GENERATOR RPM INDICATIONS

Gas generator RPM (N_g) is displayed below ITT using a round dial gage with a white pointer. RPM is displayed as a percentage of maximum gas generator RPM. The instrument is electrically operated from the gas generator tachometer-generator mounted on the lower right portion of the accessory case. The gage has tick marks at 0, 12, 50, and 105% with a redline at 101.6%.

208BPHBUS-00

U.S. 7-47

FUEL FLOW INDICATIONS

Details of the fuel flow indicator are included under Fuel System in a later paragraph in this section.

OIL PRESSURE INDICATION

Oil Pressure (OIL PSI) is displayed using a varied color tape and 3 digit display on the ENGINE page. Oil pressure is indicated using a transducer that senses oil pressure from the accessory case and transmits the information to the G1000. Normal operation is indicated from 85 to 105 psi; caution region is indicated by an amber bar from 40 psi to less than 85 psi. Warning region is indicated by red lines and red flashing digits at less than 40 psi and greater that 105 psi

OIL TEMPERATURE INDICATION

Oil temperature (OIL °C) is displayed using a varied color tape and digital display; the display can be 3 digits on the ENGINE page. The instrument is operated by an electrical-resistance type temperature sensor. Normal operation is indicated between 10 and 99°C; AMBER caution regions are indicated from -40 to less than 10°C and from 100 to 104°C. Red lines are included at -41 and 105°C. Digits vary in color between green, amber or red in correlation with the pointer and tape.

NEW ENGINE BREAK-IN AND OPERATION

There are no specific break-in procedures required for the Pratt & Whitney Canada Inc. PT6A-114A turboprop engine. The engine may be safely operated throughout the normal ranges authorized by the manufacturer at the time of delivery of your airplane.

CESSNA SECTION 7 MODEL 208B G1000 AIRPLANE AND SYSTEMS DESCRIPTION

ENGINE LUBRICATION SYSTEM

The lubrication system consists of a pressure system, a scavenge system and a breather system. The main components of the lubrication system include an integral oil tank at the back of the engine, an oil pressure pump at the bottom of the oil tank, an external double-element scavenge pump located on the back of the accessory case, an internal double-element scavenge pump located inside the accessory gearbox, an oil-to-fuel heater located on the top rear of the accessory case, an oil filter located internally on the right side of the oil tank, and an oil cooler located on the right side of the nose cowl.

Oil is drawn from the bottom of the oil tank through a filter screen where it passes through a pressure relief valve for regulation of oil pressure. The pressure oil is then delivered from the main oil pump to the oil filter where extraneous matter is removed from the oil and precluded from further circulation. Pressure oil is then routed through passageways to the engine bearings, reduction gears, accessory drives, torquemeter, and propeller governor. Also, pressure oil is routed to the oil-to-fuel heater where it then returns to the oil tank

After cooling and lubricating the engine moving parts, oil is scavenged as follows:

- 1. Oil from the number 1 bearing compartment is returned by gravity into the accessory gearbox.
- 2. Oil from the number 2 bearing is scavenged by the front element of the internal scavenge pump back into the accessory gearbox.
- 3. Oil from the number 3 and number 4 bearings is scavenged by the front element of the external scavenge pump into the accessory gearbox.
- 4. Oil from the propeller governor, front thrust bearing, reduction gear accessory drives, and torquemeter is scavenged by the rear element of the external scavenge pump where it is routed through a thermostatically-controlled oil cooler and then returned to the oil tank.
- 5. The rear element of the internal scavenge pump scavenges oil from the accessory case and routes it through the oil cooler where it then returns to the oil tank.

ENGINE LUBRICATION SYSTEM (Continued)

Breather air from the engine bearing compartments and from the accessory and reduction gearboxes is vented overboard through a centrifugal breather installed in the accessory gearbox. The bearing compartments are connected to the accessory gearbox by cored passages and existing scavenge oil return lines. A bypass valve, immediately upstream of the front element of the internal scavenge pump, vents the accessory gearbox when the engine is operating at high power.

An oil dipstick/filler cap is located at the rear of the engine on the left side and is accessible when the left side of the upper cowling is raised. Markings which indicate U.S. quarts low if the oil is hot are provided on the dipstick to facilitate oil servicing. The oil tank capacity is 9.5 U.S. quarts and total system capacity is 14 U.S. quarts. For engine oil type and brand, refer to Section 8.

IGNITION SYSTEM

The ignition system consists of two igniters, an ignition exciter, two high-tension leads, an ignition monitor light, an ignition switch, and a starter switch. Engine ignition is provided by two igniters in the engine combustion chamber. The igniters are energized by the ignition exciter mounted on the engine mount on the right side of the engine compartment. Electrical energy from the ignition exciter is transmitted through two high-tension leads to the igniters in the engine. The ignition system is normally energized only during engine start.

Ignition is controlled by an ignition switch and a starter switch located on the left sidewall switch and circuit breaker panel. The ignition switch has two positions, ON and NORMAL. The NORMAL position of the switch arms the ignition system so that ignition will be obtained when the starter switch is placed in the START position. The NORMAL position is used during all ground starts and during air starts with starter assist. The ON position of the switch provides continuous ignition regardless of the position of the starter switch. This position is used for air starts without starter assist, for operation on water-covered runways, during flight in heavy precipitation, during inadvertent icing encounters until the inertial separator has been in bypass for 5 minutes, and when near fuel exhaustion as indicated by illumination of the Red RSVR FUEL LOW CAS MSG.

CESSNA SECTION 7 MODEL 208B G1000 AIRPLANE AND SYSTEMS DESCRIPTION

IGNITION SYSTEM (Continued)

The main function of the starter switch is control of the starter for rotating the gas generator portion of the engine during starting. However, it also provides ignition during starting. For purposes of this discussion, only the ignition functions of the switch are described. For other functions of the starter switch, refer to paragraph titled Starting System, in this section. The starter switch has three positions, OFF, START, and MOTOR. The OFF position shuts off the ignition system and is the normal position at all times except during engine start or engine clearing. The START position energizes the engine ignition system provided the ignition switch is in the NORMAL position. After the engine has started during a ground or air start, the starter switch must be manually positioned to OFF for generator operation.

White IGNITION ON CAS MSG will illuminate when electrical power is being applied to the igniters. The ignition system is protected by a pulloff type circuit breaker, labeled IGN, on the left sidewall switch and circuit breaker panel.

AIR INDUCTION SYSTEM

The engine air inlet is located at the front of the engine nacelle to the left of the propeller spinner. Ram air entering the inlet flows through ducts and an inertial separator system and then enters the engine through a circular plenum chamber where it is directed to the compressor by guide vanes. The compressor air inlet incorporates a screen which will prevent entry of large articles, but does not filter the inlet air.

INERTIAL SEPARATOR SYSTEM

An inertial separator system in the engine air inlet duct prevents moisture particles from entering the compressor air inlet plenum when in bypass mode. The inertial separator consists of two movable vanes and a fixed airfoil which, during normal operation, route the inlet air through a gentle turn into the compressor air inlet plenum. When separation of moisture particles is desired, the vanes are positioned so that the inlet air is forced to execute a sharp turn in order to enter the inlet plenum. This sharp turn causes any moisture particles to separate from the inlet air and discharge overboard through the inertial separator outlet in the left side of the cowling.

Inertial separator operation is controlled by a T-handle located on the lower instrument panel. The T-handle is labeled BYPASS-PULL, NORMAL-PUSH. The inertial separator control should be moved to the BYPASS position prior to running the engine during ground or flight operation in visible moisture (clouds, rain, snow, ice crystals) with an OAT of 5°C (41°F) or less. It may also be used for ground operations or takeoffs from dusty, sandy field conditions to minimize ingestion of foreign particles into the compressor. The NORMAL position is used for all other operations.

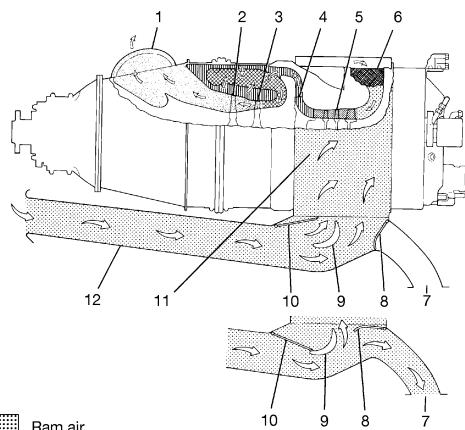
The T-handle locks in the NORMAL position by rotating the handle clockwise 1/4 turn to its vertical position. To unlock, push forward slightly and rotate the handle 90° counterclockwise. The handle can then be pulled into the BYPASS position. Once moved to the BYPASS position, air loads on the movable vanes hold them in this position.

CAUTION

Do not return the INERTIAL SEPARATOR to NORMAL until after engine shutdown and inspection if icing conditions are encountered.

NOTE

When moving the inertial separator control from BYPASS to NORMAL position during flight, reduction of engine power will reduce the control forces.


(Continued Next Page)

CESSNA MODEL 208B G1000

A39404

SECTION 7 AIRPLANE AND SYSTEMS DESCRIPTION

ENGINE AIR FLOW

Ram air

Ram air compressed while flowing through three stages of axial-flow impellers

Ram air compressed while flowing through centifugal impeller

Compressed air injected with fuel and ignited

Burned fuel-air mixture is expanded and drives compressor turbine and power turbine, and is then exhausted

- 1. Primary Exhaust Pipe
- 2. Power Turbine
- 3. Compressor Turbine
- 4. Centrifugal Impeller
- 5. Axial-Flow Impellers (3)
- 6. Engine Air Inlet
- 7. Inertial Seperator Outlet
- 8. Inertial Seperator Rear Vane
- 9. Inertial Seperator Airfoil
- 10. Inertial Seperator Front Vane
- 11. Induction Air Inlet Plenum
- 12. Induction Air Inlet Duct

NOTE

The above view shows inertial separator in NORMAL position. Auxiliary view shows inertial separator in BYPASS position.

Figure 7-9

EXHAUST SYSTEM

The exhaust system consists of a primary exhaust pipe attached to the right side of the engine just aft of the propeller reduction gearbox. A secondary exhaust duct, fitted over the end of the primary exhaust pipe carries the exhaust gases away from the cowling and into the slipstream. The juncture of the primary exhaust pipe and secondary exhaust duct is located directly behind the oil cooler. Since the secondary exhaust duct is of larger diameter than the primary exhaust pipe, a venturi effect is produced by the flow of exhaust. This venturi effect creates a suction behind the oil cooler which augments the flow of cooling air through the cooler. This additional airflow improves oil cooling during ground operation of the engine.

ENGINE FUEL SYSTEM

The engine fuel system consists of an oil-to-fuel heater, an enginedriven fuel pump, a fuel control unit, a flow divider and dump valve, a dual fuel manifold with 14 simplex nozzles, and two fuel drain lines. The system provides fuel flow to satisfy the speed and power demands of the engine.

Fuel from the airplane reservoir is supplied to the oil-to-fuel heater which utilizes heat from the engine lubricating oil system to preheat the fuel in the fuel system. A fuel temperature-sensing oil bypass valve regulates the fuel temperature by either allowing oil to flow through the heater circuit or bypass it to the engine oil tank.

Fuel from the oil-to-fuel heater then enters the engine-driven fuel pump chamber through a 74-micron inlet screen. The inlet screen is springloaded and should it become blocked, the increase in differential pressure will overcome the spring and allow unfiltered fuel to flow into the pump chamber. The pump increases the fuel pressure and delivers it to the fuel control unit via a 10-micron filter in the pump outlet. A bypass valve and cored passages in the pump body enables unfiltered high pressure fuel to flow to the fuel control unit in the event the outlet filter becomes blocked.

(Continued Next Page)

ENGINE FUEL SYSTEM (Continued)

The fuel control unit consists of a fuel metering section, a temperature compensating section, and a gas generator (\tilde{N}_{α}) pneumatic governor. The fuel control unit determines the proper fuel schedule to provide the power required as established by the power lever input. This is accomplished by controlling the speed of the compressor turbine. The temperature compensating section alters the acceleration fuel schedule to compensate for fuel density differences at different fuel temperatures, especially during engine start. The power turbine governor, located in the propeller governor housing, provides power turbine overspeed protection in the event of propeller governor failure. This is accomplished by limiting fuel to the gas generator. During reverse thrust operation, maximum power turbine speed is controlled by the power turbine governor. The temperature compensator alters the acceleration fuel schedule of the fuel control unit to compensate for variations in compressor inlet air temperature. Engine characteristics vary with changes in inlet air temperature, and the acceleration fuel schedule must, in turn, be altered to prevent compressor stall and/or excessive turbine temperatures.

The flow divider schedules the metered fuel, from the fuel control unit, between the primary and secondary fuel manifolds. The fuel manifold and nozzle assemblies supply fuel to the combustion chamber through 10 primary and 4 secondary fuel nozzles, with the secondary nozzles cutting in above a preset value. All nozzles are operative at idle and above.

When the fuel cutoff valve in the fuel control unit closes during engine shutdown, both primary and secondary manifolds are connected to a dump valve port and residual fuel in the manifolds is allowed to drain into the fuel can attached to the firewall where it can be drained daily.

COOLING SYSTEM

No external cooling provisions are provided for the PT6A-114A engine in this installation. however, the engine incorporates an extensive internal air system which provides for bearing compartment sealing and for compressor and power turbine disk cooling. For additional information on internal engine air systems, refer to the engine maintenance manual for the airplane.

STARTING SYSTEM

The starting system consists of a starter-generator, a starter switch, and an Amber STARTER ON CAS MSG. The starter-generator functions as a motor for engine starting and will motor the gas generator section until a speed of 46% N_{α} is reached, at which time, the start cycle will automatically be terminated by a speed sensing switch located in the starter-generator. The starter-generator is controlled by a three-positioned starter switch located on the left sidewall switch and circuit breaker panel. The switch has OFF, START, and MOTOR positions. The OFF position deenergizes the ignition and starter circuits and is the normal position at all times except during engine start. The START position of the switch energizes the starter-generator which rotates the gas generator portion of the engine for starting. Also, the START position energizes the ignition system, provided the ignition switch is in the NORMAL position. When the engine has started, the starter switch must be manually placed in the OFF position to deenergize the ignition system and activate the generator system. The MOTOR position of the switch motors the engine without having the ignition circuit energized and is used for motoring the engine when an engine start is not desired. This can be used for clearing fuel from the engine, washing the engine compressor, etc. The MOTOR position is spring-loaded to the OFF position. Also, an interlock between the MOTOR position of the starter switch and the ignition switch prevents the starter from motoring unless the ignition switch is in the NORMAL position. This prevents unintentional motoring of the engine with the ignition on. Starter contactor operation is indicated by an Amber STARTER ON CAS MSG.

ENGINE ACCESSORIES

All engine-driven accessories, with the exception of the propeller tachometer-generator and the propeller governors, are mounted on the accessory gearbox. located at the rear of the engine. These accessories are driven from the compressor turbine by a coupling shaft which extends the drive through a conical tube in the oil tank center section.

CESSNA MODEL 208B G1000

OIL PUMP

Pressure oil is circulated from the integral oil tank through the engine lubrication system by a self-contained, gear-type pressure pump located in the lowest part of the oil tank. The oil pump is contained in a cast housing which is bolted to the front face of the accessory diaphram, and is driven by the accessory gear shaft. The oil pump body incorporates a circular mounting boss to accommodate a check valve, located in the end of the filter housing. A second mounting boss on the pump accommodates a pressure relief valve.

FUEL PUMP

The engine-driven pump is mounted on the accessory gearbox at the 2 o'clock position. The pump is driven through a gear shaft and splined coupling. The coupling splines are lubricated by oil mist from the auxiliary gearbox through a hole in the gear shaft. Another splined coupling shaft extends the drive to the fuel control unit which is bolted to the rear face of the pump. Fuel from the oil-to-fuel heater enters the fuel pump through a 74-micron inlet screen. Then, fuel enters the pump gear chamber, is boosted to high pressure, and delivered to the fuel control unit through a 10-micron pump outlet filter. A bypass valve and cored passages in the pump casing enable unfiltered high pressure fuel to flow from the pump gears to the fuel control unit should the outlet filter become blocked. An internal passage originating at the mating face with the fuel control unit returns bypass fuel from the fuel control unit to the pump inlet downstream of the inlet screen. A pressure regulating value in this line serves to pressurize the pump gear bushings.

N_q TACHOMETER-GENERATOR

The N_g tachometer-generator produces an electric current which is used in conjunction with the gas generator% RPM indicator to indicate gas generator RPM. The N_g tachometer-generator drive and mount pad is located at the 5 o'clock position on the accessory gearbox and is driven from the internal scavenger pump.

PROPELLER TACHOMETER-GENERATOR

The propeller tachometer-generator produces an electric signal which is used in conjunction with the propeller RPM indicator. The propeller tachometer- generator drive and mount pad is located on the right side of the reduction gearbox case and rotates clockwise with a drive ratio of 0.1273:1.

TORQUEMETER

The torquemeter is a hydro-mechanical torque measuring device located inside the first stage reduction gear housing to provide an accurate indication of engine power output. The difference between the torquemeter pressure and the reduction gearbox internal pressure accurately indicates the torque being produced. The two pressures are internally routed to bosses located on the top of the reduction gearbox front case and to a pressure transducer which is electrically connected to the G1000 which indicates the correct torque. For standby indication, the pressures are routed to bosses on the top of the reduction gearcase front case and plumbed to the standby torque indicator.

STARTER-GENERATOR

The starter-generator is mounted on the top of the accessory case at the rear of the engine. The starter-generator is a 28-volt, 200-amp engine-driven unit that functions as a motor for engine starting and, after engine start, as a generator for the airplane electrical system. When operating as a starter, a speed sensing switch in the startergenerator will automatically shut down the starter, thereby providing overspeed protection and automatic shutoff. The starter-generator is air cooled by an integral fan and by ram air ducted from the front of the engine cowling.

INTERSTAGE TURBINE TEMPERATURE SENSING SYSTEM

The interturbine temperature sensing system is designed to provide the operator with an accurate indication of engine operating temperatures taken between the compressor and power turbines. The system consists of twin leads, two bus bars, and eight individual chromelalumel thermocouple probes connected in parallel. Each probe protrudes through a threaded boss on the power turbine stator housing into an area adjacent to the leading edge of the power turbine vanes. The probe is secured to the boss by means of a floating, threaded fitting which is part of the thermocouple probe assembly. Shielded leads connect each bus bar assembly to a terminal block which provides a connecting point for external leads to the ITT indicator in the airplane cabin.

PROPELLER GOVERNOR

The propeller governor is located in the 12 o'clock position on the front case of the reduction gearbox. Under normal conditions, the governor acts as a constant speed unit, maintaining the propeller speed selected by the pilot by varying the propeller blade pitch to match the load to the engine torque. The propeller governor also has a power turbine governor section built into the unit. Its function is to protect the engine against a possible power turbine overspeed in the event of a propeller governor failure. If such an overspeed should occur, a governing orifice in the propeller governor is opened by flyweight action to bleed off compressor discharge pressure through the governor and computing section of the fuel control unit. When this occurs, compressor discharge pressure, acting on the fuel control unit governor bellows, decreases and moves the metering valve in a closing direction, thus reducing fuel flow to the flow divider.

PROPELLER OVERSPEED GOVERNOR

This propeller overspeed governor is located at the 10 o'clock position on the front case of the reduction gearbox. The governor acts as a safeguard against propeller overspeed should the primary propeller governor fail. The propeller overspeed governor regulates the flow of oil to the propeller pitch-change mechanism by means of a flyweight and speeder spring arrangement similar to the primary propeller governor. Because it has no mechanical controls, the overspeed governor is equipped with a test solenoid that resets the governor below its normal overspeed setting for ground test. The OVERSPEED GOVERNOR PUSH TO TEST Switch is located on the left side of the instrument panel. For a discussion of this switch, refer to the paragraph titled Propellers in this section.

ENGINE FIRE DETECTION SYSTEM

A test switch, labeled TEST SWITCH, FIRE DETECT - UP, is located on the lower left corner of the instrument panel. When this switch is placed in the UP position, the Red ENGINE FIRE CAS MSG will illuminate on the CAS system and the warning horn will sound indicating that the fire warning circuitry is operational.

ENGINE GEAR REDUCTION SYSTEM

The reduction gear and propeller shaft, located in the front of the engine, are housed in two magnesium alloy castings which are bolted together at the exhaust outlet. The gearbox contains a two-stage planetary gear train, three accessory drives, and propeller shaft. The first-stage reduction gear is contained in the rear case, while the second-stage reduction gear, accessory drives, and propeller shaft are contained in the front case. Torque from the power turbine is transmitted to the first-stage reduction gear, from there to the second-stage reduction gear, and then to the propeller shaft. The reduction ratio is from a maximum power turbine speed of 33,000 RPM down to a propeller speed of 1900 RPM.

The accessories, located on the front case of the reduction gearbox, are driven by a bevel gear mounted at the rear of the propeller shaft thrust bearing assembly. Drive shafts from the bevel drive gear transmit rotational power to the three pads which are located at the 12, 3 and 9 o'clock positions. Propeller thrust loads are absorbed by a flanged ball bearing assembly located on the front face of the reduction gearbox center bore. The bevel drive gear adjusting spacer, thrust bearing, and seal runner are stacked and secured to the propeller shaft by a keywasher and spanner nut. A thrust bearing cover assembly is secured by bolts at the front flange of the reduction gearbox front case.

CHIP DETECTORS

Two chip detectors are installed on the engine, one on the underside of the reduction gearbox case and one on the underside of the accessory gearbox case. The chip detectors trigger an Amber CHIP DETECT CAS MSG on the instrument panel. The CAS message will illuminate when metal chips are present in one or both of the chip detectors. Illumination of the Amber CHIP DETECT CAS MSG necessitates the need for inspection of the engine for abnormal wear.

OIL BREATHER DRAIN CAN

Model 208 airplanes have an oil breather drain can mounted on the right lower engine mount truss. This can collects any engine oil discharge coming from the accessory pads for the alternator drive pulley, starter/generator, air conditioner compressor (if installed), and the propeller shaft seal. This can should be drained after every flight. A drain valve on the bottom right side of the engine cowling enables the pilot to drain the contents of the oil breather drain can into a suitable container. The allowable quantity of oil discharge per hour of engine operation is 14 cc for airplanes with air conditioning and 11 cc for airplanes without air conditioning. If the quantity of oil drained from the can is greater than specified, the source of the leakage should be identified and corrected prior to further flight.

CESSNA SECTION 7 MODEL 208B G1000 AIRPLANE AND SYSTEMS DESCRIPTION

PROPELLER

The airplane is equipped with a McCauley aluminum material, threebladed propeller. The propeller is constant-speed, full-feathering, reversible, single-acting, governor-regulated propeller. A setting introduced into the governor with the PROP RPM Lever establishes the propeller speed. The propeller utilizes oil pressure which opposes the force of springs and counter-weights to obtain correct pitch for the engine load. Oil pressure from the propeller governor drives the blades toward low pitch (increases RPM) while the springs and counterweights drive the blades toward high pitch (decreasing RPM). The source of oil pressure for propeller operation is furnished by the engine oil system, boosted in pressure by the governor gear pump, and supplied to the propeller hub through the propeller flange.

To feather the propeller blades, the PROP RPM Lever on the control pedestal is placed in the FEATHER position; counterweights and spring tension will continue to twist the propeller blades through high pitch and into the streamlined or feathered position. Unfeathering the propeller is accomplished by positioning the PROP RPM Lever forward of the feather gate. The unfeathering system uses engine oil pressure to force the propeller out of feather.

Reversed propeller pitch is available for decreasing ground roll during landing. To accomplish reverse pitch, the power lever is retarded beyond IDLE and well into the BETA range. Maximum reverse power is accomplished by retarding the power lever to the MAX REVERSE position which increases power output from the gas generator and positions the propeller blades at full reverse pitch. An externally grooved feedback ring is provided with the propeller.

Motion of the feedback ring is proportional to propeller blade angle, and is picked up by a carbon block running in the feedback ring. The relationship between the axial position of the feedback ring and the propeller blade angle is used to maintain control of blade angle from idle to full reverse.

CAUTION

The propeller reversing linkage can be damaged if the power lever is moved aft of the idle position when the propeller is feathered.

OVERSPEED GOVERNOR TEST SWITCH

An overspeed governor test switch is located on the left side of the instrument panel. The switch is the push-to-test type and is used to test the propeller overspeed governor during engine run-up. The switch, when depressed, actuates a solenoid on the propeller overspeed governor which restricts propeller RPM when the power lever is advanced. To check for proper operation of the overspeed governor, during engine run-up, depress the press-to-test switch and advance the power lever until propeller RPM stabilizes; propeller RPM should not exceed 1750 +/- 60 RPM.

FUEL SYSTEM

The airplane fuel system (see Fuel System figure) consists of two vented, integral fuel tanks with shutoff valves, a fuel selectors off warning system, a fuel reservoir, an ejector fuel pump, an electric auxiliary boost pump, a reservoir manifold assembly, a firewall shutoff valve, a fuel filter, an oil-to-fuel heater, an engine-driven fuel pump, a fuel control unit, a flow divider, dual manifolds, and 14 fuel nozzle assemblies. A fuel can and drain is also provided. Refer to the Fuel Quantity Data Chart for information pertaining to this system.

WARNING

Unusable fuel levels for this airplane were determined in accordance with Federal Aviation Regulations. Failure to operate the airplane in compliance with the fuel limitations specified in Section 2 may further reduce the amount of fuel available in flight.

Fuel flows from the tanks through the two fuel tank shutoff valves at each tanks. The fuel tank shutoff valves are mechanically controlled by two fuel selectors, labeled LEFT, ON and OFF, located on the overhead panel. By manipulating the fuel selectors, the pilot can select either left or right fuel tanks or both at the same time. Normal operation is with both tanks on. Fuel flows by gravity from the shutoff valves in each tank to the fuel reservoir.

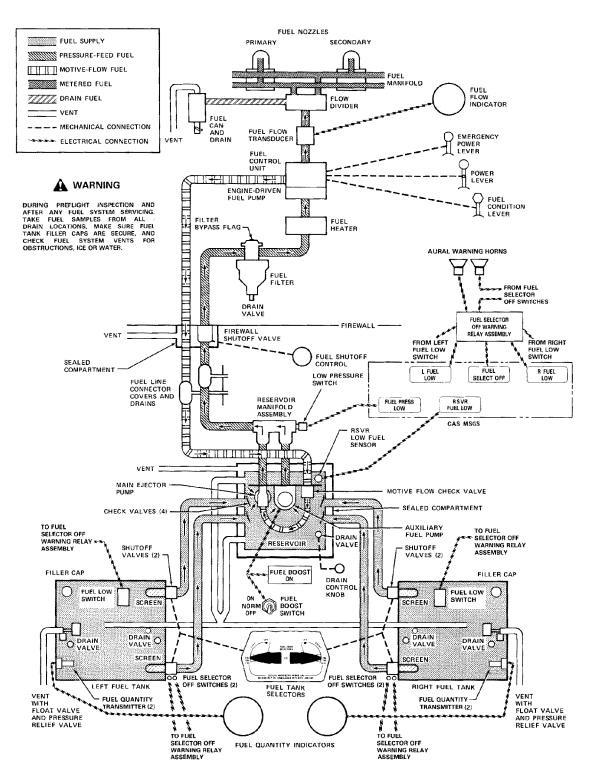
(Continued Next Page)

CESSNA SECTION 7 MODEL 208B G1000 AIRPLANE AND SYSTEMS DESCRIPTION

FUEL SYSTEM (Continued)

The reservoir is located at the low point in the fuel system which maintains a head of fuel around the ejector boost pump and auxiliary boost pump which are contained within the reservoir. This head of fuel prevents pump cavitation in low-fuel quantity situations, especially during in-flight maneuvering. Fuel in the reservoir is pumped by the ejector boost pump or by the electric auxiliary boost pump to the reservoir manifold assembly. The ejector boost pump, which is driven by motive fuel flow from the fuel control unit, normally provides fuel flow when the engine is operating. In the event of failure of the ejector boost pump, the electric boost pump will automatically turn on, thereby supplying fuel flow to the engine. The auxiliary boost pump is also used to supply fuel flow during starting. Fuel in the reservoir manifold then flows through a fuel shutoff valve located on the aft side of the firewall. This shutoff valve enables the pilot to cut off all fuel to the engine.

After passing through the shutoff valve, fuel is routed through a fuel filter located on the front side of the firewall. the fuel filter incorporates a bypass feature which allows fuel to bypass the filter in the event the filter becomes blocked with foreign material. A red filter bypass flag on the top of the filter extends upward when the filter is bypassing fuel. Fuel from the filter is then routed through the oil-to-fuel heater to the engine-driven fuel pump where fuel is delivered under pressure to the fuel control unit. The fuel control unit meters the fuel and directs it to the flow divider which distributes the fuel to dual manifolds and 14 fuel nozzles located in the combustion chamber. For additional details concerning the flow of fuel at the engine, refer to the Engine Fuel System paragraph in this section.


Fuel rejected by the engine on shutdown drains into a fireproof fuel can located on the front left side of the firewall. The can should be drained during preflight inspection. If left unattended, the can fuel will overflow overboard.

Fuel system venting is essential to system operation. Complete blockage of the vent system will result in decreased fuel flow and eventual engine stopage. Venting is accomplished by check valve equipped vent lines, one from each fuel tank, which protrude from the trailing edge of the wing at the wing tips. also the fuel reservoir is vented to both wing tanks.

SECTION 7 AIRPLANE AND SYSTEMS DESCRIPTION

FUEL SYSTEM

A70355

2685T1108

CESSNA MODEL 208B G1000

FUEL QUANTITY DATA

FUEL QUANITY DATA				
UNITS OF MEASURE	FUEL LEVEL (QUANTITY EACH TANK)	TOTAL FUEL	TOTAL UNUSABLE	TOTAL USABLE ALL FLT CONDITIONS
POUNDS	FULL (OUTBOARD FILLERS) 1124.25	2248.5	24.1	2224.4
GALLONS (U.S.)	167.8	335.6	3.6	332
UNITS OF MEASURE	FUEL LEVEL (QUANTITY EACH TANK)	TOTAL FUEL	TOTAL UNUSABLE	TOTAL USABLE ALL FLT CONDITIONS

NOTE

Pounds are based on a fuel specific weight of 6.7 pounds per U.S. gallon.

WARNING

To achieve full capacity, fill fuel tank to the top of the fuel filler neck. Filling fuel tanks to the bottom of the fuel filler collar (level with the flapper valve) allows space for thermal expansion and results in a decrease in fuel capacity of four gallons per side (eight gallons total).

Figure 7-11

FIREWALL FUEL SHUTOFF VALVE

A manual firewall fuel shutoff valve, located on the aft side of the firewall, enables the pilot to shut off all fuel flow from the fuel reservoir to the engine. The shutoff valve is controlled by a red push-pull knob labeled FUEL SHUTOFF-PULL OFF and located on the right side of the pedestal. The push-pull knob has a press-to-release button in the center which locks the knob in position when the button is released.

FUEL TANK SELECTORS

Two FUEL SELECTORS, one for each tank, are located on the overhead console. The selectors, labeled LEFT, ON and OFF and RIGHT, ON and OFF, mechanically control the position of the two fuel tank shutoff valves at each wing tank. When a fuel tank selector is in the OFF position, the shutoff valves in the tank are closed. When in the ON position, both shutoff valves in the tank are open, allowing fuel from that tank to flow to the reservoir. Normal fuel management is with both fuel tank selectors in the ON position.

Before refueling, or when the airplane is parked on a slope, turn off one of the fuel tank selectors (if parked on a slope, turn high wing tank off). This action prevents crossfeeding from the fuller or higher tank and reduces any fuel seepage tendency from the wing tank vents.

FUEL SELECTORS OFF WARNING SYSTEM

A test switch, labeled TEST SWITCH, FUEL SELECT OFF - DN, is located on the lower left corner of the instrument panel. When this switch is placed in the DOWN position, the Red FUEL SELECT OFF MSG will illuminate and two warning horns will sound simultaneously indicating that the fuel selector warning circuitry is operational.

FUEL BOOST PUMP SWITCH

An auxiliary boost pump switch, located on the left sidewall switch and circuit breaker panel, is labeled FUEL BOOST and has OFF, NORM, and ON positions. When the switch is in the OFF position, the auxiliary boost pump is inoperative. When the switch is in the NORM position, the auxiliary boost pump is armed and will operate when fuel pressure in the fuel manifold assembly drops below 4.75 psi. This switch position is used for all normal engine operation where main fuel flow is provided by the ejector boost pump and the auxiliary boost pump is used as a standby. When the auxiliary boost pump switch is placed in the ON position, the auxiliary boost pump will operate continuously. This position is used for engine start and any other time that the auxiliary boost pump cycles on and off with the switch in the NORM position, and for all operations utilizing aviation gasoline.

CESSNA SECTION 7 MODEL 208B G1000 AIRPLANE AND SYSTEMS DESCRIPTION

FUEL FLOW INDICATION

A fuel flow indicator, located beneath the quantity indicators on both the ENGINE and SYSTEM pages, indicates the fuel consumption of the engine in pounds per hour based on Jet A fuel. The indicator measures the flow of fuel downstream of the fuel control unit just before being routed into the flow divider. The fuel flow indicator receives power from a pull-off type circuit breaker labeled F FLOW NP & NG, on the left sidewall switch and circuit breaker panel.

FUEL QUANTITY INDICATIONS

Fuel quantity is measured by four fuel quantity transmitters (two in each tank) and indicated by two electrically-operated fuel quantity indicators on the upper portion of the instrument panel. The fuel quantity indicators, which measure volume, are calibrated in pounds (based on the weight of Jet A fuel on a standard day). An empty tank is indicated by a red line and the letter E. When an indicator shows an empty tank, approximately 2.8 gallons remain in the tank as unusable fuel. The left and right fuel quantity indicators each receive power from a pull-off type circuit breaker. The breakers are labeled LEFT FUEL QTY and RIGHT FUEL QTY, respectively, and are located on the left sidewall switch and circuit breaker panel.

WARNING

Because of the relatively long fuel tanks, fuel quantity indicator accuracy is affected by uncoordinated flight or a sloping ramp if reading the indicators while on the ground. Therefore, to obtain accurate fuel quantity readings, verify that the airplane is parked in a laterally level condition, or if in flight, make sure the airplane is in a coordinated and stabilized condition.

WING TANK FUEL LOW CAUTION CAS MESSAGES

Two float sensors one for each wing tank will trigger the appropriate amber CAS message, L FUEL LEVEL LOW or R FUEL LEVEL LOW MSG. when the fuel in the respective tank is 25 gallons (170 lbs) or less. When the fuel quantity in each tank is less than 25 gallons (170 lbs), amber L-R FUEL LEVEL LOW CAS MSG will replace the previously displayed L or R FUEL LEVEL LOW CAS message.

RESERVOIR FUEL LOW WARNING CAS MESSAGE

A Red RSVR FUEL LOW CAS MSG is located on the PFD, and will illuminate when the level of fuel in the reservoir drops to approximately one-half full. There is adequate fuel in the fuel reservoir for approximately 3 minutes of maximum continuous power or approximately 9 minutes at idle power.

FUEL PRESSURE LOW WARNING CAS MESSAGE

An Amber FUEL PRESS LOW CAS MSG is located on the PFD, and will illuminate when fuel pressure in the reservoir fuel manifold assembly is below 4.75 psi.

FUEL BOOST PUMP ON CAS MESSAGE

An Amber FUEL BOOST ON CAS MSG is located on the PFD and will illuminate when the auxiliary boost pump is operating, such as when the auxiliary boost pump Switch is placed in the ON position or when the auxiliary boost pump Switch is in the NORM position and fuel pressure in the fuel manifold assembly drops below 4.75 psi.

DRAIN VALVES

The fuel system is equipped with drain values to provide a means for the examination of fuel in the system for contamination and grade. Drain valves are located on the lower surface of each wing at the inboard end of the fuel tank, in fuel tank external sumps, on the left side of the cargo pod for the reservoir tank, and on the underside of the fuel filter. Outboard fuel tank drain valves and their use is recommended if the airplane is parked with one wing low on a sloping ramp. The drain valves for the wing tanks and their external sumps are tool-operated poppet type and are flush-external mounted. The wing tank and external sump drain valves are constructed so that the Phillips screwdriver on the fuel sampler which is provided can be utilized to depress the value and then twist to lock the drain value in the open position. The drain valve for the reservoir is controlled by a doublebutton push-pull drain control knob. When pulled out, fuel from the reservoir drains out the rear fuel drain pipe located adjacent to the drain valve. The drain valve for the fuel filter consists of a drain pipe which can be depressed upward to drain fuel from the filter. The fuel sampler can be used in conjunction with these drain valves for fuel sampling and purging of the fuel system. The fuel tanks should be filled after each flight when practical to minimize condensation.

DRAIN VALVES (Continued)

Before each flight of the day and after each refueling, use a clear sampler and drain fuel from the inboard fuel tank sump, external sump quick-drain valves, fuel reservoir quick-drain valve, and fuel filter quickdrain valve to determine if contaminants are present, and that the airplane has been fueled with the proper fuel. If the airplane is parked with one wing low on a sloping ramp, draining of the outboard fuel tank sump quick-drain valves is also recommended. If contamination is detected, drain all fuel drain points again. Take repeated samples from all fuel drain points until all contamination has been removed. If after repeated sampling, evidence of contamination still exists, the fuel tanks should be completely drained and the fuel system cleaned. Do not fly the airplane with contaminated or unapproved fuel.

WARNING

JP-4 and other NAPHTHA based fuels can cause severe skin and eye irritation.

FUEL DRAIN CAN

When the engine is shut down, residual fuel in the engine drains into a fuel drain can mounted on the front left side of the firewall. This can should be drained once a day or at an interval not to exceed six engine shutdowns. A drain value on the bottom side of the cowling enables the pilot to drain the contents of the fuel drain can into a suitable container.

FUEL PUMP DRAIN RESERVOIR

To control expended lubricating oil from the engine fuel pump drive coupling area and provide a way to determine if fuel is leaking past the fuel pump seal, this airplanes is equipped with a drainable reservoir to collect this allowable discharge of oil and any fuel seepage. The reservoir is mounted on the front left side of the firewall. It should be drained once a day or at an interval not to exceed six engine shutdowns. A drain valve on the bottom side of the cowling enables the pilot to drain the contents of the reservoir into a suitable container. A quantity of up to 3 cc of oil and 20 cc of fuel discharge per hour of engine operation is allowable. If the quantity of oil or fuel drained from the reservoir is greater than specified, the source of leakage should be identified and corrected prior to further flight.

BRAKE SYSTEM

The airplane has a single-disc, hydraulically-actuated brake on each main landing gear wheel. Each brake is connected, by a hydraulic line, to a master cylinder attached to each of the pilot's rudder pedals. The brakes are operated by applying pressure to the top of either the left (pilot's) or right (copilot's) set of rudder pedals, which are interconnected. When the airplane is parked, both main wheel brakes may be set by utilizing the parking brake which is operated by a handle below to the right of the pilot's control wheel. To apply the parking brake, set the brakes with the rudder pedals and pull the handle aft. To release the parking brake, push the handle fully in.

A brake fluid reservoir, located just forward of the firewall on the left side of the engine compartment, provides additional brake fluid for the brake master cylinders. The fluid in the reservoir should be checked for proper level prior to each flight.

For maximum brake life, keep the brake system properly maintained. Airplanes are equipped with metallic type brakes, and require a special brake burn-in before delivery (or after brake replacement). When conditions permit, hard brake application is beneficial in that the resulting higher brake temperatures tend to maintain proper brake glazing and will prolong the expected brake life. Conversely, the habitual use of light and conservative brake application is detrimental to metallic brakes.

Some of the symptoms of impending brake failure are: gradual decrease in braking action after brake application, noisy or dragging brakes, soft or spongy pedals, and excessive travel and weak braking action. If any of these symptoms appear, the brake system is in need of immediate attention. If, during taxi or landing roll, braking action decreases, let up on the pedals and then re-apply the brakes with heavy pressure. If the brakes become spongy or pedal travel increases, pumping the pedals should build braking pressure. If one brake becomes weak or fails, use the other brake sparingly while using opposite rudder, as required, to offset the good brake.

ELECTRICAL SYSTEM

The airplane is equipped with a 28-volt, direct-current electrical system (see Typical Electrical System figure). The system uses a 24-volt sealed lead acid battery; located on the front right side of the firewall, as a source of electrical energy. A 200-amp engine-driven starter-generator is used to maintain the battery's state of charge. Power is supplied to most general electrical and all avionics circuits through two general buses, two avionics buses, and a hot battery bus. The battery bus is energized continuously for cabin/courtesy lights and functions requiring power when the two general buses are off. The two general buses are on anytime the battery switch is turned on. All DC buses are on anytime the battery switch and the two avionics switches are turned on.

STANDBY ELECTRICAL SYSTEM

The standby electrical system serves as a power source in the event the main generator system malfunctions in flight. The system includes an alternator operated at a 75-amp capacity rating. The alternator is belt-driven from an accessory pad on the rear of the engine. The system also includes an alternator control unit located forward of the circuit breaker panel, a standby alternator contactor assembly on the left front side of the firewall and two switches on the left sidewall switch panel, labeled STBY ALT POWER and AVIONICS STBY PWR.

Circuit protection and isolation is provided by two circuit breakers, labeled STBY PWR, on the left sidewall circuit breaker panel. Field excitation to the alternator control unit is supplied through diode logic from a circuit breaker in the standby alternator relay assembly or from the HOURMETER/ACU circuit breaker in the main power relay box.

Standby Electrical system monitoring is provided by CAS messages; White STBY PWR ON CAS MSG and Amber STBY PWR INOP CAS MSG. Total amperage supplied from the standby electrical system can be monitored on the EIS SYSTEMS DISPLAY. Additionally, an ALTNR AMPS CAS message is provided if the standby alternator amperage draw exceeds normal operating ranges.

GENERATOR CONTROL UNIT

The generator control unit (GCU) is mounted inside the cabin on the left forward fuselage sidewall. The unit provides the electrical control functions necessary for the operation of the starter-generator. The GCU provides for automatic starter cutoff when engine RPM is above 46%. Below 46%, the starter-generator functions as a starter, and above 46%, the starter-generator functions as a generator when the starter switch is OFF. The GCU provides voltage regulation plus high voltage protection and reverse current protection. In the event of a high-voltage or reverse current condition, the generator is automatically disconnected from the buses. The generator contactor (controlled by the GCU) connects the generator output to the airplane bus. If any GCU function causes the generator contactor to de-energize, the Amber GENERATOR OFF CAS MSG will illuminate.

GROUND POWER MONITOR

The ground power monitor is located inside the electrical power control assembly mounted on the left hand side of the firewall in the engine compartment. This unit senses the voltage level applied to the external power receptacle and will close the external power contactor when the applied voltage is within the proper limits.

BATTERY SWITCH

The battery switch is a two-position toggle-type switch, labeled BATTERY, and is located on the left sidewall switch and circuit breaker panel. The battery switch is ON in the forward position and OFF in the aft position. When the battery switch is in the ON position, battery power is supplied to the two general buses. The OFF position cuts off power to all buses except the battery bus.

CESSNA SECTION 7 MODEL 208B G1000 AIRPLANE AND SYSTEMS DESCRIPTION

STARTER SWITCH

The starter switch is a three-position toggle-type switch, labeled STARTER, on the left sidewall switch and circuit breaker panel. The switch has OFF, START, and MOTOR positions. For additional details of the starter switch, refer to the Starting System paragraph in this section.

IGNITION SWITCH

The ignition switch is a two-position toggle-type switch, labeled IGNITION, on the left sidewall switch and circuit breaker panel. The switch has ON and NORMAL positions. For additional details of the ignition switch, refer to the Ignition System paragraph in this section.

GENERATOR SWITCH

The generator switch is a three-position toggle-type switch, labeled GENERATOR, on the left sidewall switch and circuit breaker panel. The switch has ON, RESET, and TRIP positions. With the switch in the ON position, the GCU will automatically control the generator line contactor for normal generator operation. The RESET and TRIP positions are momentary positions and are spring-loaded to the ON position. If a momentary fault should occur in the generating system (as evidenced by the Amber GENERATOR OFF CAS MSG, Red VOLTAGE LOW CAS MSG and/or Red VOLTAGE HIGH CAS MSG), the generator switch can be momentarily placed in the RESET position to restore generator power. If erratic operation of the generating system is observed, the system can be shutoff by momentarily placing the generator operation may be recycled by placing the generator switch momentarily to RESET.

STANDBY ALTERNATOR POWER SWITCH

The standby alternator system switch is a two-position toggle-type switch, labeled STBY ALT POWER. There is also an amber LED above the switch that illuminates when the BATTERY switch is in the OFF position with STBY ALT POWER in the ON position. This is an alert to the operator to help prevent accidental discharging of the battery that can occur if the STBY ALT POWER switch is left ON after shutdown.

AVIONICS POWER SWITCHES

Electrical power from the airplane power distribution bus to the avionics buses (see Typical Electrical System figure) is controlled by two toggletype switch breakers located on the left sidewall switch and circuit breaker panel. One switch controls power to the number 1 avionics bus while the other switch controls power to the number 2 avionics bus. The switches are labeled AVIONICS and are ON in the forward position and OFF in the aft position. The avionics power switches should be placed in the OFF position prior to turning the battery switch ON or OFF, or applying an external power source. The number 1 AVIONICS Switch must be ON.

WARNING

Failure to have AVIONICS No. 1 ON will result in an over temperature and image damage.

AVIONICS STANDBY POWER SWITCH

The avionics standby power system switch is a guarded two-position switch/breaker, labeled AVIONICS STBY PWR. The guard covering this switch must be lifted in order to select the ON position. When switched ON, the standby electrical system directly provides power to the Avionics bus 1. When switched OFF, the standby electrical system may provide extra power to the avionics busses via the main power distribution bus, provided the STBY PWR circuit breakers on the electrical busses are not pulled. When operating solely on standby power, both AVIONICS 1 and 2 power switches should be OFF to avoid feeding a possible fault in the primary power system.

AVIONICS BUS TIE SWITCH

The avionics bus tie switch is a two-position guarded toggle-type switch located on the left sidewall switch and circuit breaker panel. The switch connects the number 1 and number 2 avionics buses together in the event of failure of either bus feeder circuit. Because power for each avionics bus is supplied from a separate current limiter on the power distribution bus, failure of a current limiter can cause failure of the affected bus. Placing the bus tie switch to the ON position will restore power to the failed bus. Operation without both bus feeder circuits may require an avionics load reduction, depending on equipment installed. CESSNA MODEL 208B G1000

TYPICAL ELECTRICAL SYSTEM

A70356

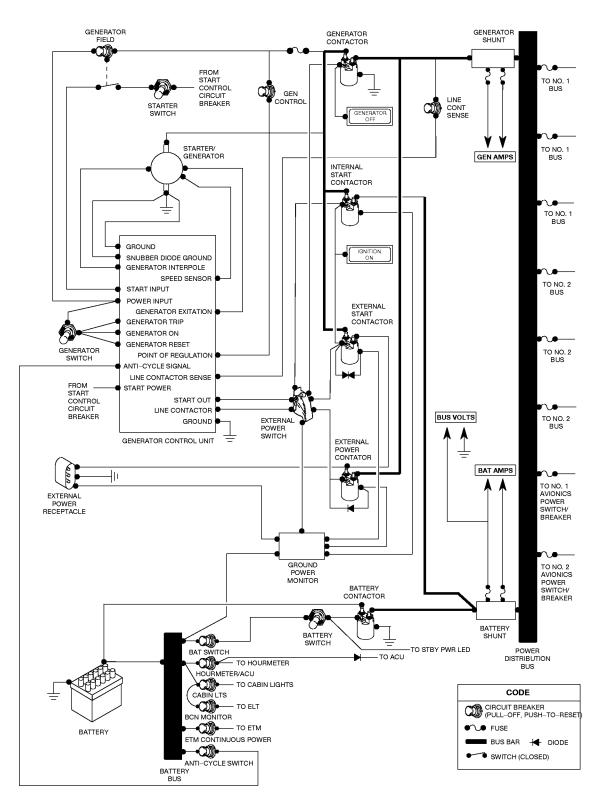


Figure 7-12 (Sheet 1 of 3)

TYPICAL ELECTRICAL SYSTEM

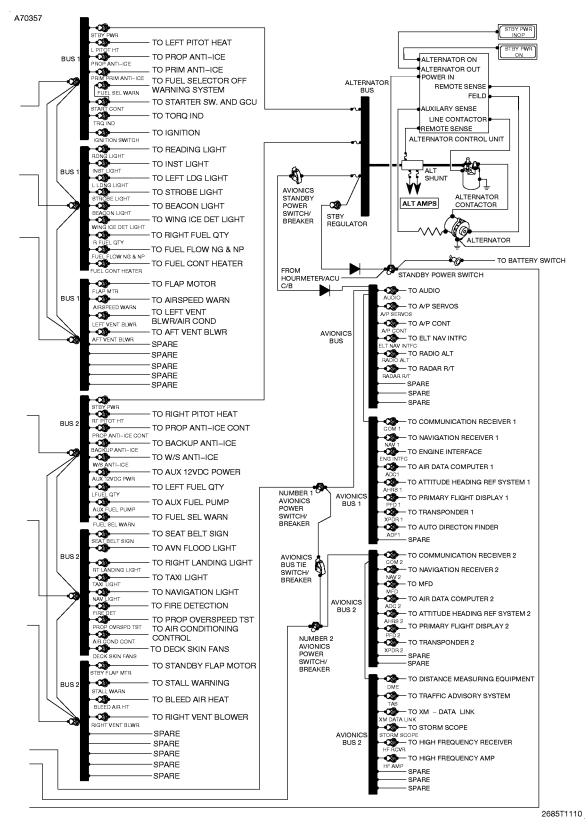
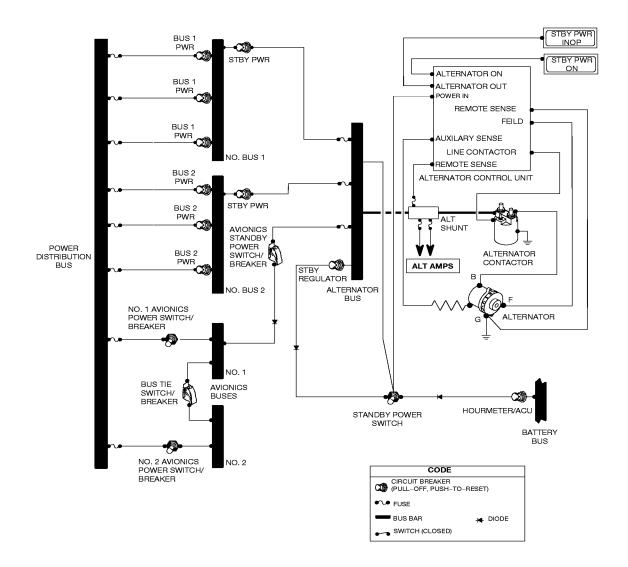



Figure 7-12 (Sheet 2 of 3)

CESSNA MODEL 208B G1000 SECTION 7 AIRPLANE AND SYSTEMS DESCRIPTION

TYPICAL ELECTRICAL SYSTEM

A70358

2685T1111

Figure 7-12 (Sheet 3 of 3)

EXTERNAL POWER SWITCH

The external power switch is a three-position guarded toggle-type switch located on the left sidewall switch and circuit breaker panel. The switch has OFF, STARTER, and BUS positions and is guarded in the OFF position. When the switch is in the OFF position, battery power is supplied to the main bus and to the starter-generator circuit, external power cannot be applied to the main bus, and, with the generator switch in the ON position, power is applied to the generator control circuit. When the external power switch is in the STARTER position, external power is applied to the starter circuit only and battery power is supplied to the main bus. No generator power is available in this position. When the external power switch is in the BUS position, external power is applied to the main bus and no power is available to the starter. The battery, if desired, can be connected to the main bus and external power by the battery switch; however, battery charge should be monitored to avoid overcharge.

CIRCUIT BREAKERS

Most of the electrical circuits in the airplane are protected by pull-off type circuit breakers mounted on the left sidewall switch and circuit breaker panel. Should an overload occur in any circuit, the controlling circuit breaker will trip, opening the circuit. After allowing the circuit breaker to cool for approximately three minutes, it may be reset (pushed in). If the breaker trips again, it should not be reset until corrective action is taken.

WARNING

Make sure all circuit breakers are in before all flights. Never operate with tripped circuit breakers without a thorough knowledge of the consequences.

VOLTAGE AND AMPERAGE DISPLAY

The status of the electrical system can be monitored on the MFD (nonreversionary mode). Battery current (BAT AMPS) and bus voltage (BUS VOLTS) are displayed on the default EIS-ENGINE display page. By pressing the ENGINE softkey and the SYSTEM softkey, the EIS pages changes to the EIS-Systems display where generator current (GEN AMPS), and bus voltage (BUS VOLTS) can be monitored simultaneously. A negative display on BAT AMPS indicates battery discharge, while a positive display indicates battery charging. CESSNA MODEL 208B G1000

GROUND SERVICE PLUG RECEPTACLE

A ground service plug receptacle permits the use of an external power source for cold weather starting and during lengthy maintenance work on the electrical and avionics equipment. External power control circuitry is provided to prevent the external power and the battery from being connected together during starting. The external power receptacle is installed on the left side of the engine compartment near the firewall.

The ground service circuit incorporates polarity reversal and overvoltage protection. Power from the external power source will flow only if the ground service plug is correctly connected to the airplane. If the plug is accidentally connected backwards or the ground service voltage is too high, no power will flow to the electrical system, thereby preventing any damage to electrical equipment.

LIGHTING SYSTEMS

EXTERIOR LIGHTING

Exterior lighting consists of three navigation lights, two landing lights, two taxi/recognition lights, two strobe lights, a flashing beacon, and two underwing courtesy lights. All exterior lights are controlled by toggle switches located on the lighting control panel on the left side of the instrument panel. The toggle switches are ON in the up position and OFF in the down position.

NAVIGATION LIGHTS

Conventional navigation lights are installed on the wing tips and tailcone stinger. The lights are protected by a pull-off type circuit breaker, labeled NAV LIGHT, on the left sidewall switch and circuit breaker panel.

SECTION 7 AIRPLANE AND SYSTEMS DESCRIPTION

LANDING LIGHTS

Two landing lights are installed on the airplane, one in each wing leading edge mounted outboard. The lights provide illumination forward and downward during takeoff and landing. The lights are protected by two pull-off type circuit breakers, labeled LEFT LDG LIGHT and RIGHT LDG LIGHT, on the left sidewall switch and circuit breaker panel.

NOTE

It is not recommended that the landing lights be used to enhance the conspicuity of the airplane in the traffic pattern or enroute, because of their relatively short service life. the taxi/recognition lights have considerably longer service life and are designed for this purpose, if desired.

TAXI/RECOGNITION LIGHTS

Two taxi/recognition lights are mounted inboard of each landing light in each wing leading edge. The lights are focused to provide illumination of the area forward of the airplane during ground operation and taxiing. the lights are also used to enhance the conspicuity of the airplane in the traffic pattern or enroute. The taxi/recognition lights are protected by a pull-off type circuit breaker, labeled TAXI LIGHT, on the left sidewall switch and circuit breaker panel.

STROBE LIGHTS

A high intensity strobe light system is installed on the airplane. The system includes two strobe lights (with remote power supplies) located one on each wing tip. The lights are used to enhance anti-collision protection for the airplane and are required anti-collision lights for night operations. The strobe lights are protected by a pull-off type circuit breaker, labeled STROBE LIGHT, on the left sidewall switch and circuit breaker panel.

WARNING

Strobe lights should be turned off when taxiing. Ground operation of the high intensity anticollision lights can be considerable annoyance to ground personnel and other pilots. Do not operate the anti-collision lights in conditions of fog, clouds, or haze as the reflection of the light beam can cause disorientation or vertigo. CESSNA SECTION 7 MODEL 208B G1000 AIRPLANE AND SYSTEMS DESCRIPTION

FLASHING BEACON LIGHT

A red flashing beacon light is installed on the top of the vertical fin as additional anti-collision protection in flight and for recognition during ground operation. The light is visible through 360°. The flashing beacon light circuit is protected by a pull-off type circuit breaker, labeled BEACON LIGHT, on the left sidewall switch and circuit breaker panel.

WARNING

The flashing beacon should not be used when flying through clouds or overcast; the flashing light reflected from water droplets or particles in the atmosphere, particularly at night, can cause disorientation or vertigo.

COURTESY LIGHTS

Two courtesy lights are installed, one under each wing. The lights illuminate the area outside of the airplane adjacent to the crew entry doors. The lights operate in conjunction with the cabin lights and are controlled by the cabin light switches as described in the Cabin Lights paragraph in this section.

INTERIOR LIGHTING

Instrument and control panel lighting is provided by integral, flood and post lights. Six lighting control knobs are grouped together on the lower part of the instrument panel to the left of the control pedestal. These controls vary the intensity of the lighting for the instrument panel, pedestal, overhead panel, left sidewall panel, LED panels, Garmin displays, and internally lit instruments. The following paragraphs describe the function of these controls. The circuits for these lights are protected by two pull-off type circuit breakers, labeled AVN/FLOOD LIGHT and INST LIGHT, on the left sidewall switch and circuit breaker panel. Other miscellaneous lighting provided or available includes control wheel map lights, cabin lights, passenger reading lights, and a no smoking/seat belt sign. Discussion of these lights and their controls is also included in the following paragraphs.

GARMIN DISPLAYS, OPTIONAL ADF, AND HF DISPLAYS (if installed)

The knob labeled AVIONICS varies the intensity of the Garmin and optional displays (if installed). Clockwise rotation of the knob increases display brightness and counterclockwise rotation decreases brightness. The displays cannot be dimmed to full dark. Rotating this knob counterclockwise past the dimmest setting will place the displays in photosensitive mode.

208BPHBUS-00

U.S. 7-81

STANDBY INDICATOR CONTROL KNOB

The knob labeled STANDBY IND varies the intensity of the integral lighting of the standby airspeed indicator, attitude indicator, altimeter, torque indicator, and magnetic compass. Clockwise rotation of the knob increases light brightness and counterclockwise rotation decreases brightness.

SWITCH/CIRCUIT BREAKER PANEL CONTROL KNOB

The knob labeled SW/CB PANELS varies the intensity of the backlit LED panels. These panels are inscribed with labels for most of the switches, controls, and circuit breakers mounted on the instrument panel. Clockwise rotation of the knob increases panel brightness and counterclockwise rotation decreases brightness.

CIRCUIT BREAKER/PEDESTAL/OVERHEAD PANEL KNOB

The knob labeled CB/PED/OVHD varies the intensity of the lights that illuminate the left sidewall switch and circuit breaker panel, the flood light that illuminates the control pedestal, and the post lights that illuminate the overhead panel. Clockwise rotation of the knob increases panel brightness and counterclockwise rotation decreases brightness.

LEFT FLOOD LIGHTING CONTROL KNOB

This knob labeled LEFT FLOOD varies the brightness of the left side floodlight located on the right aft side of the overhead panel. This floodlight may also be used to illuminate the left sidewall switch and circuit breaker panel. Clockwise rotation of this control knob increases lamp brightness while counterclockwise rotation decreases brightness.

RIGHT FLOOD LIGHTING CONTROL KNOB

This knob labeled RIGHT FLOOD varies the brightness of the right side floodlight located on the left aft side of the overhead panel. Clockwise rotation of this control knob increases lamp brightness while counterclockwise rotation decreases brightness.

CONTROL WHEEL MAPLIGHTS

A control wheel maplight is mounted on the bottom of each control wheel. These lights illuminate the lower portion of the cabin in front of the pilot and copilot, and are used for checking maps and other flight data during night operation. Brightness of these lights is adjusted with a rheostat control knob on the bottom of the control wheel. Rotating the near side of the knob to the right increases light brightness and to the left decreases brightness. CESSNA MODEL 208B G1000

CABIN LIGHTS WITHOUT TIMER (208B Passenger)

The 208B passenger cabin light system without timer consists of four cabin lights installed on the interior of the airplane and courtesy lights under each wing to facilitate boarding or loading cargo during night operations. Two lights are located above the center cabin area, one above the aft cargo door, and one above the aft passenger door.

Controls for the lighting system consists of one 2-way toggle switch labeled CABIN on the lighting control panel as well as a rocker switch just forward of both the aft passenger and cargo doors. All three of these switches will toggle all cabin on or off at any time regardless of the other switch positions.

The circuit for the cabin lights is protected by a pull-off type circuit breaker, labeled CABIN LTS, on the J-Box panel in the engine bay.

CABIN LIGHTS WITH TIMER (if installed)

The 208B cabin light system with timer consists of four cabin lights installed on the interior of the airplane and courtesy lights under each wing to facilitate boarding or loading cargo during night operations. Two lights are located above the center cabin area, one above the aft cargo door, and one above the aft passenger door.

Controls for the lighting system consists of one 3-way momentary switch labeled CABIN on the lighting control panel as well as a rocker switch just forward of both the aft passenger and cargo doors. The passenger door toggle switch will control all lights except the cargo door light, while the cargo door toggle switch will control only the cargo door light. The 3-way momentary switch labeled CABIN on the lighting control panel will control all lights regardless of the other switch positions.

The timer circuitry includes a solid state timer that will turn off all lights after 30 minutes automatically unless they are switched off manually. The circuit for the cabin lights is protected by a "pull-off" type circuit breaker, labeled CABIN LTS, on the J-Box panel in the engine bay.

CABIN LIGHTS WITH TIMER (Super CargoMaster)

The Super CargoMaster cabin light system consists of four cabin lights installed on the interior of the airplane and courtesy lights under each wing to facilitate boarding or loading cargo during night operations. Two lights are located above the center cabin area, one above the aft cargo door and one opposite the aft cargo door.

Controls for the lighting system consists of one 3-way momentary switch labeled CABIN on the lighting control panel as well as a rocker switch just forward of the cargo door.

PASSENGER READING LIGHTS (Passenger Version Only)

Passenger reading lights may be installed near each of the aft passengers positions. The lights are located in 14 small convenience panels above each seat. A pushbutton-type ON, OFF switch, mounted in each panel, controls the lights. The lights can be pivoted in their mounting sockets to provide the most comfortable angle of illumination for the passenger.

NO SMOKE/SEAT BELT SIGN (Passenger Version Only)

A lighted warning sign may be installed in the airplane to facilitate warning passengers of impending flight operations necessitating the fastening of seat belts and/or the extinguishing of all smoking materials. This installation consists of a small lighted panel mounted in the cabin headliner immediately aft of the overhead console and two toggle-type switches, labeled SEAT BELT and NO SMOKE, on the lighting control panel. When these switches are placed in the ON position, the warning signs illuminate, displaying the international graphic symbolism for fasten seat belts and no smoking to the rear cabin passengers. The circuit for the warning sign lights is protected by a pull-off type circuit breaker, labeled SEAT BELT SIGN, on the left sidewall switch and circuit breaker panel.

CABIN HEATING, VENTILATING AND DEFROSTING SYSTEM

The temperature and volume of airflow to the cabin is regulated by the cabin heating, ventilating and defrosting system (see Cabin Heating, Ventilating and Defrosting System figure). In the heating system, hot compressor outlet air is routed from the engine through a flow control valve, then through a mixer/muffler where it is mixed with cabin return air or warm air from the compressor bleed valve (depending on the setting of the mixing air valve) to obtain the correct air temperature before the air is routed to the cabin air distribution system. Controls are provided to direct the heated air to the forward and/or aft portions of the cabin for heating and to the windshield for defrosting. Ventilating air is obtained from an inlet on each side at the forward fuselage and through two ram air inlets, one on each wing at the upper end of the wing struts. The wing inlet ventilating air is routed through the wing into a plenum chamber located in the center of the cabin top. The plenum distributes the ventilating air to individual overhead outlets near each seat position. Two electric blowers are available for the overhead ventilating system. Details of this installation are presented in Section 9, Supplements.

BLEED AIR HEAT SWITCH

A two-position toggle switch, labeled BLEED AIR HEAT, is located on the cabin heat switch and control panel. The switch controls the operation of the bleed air flow control valve. The ON position of the switch opens the flow control valve, allowing hot bleed air to flow to the cabin heating system. The OFF position (down) closes the valve, shutting off flow of hot bleed air to the heating system.

TEMPERATURE SELECTOR KNOB

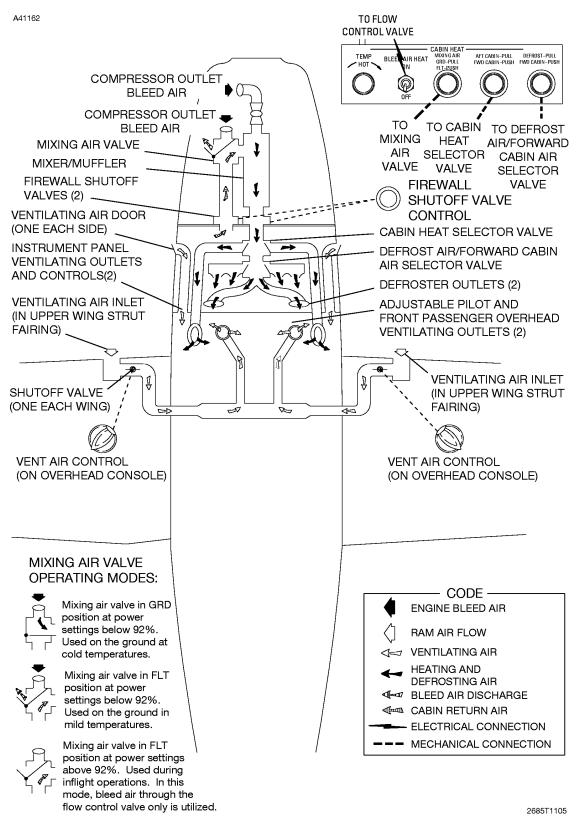
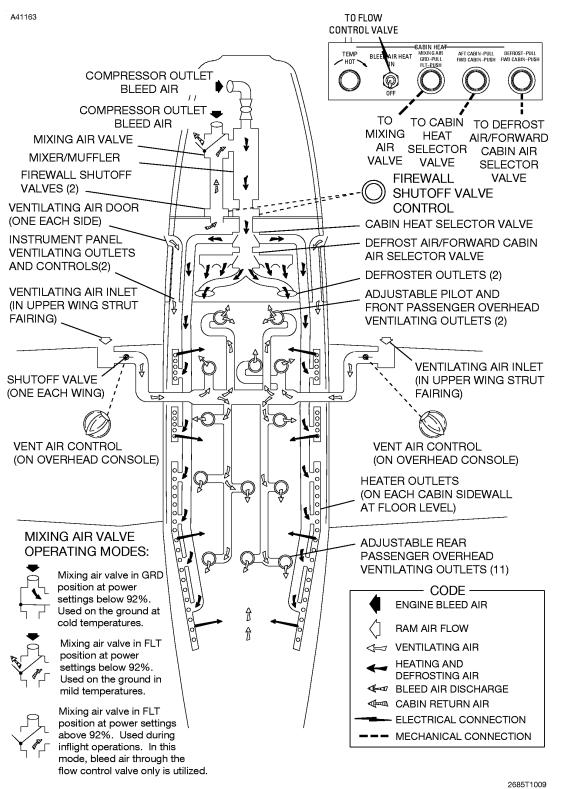
A rotary temperature selector knob, labeled TEMP, is located on the cabin heat switch and control panel. The selector modulates the opening and closing action of the flow control valve to control the amount and temperature of air flowing into the cabin. Clockwise rotation of the knob increases the mass flow and temperature of the air.

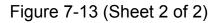
NOTE

- If more cabin heat is needed while on the ground, move the FUEL CONDITION Lever to HIGH IDLE and/or select the GRD position (pulled out) of the mixing air control.
- Some hysteresis may be encountered when adjusting bleed air temperature. The resulting amount and temperature of bleed air may be different when approaching a particular temperature selector knob position from a clockwise versus a counterclockwise direction. Best results can usually be obtained by turning the temperature selector knob full clockwise and then slowly turning it counterclockwise to decrease bleed airflow to the desired amount.

A temperature sensor, located in the outlet duct from the mixer/muffler operates in conjunction with the temperature selector knob. In the event of a high temperature condition (overheat) in the outlet duct, the temperature sensor will be energized, closing the flow control valve and thus shutting off the source of hot bleed air from the engine.

CABIN HEATING, VENTILATING AND DEFROSTING SYSTEM (CARGO VERSION)


Figure 7-13 (Sheet 1 of 2)

7-86

CESSNA MODEL 208B G1000

CABIN HEATING, VENTILATING AND DEFROSTING SYSTEM (PASSENGER VERSION)

208BPHBUS-00

U.S.

MIXING AIR PUSH-PULL CONTROL

A push-pull control, labeled MIXING AIR, GRD-PULL, FLT-PUSH, is located on the cabin heat switch and control panel. With the push-pull control in the GRD position (pulled out), warm compressor bleed valve air is mixed with hot compressor outlet air in the mixer/muffler. This mode is used during ground operation when warm compressor bleed valve air is available (at power setting below 92% N_a) and can be used as additional bleed air heat to augment the hot compressor outlet bleed air supply during periods of cold ambient temperature. With the pushpull control in the FLT position (pushed in), cabin return air is mixed with the hot compressor outlet air in the mixer/muffler. This recirculation of cabin return air enables the heating system to maintain the desired temperature for proper cabin heating. If desired, the FLT position of the push-pull control can be used on the ground when ambient temperatures are mild and maximum heating is not required. In this mode, the excess warm compressor bleed valve air available at power settings below 92% N_a is exhausted overboard from the mixing air valve.

CAUTION

The mixing air push-pull control should always be in the FLT position (pushed in) when the airplane is in flight. Cabin return air must be allowed to flow through the mixing valve and blend with hot compressor outlet air during high engine power operation in order to maintain proper temperature in the cabin heat distribution system. If the FLT position is not used during flight, the system may overheat and cause an automatic shutdown.

CESSNA SECTION 7 MODEL 208B G1000 AIRPLANE AND SYSTEMS DESCRIPTION

AFT/FORWARD CABIN PUSH-PULL CONTROL

A push-pull control, labeled AFT CABIN-PULL, FWD CABIN-PUSH, is located on the cabin heat switch and control panel. With the control in the AFT CABIN position (pulled out), heated air is directed to the aft cabin heater outlets located on the cabin sidewalls at floor level on the Passenger Version 208 and the outlets in the floor behind the pilot and copilot on the Cargomaster.

With the control in the FWD CABIN position (pushed in), heated air is directed to the forward cabin through four heater outlets located behind the instrument panel and/or the two windshield defroster outlets. The push-pull control can be positioned at any intermediate setting desired for proper distribution of heated air to the forward and aft cabin areas.

DEFROST/FORWARD CABIN PUSH-PULL CONTROL

A push-pull control, labeled DEFROST-PULL, FWD CABIN-PUSH, is located on the cabin heat switch and control panel. With the control in the DEFROST position (pulled out), forward cabin air is directed to two defroster outlets located at the base of the windshield (the aft/forward cabin push-pull control also must be pushed in for availability of forward cabin air for defrosting). With the defrost/forward cabin push-pull control in the FWD CABIN position (pushed in), heated air will be directed to the four heater outlets behind the instrument panel.

CABIN HEAT FIREWALL SHUTOFF KNOB

A push-pull shutoff knob, labeled CABIN HEAT FIREWALL SHUTOFF, PULL OFF, is located on the lower right side of the pedestal. When pulled out, the knob actuates two firewall shutoff valves, one in the bleed air supply line to the cabin heating system and one in the cabin return air line, to the off position. This knob should normally be pushed in unless a fire is suspected in the engine compartment.

CAUTION

Do not place the cabin heat firewall shutoff knob in the OFF position when the mixing air control is in the GRD position because a compressor stall will occur at low power settings when the compressor bleed valve is open. The engine must be shut down to relieve back pressure on the valves prior to opening the valves.

VENT AIR CONTROL KNOBS

Two vent air control knobs, labeled VENT AIR, are located on the overhead console. The knobs control the operation of the shutoff valves in each wing which control the flow of ventilating air to the cabin. The knob on the right side of the console controls the right wing shutoff valve and similarly, the knob on the left side controls the left wing shutoff valve. When the vent air control knobs are rotated to the CLOSE position, the wing shutoff valves are closed; rotating the knobs to the OPEN position progressively opens the wing shutoff valves. When the optional cabin ventilation fans are installed, rotating the knobs to the full OPEN position also turns on the ventilation fans.

INSTRUMENT PANEL VENT KNOBS

Two vent knobs, labeled VENT, PULL ON, are located one on each side of the instrument panel. Each knob controls the flow of ventilating air from an outlet located adjacent to each knob. Pulling each knob opens a small air door on the fuselage exterior which pulls in ram air for distribution through the ventilating outlet.

VENTILATING OUTLETS

Two vent knobs, labeled VENT, PULL ON, are located one on each side of the instrument panel. Each knob controls the flow of ventilating air from an outlet located adjacent to that knob. Pulling each knob opens a small air door on the fuselage exterior which pulls in ram air for distribution through the ventilating outlet.

OXYGEN SYSTEM

Some Cargo Versions are equipped with a two-port oxygen system having quick-don type masks for the pilot and passenger; other Cargo Versions can be equipped with a two-port oxygen system utilizing conventional masks. The Passenger Version can be equipped with up to 17-port oxygen system utilizing conventional masks. Refer to Section 9, Supplements, for complete details and operating instructions.

PITOT-STATIC SYSTEM AND INSTRUMENTS

There are two independent pitot-static systems on the airplane. The left pitot-static system supplies ram air pressure to Air Data Computer #1 and to the standby airspeed indicator, and supplies static pressure to Air Data Computer #1 and to the standby airspeed indicator, vertical speed indicator, and altimeter. The right pitot-static system provides ram air and static pressure to Air Data Computer #2. Each system is composed of a heated pitot-static tube mounted on the leading edge of the corresponding wing, a drain valve located on the sidewall beneath the instrument panel, and the associated plumbing necessary to connect the instruments and sources. In addition, the left system includes a static pressure alternate source valve located on the lower left corner of the instrument panel.

The static pressure alternate source valve in the left system can be used if the static source is malfunctioning. This valve supplies static pressure from inside the cabin instead of from the pitot-static tube. If erroneous instrument readings are suspected due to water or ice in the pressure line going to the static pressure source, the alternate source valve should be pulled on. Pressures within the cabin will vary with vents open or closed. Refer to Section 5, Performance for the effect of varying cabin pressures on airspeed and altimeter readings.

The drain valves incorporated in each system, located on the sidewall beneath the instrument panel, are used to drain suspected moisture accumulation by lifting the drain valve lever to the OPEN position as indicated by the placard adjacent to the valve. The valve must be returned to the CLOSED position prior to flight.

The pitot-static heat system consists of a heating element in each pitotstatic tube, a two-position toggle switch, labeled PITOT/STATIC HEAT, on the de-ice/anti-ice switch panel, and two pull-off type circuit breaker, labeled LEFT PITOT HEAT and RIGHT PITOT HEAT, on the left sidewall switch and circuit breaker panel. When the pitot-static heat switch is turned on, elements in the pitot-static tubes are heated electrically to maintain proper operation in possible icing conditions.

AIRSPEED INDICATIORS

The Garmin PFDs are the primary sources of airspeed information. Standby airspeed information is depicted by a mechanical indicator calibrated in knots, connected to the left pitot-static system. Limitation and range markings (in KIAS) match the markings on the PFD as listed in Section 2, Limitations.

The standby airspeed indicator is a true airspeed indicator and is equipped with a knob which works in conjunction with the airspeed indicator dial in a manner similar to the operation of a flight computer. To operate the indicator, first rotate the knob until pressure altitude is aligned with outside air temperature in degrees Centigrade. To obtain pressure altitude, momentarily set the barometric scale on the altimeter to 29.92 and read pressure altitude on the altimeter. Be sure to return the altimeter barometric scale to the original barometric setting after pressure altitude has been obtained. Having set the knob to correct for altitude and temperature, read the true airspeed shown in the window by the indicator pointer. For best accuracy, the indicated airspeed should be corrected to calibrated airspeed by referring to the Airspeed Calibration chart in Section 5, Performance. Knowing the calibrated airspeed, read true airspeed in the window opposite the calibrated airspeed.

VERTICAL SPEED INDICATION

The vertical speed indication on the PFDs depict airplane rate of climb or descent in feet per minute. The pointers are actuated by atmospheric pressure changes resulting from changes of altitude as supplied by the static sources.

ALTIMETER (STANDBY INSTRUMENT PANEL)

Airplane altitude is depicted by a barometric type altimeter. A knob near the lower left portion of the indicator provides adjustment of the instrument's barometric scale to the current altimeter setting.

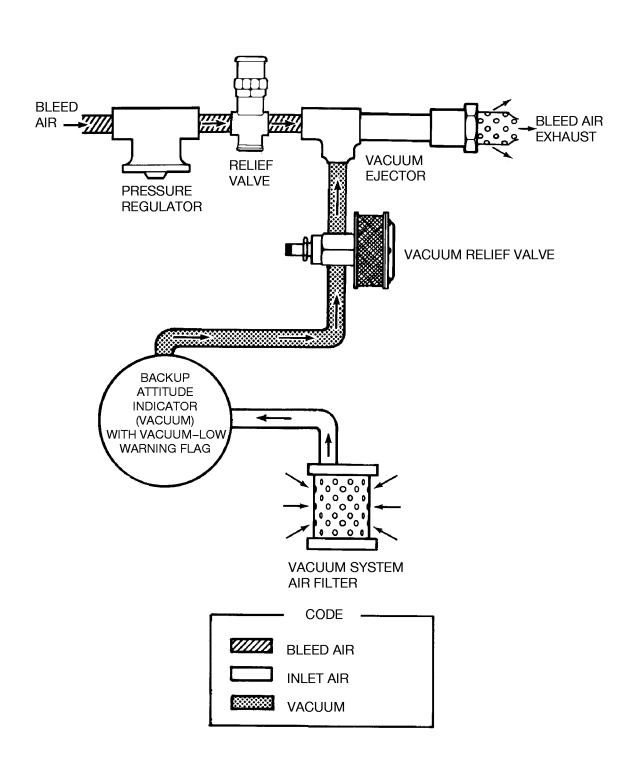
VACUUM SYSTEM AND INSTRUMENTS

A vacuum system (see Typical Vacuum System figure) provides the suction necessary to operate the standby attitude indicator. Vacuum is obtained by passing regulated compressor outlet bleed air through a vacuum ejector. Bleed air flowing through an orifice in the ejector creates the suction necessary to operate the indicator. The vacuum system consists of the bleed air pressure regulator, a vacuum ejector on the forward left side of the firewall, a vacuum relief valve and vacuum system air filter on the aft side of the firewall, and the standby attitude indicator.

ATTITUDE INDICATOR (Standby Instrument Panel)

Standby attitude information is depicted by a vacuum-driven attitude indicator. Bank attitude is presented by a pointer at the top of the indicator relative to the bank scale which has index marks at 10°, 20°, 30°, 60°, and 90° either side of the center mark. Pitch and roll attitudes are presented by a miniature airplane superimposed over a symbolic horizon area divided into two sections by a white horizon bar. The upper blue sky and the lower ground area have arbitrary pitch reference lines useful for pitch attitude control. A knob at the bottom of the instrument is provided for inflight adjustment of the miniature airplane to the horizon bar for a more accurate flight attitude indication.

LOW-VACUUM WARNING FLAG


The standby attitude indicator includes an orange low-vacuum warning flag (GYRO) that comes into view when the vacuum is below the level necessary for reliable gyroscope operation.

WARNING

The orange low-vacuum warning flag (gyro) is the only indication of the loss of the vacuum system.

TYPICAL VACUUM SYSTEM

A70359

CESSNA SECTION 7 MODEL 208B G1000 AIRPLANE AND SYSTEMS DESCRIPTION

STALL WARNING SYSTEM

The airplane is equipped with a vane-type stall warning unit, in the leading edge of the left wing, which is electrically connected to a stall warning horn located overhead of the pilot's position. The vane in the wing senses the change in airflow over the wing, and operates the warning horn at airspeeds between 5 and 10 knots above the stall in all configurations.

The stall warning system should be checked during the preflight inspection by momentarily turning on the battery switch and actuating the vane in the wing. The system is operational if the warning horn sounds as the vane is pushed upward. The elevator must be off the forward stop before the stall warning horn is enabled due to the fact that the aircraft is equipped with a stall warning ground disconnect switch.

A pull-off type circuit breaker, labeled STALL WRN, protects the stall warning system. Also, it is provided to shut off the warning horn in the event it should stick in the on position.

WARNING

This circuit breaker must be pushed in for landing.

The vane and sensor unit in the wing leading edge is equipped with a heating element. The heated part of the system is operated by the STALL HEAT switch on the deice/anti-ice switch panel, and is protected by the STALL WRN circuit breaker on the left sidewall switch and circuit breaker panel.

AVIONICS SUPPORT EQUIPMENT

Various avionics support equipment is installed in the airplane, and includes a microphone/speaker, mic/phone jacks, avionics cooling fans, 12VDC power outlets, an auxiliary audio input jack, and control surface static dischargers. The following paragraphs discuss these items. Description and operation of radio equipment is covered in Section 9 of this POH/AFM.

AVIONICS COOLING FAN

Two DC electric deck skin fans mounted on the underside of the cowl deck draw warm air from behind the instrument panel to maintain proper operating temperatures. In addition, three DC electric fans blow air directly onto the display heat sinks for prolonged equipment life. The deck skin fans will operate when the BATTERY switch is ON and the AVIONICS No. 1 power switch is on.

MICROPHONE-HEADSET INSTALLATIONS

Radio communications are accomplished by the use of a hand-held microphone and the airplane speaker, or by aviation-style headsets. The hand-held microphone stows in a hanger on the front of the pedestal and plugs into a mic jack located on the right side of the pedestal. It includes an integral push-to-talk button. The airplane speakers are located above the pilot's and copilot's positions in the cabin headliner.

The headsets plug into microphone and headset jacks located on the left side of the instrument panel for the pilot and the right side of the instrument panel for the copilot. Push-to-talk switches for the headsets are mounted on the control wheels.

Audio is controlled by the individual audio selector switches and adjusted for volume level by using the selected receiver volume controls. The system is designed so that microphones are voice activated, with transmission over the COM radios controlled by the push-to-talk switches. CESSNA SECTION 7 MODEL 208B G1000 AIRPLANE AND SYSTEMS DESCRIPTION

STATIC DISCHARGERS

As an aid in IFR flights, wick-type static dischargers are installed to improve radio communications during flight through dust or various forms of precipitation (rain, snow or ice crystals). Under P-Static conditions, the build-up and discharge of static electricity from the trailing edges of the wings, rudder, elevator, propeller tips, and radio antennas can result in loss of usable radio signals on all communications and navigation radio equipment. Usually the ADF is first to be affected and VHF communication equipment is the last to be affected.

Installation of static dischargers reduces interference from precipitation static, but it is possible to encounter severe precipitation static conditions which might cause the loss of radio signals, even with static dischargers installed. Whenever possible, avoid known severe precipitation areas to prevent loss of dependable radio signals. If avoidance is impractical, minimize airspeed and anticipate temporary loss of radio signals while in these areas.

Static dischargers lose their effectiveness with age, and therefore, should be checked periodically (at least at every annual inspection) by qualified avionics technicians, etc. If testing equipment is not available, it is recommended that the wicks be replaced every two years, especially if the airplane is operated frequently in IFR conditions. The discharger wicks are designed to unscrew from their mounting bases to facilitate replacement.

12VDC POWER OUTLET

A power converter, located below the copilot seat, reduces the airplane's 28VDC power to 12VDC. This converter provides up to 10 amps of power to operate portable devices such as notebook computer and audio players. The power output connector (POWER OUTLET 12V) is located on the center pedestal (Refer to Typical Instrument Panel figure).

AUXILIARY AUDIO INPUT JACK

An auxiliary audio input jack (AUX AUDIO IN) is mounted on the lower aft face of the pedestal (Refer to Typical Instrument Panel figure). It allows connection of entertainment audio devices such as cassette, compact disc, and MP3 players to play music over the airplane's headsets.

The signal from AUX AUDIO IN is automatically muted during radio communications or pilot selection of crew intercom isolation modes located on the audio panel. The AUX key on the audio panel does not control the AUX AUDIO IN signal. For a more complete description and operating instructions of the audio panel, refer to the Garmin G1000 CRG.

Since the entertainment audio input is not controlled by a switch, there is no way to deselect the entertainment source except to disconnect the source at the audio input connector.

CABIN FEATURES

CABIN FIRE EXTINGUISHER

A portable fire extinguisher is installed on the cargo barrier in some Cargo Versions and on the inside of the pilot's entry door in other Cargo Versions and the Passenger Version. The extinguisher in both airplanes is readily accessible in case of fire. The extinguisher should be checked prior to each flight to ensure that its bottle pressure, as indicated by the gage on the bottle, is within the green arc and the operating lever lock pin is securely in place.

To operate the fire extinguisher:

- 1. Loosen retaining clamp and remove extinguisher from bracket.
- 2. Hold extinguisher upright, pull operating lever lock pin, and press lever while directing the discharge at the base of the fire at the near edge. Progress toward the back of the fire by moving the nozzle rapidly with a side-to-side sweeping motion.

CAUTION

Care must be taken not to direct the initial discharge directly at the burning surface at close range (less than five feet) because the high velocity stream may cause splashing and/or scattering of the burning material.

3. Anticipate approximately ten seconds of discharge duration.

CESSNA MODEL 208B G1000

CABIN FIRE EXTINGUISHER (Continued)

WARNING

Ventilate the cabin promptly after successfully extinguishing the fire to reduce the gases produced by thermal decomposition. Occupants should use oxygen masks until the smoke clears.

Fire extinguishers should be recharged by a qualified fire extinguisher agency after each use. Such agencies are listed under "Fire Extinguisher" in the telephone directory. After recharging, secure the extinguisher to its mounting bracket; do not allow it to lie loose on floor or seats.

SUN VISORS

Two sun visors are mounted overhead of the pilot and copilot. The visors are mounted on adjustable arms which enable them to be swung and telescoped into the desired windshield area.

CHART AND STORAGE COMPARTMENTS

A map compartment is located in the lower right side of the instrument panel. A hinged door covers the compartment and can be opened to gain access into the compartment. Storage pockets are also installed on the back of the pilot's and copilot's seats and along the bottom edge of each crew entry door and can be used for stowage of maps and other small objects.

MISCELLANEOUS EQUIPMENT

ENGINE INLET COVERS AND PROPELLER ANCHOR

Various covers and an anchor are available to close engine openings and restrain the propeller during inclement weather conditions and when the airplane is parked for extended periods of time, such as overnight. The covers preclude the entrance of dust, moisture, bugs, etc. into the engine and engine compartment.

Two covers are provided which plug into the two front inlets, thereby closing off these openings. The engine inlet covers may be installed after the engine has cooled down (ITT indicator showing off scale temperature). To prevent the propeller from windmilling during windy conditions, the propeller anchor can be installed over a blade of the propeller and its anchor strap secured around the nose gear or to the bracket located on the lower right-hand cowl.

208BPHBUS-00

U.S. 7-99

CREW ENTRY STEP ASSEMBLY

The airplane may be equipped with a crew entry step for each crew entry door. The step assembly attaches to the floorboard just inside the entry door and extends toward ground level, providing two steps for entering or exiting the airplane. When not in use, the step assembly folds and stows just inside the cabin, inboard of each entry door.

CARGO BARRIER AND NETS

A cargo barrier and three cargo barrier nets may be installed directly behind the pilot's and copilot's seats. The barrier and nets preclude loose cargo from moving forward into the pilot's and copilot's stations during an abrupt deceleration. The barrier consists of a U-shaped assembly of honeycomb composite construction. The assembly attaches to the four seat rails at the bottom at station 153 and to structure at the top at approximately station 166. The cargo barrier nets consist of three nets: one for the left sidewall, one for the right sidewall, and one for the center. The left and right nets fill in the space between the barrier assembly and the airplane sidewalls.

The side nets are fastened to the airplane sidewalls and the edge of the barrier with six anchor-type fasteners each, three on each side. The center net fills in the opening in the top center of the barrier. The center net is fastened with four anchor-type fasteners, two on each side.

CARGO PARTITIONS

Cargo partitions are available and can be installed to divide the cargo area into convenient compartments. Partitions may be installed in all of the five locations at stations 188.7, 246.8, 282.0, 307.0, and 332.0. The cargo partitions are constructed of canvas with nylon webbing reinforcement straps crisscrossing the partition for added strength. The ends of each strap have fittings which attach to the floor tracks and anchor-type fasteners on the sides and top of the fuselage. Four straps have adjustable buckles for tightening the straps during installation of the partition.

CARGO DOOR RESTRAINING NET

A restraining net may be installed on the inside of the airplane over the cargo door opening. The net precludes loose articles from falling out the cargo door when the doors are opened. The restraining net consists of two halves which part in the center of the door opening. The front and rear halves slide fore and aft, respectively, on a rod to open the net. The net is attached to the sidewall by screws and nutplates along the front and rear edges of the net. When the net is closed, the two halves are held together by snap-type fasteners.

CESSNA

CARGO/AIRPLANE TIE-DOWN EQUIPMENT

Various items of tie-down equipment are available for securing cargo within the airplane and/or tying down the airplane. This equipment consists of tie-down belt assemblies having various load ratings and adjustment devices and two types of quick-release tie-down ring anchors for securing the belts to the cabin seat tracks and anchor plates. Refer to Section 6 for the recommended use and restrictions of this equipment.

HOISTING RINGS

Provisions are made for the installation of four hoisting rings which attach to the left and right sides of both front and rear spar wing-tofuselage attach fittings. Each hoisting ring consists of a hinge which replaces the washer on the attachment bolt of the fitting. The upper half of the hinge contains a ring which is used for attaching the hoist when the airplane is being hoisted. When not in use, the upper hinge half folds down out of the way. To gain access to the hoisting rings, when installed, it is necessary to remove the wing-to-fuselage fairing strips.

RELIEF TUBE

Provisions are made for the installation of a relief tube in the aft cabin area on the Passenger Version. The relief tube is installed on the right sidewall, just aft of the passenger entry door.

OIL QUICK-DRAIN VALVE

An oil quick-drain valve is available to replace the drain plug on the bottom of the engine oil tank, and provides quicker, cleaner draining of the engine oil. To drain the oil with this valve, slip a hose over the end of the valve, cut the safety wire securing the valve on-off lever in the off position, and rotate the lever to the on position. After draining, rotate the valve on-off lever to the off position, remove the hose to check for leakage, and resafety the on-off lever in the off position.

CESSNA MODEL 208B G1000 SECTION 8 HANDLING, SERVICE, AND MAINTENANCE

PAGE

SECTION 8 AIRPLANE HANDLING, SERVICE & MAINTENANCE

TABLE OF CONTENTS

Cessna Customer Care Program8-7 Engine Condition Trend Monitoring......8-8 Ground Deice/Anti-Ice Operations......8-24 Holdover Timetable (Type I, Type II, Type III, Essential Areas to be Deiced8-34 Deice and Anti-Ice Fluid Direct Spray

SECTION 8 HANDLING, SERVICE, AND MAINTENANCE	CESSNA MODEL 208B G1000
TABLE OF CONTENTS (Continued) Cleaning and Care Windshield and Windows Windshield and Window Maintenance Proced Cleaning Instructions Windshield and Window Preventive Maintena Materials for Acrylic Windshields and Window Painted Surfaces Stabilizer Abrasion Boot Care Propeller Care Engine Care Engine Care Compressor Turbine Blade Wash Interior Care Prolonged Out-of-Service Care Bulb Replacement During Flight.	8-38 lures 8-38 nce 8-38 nce 8-40 /s 8-41

INTRODUCTION

This section contains factory-recommended procedures for proper ground handling and routine care and servicing of your Cessna. It also identifies certain inspection and maintenance requirements which must be followed if your airplane is to retain that new-plane performance and dependability. It is wise to follow a planned schedule of lubrication and preventive maintenance based on climatic and flying conditions encountered in your locality.

Keep in touch with your Cessna Service Station and take advantage of his knowledge and experience. He knows your airplane and how to maintain it. He will remind you when lubrications and oil changes are necessary, and will advise you about other seasonal and periodic services.

WARNING

The airplane should be regularly inspected and maintained in accordance with information found in the airplane Maintenance Manual and in company issued Service Bulletins and Service Newsletters. All recommendations for product improvements for by Service Bulletins called should be accomplished and the airplane should receive repetitive and required inspections. Cessna does not condone modifications, whether bv Supplemental Type Certificate or otherwise, unless these certificates are held and/or approved by Cessna. Other modifications may void warranties on the airplane since Cessna has no way of knowing the full effect on the overall airplane. Operation of an airplane that has been modified may be a risk to the occupants, and operating procedures and performance data set forth in the POH/AFM may no longer be considered accurate for the modified airplane.

IDENTIFICATION PLATE

All correspondence regarding your airplane should include the SERIAL NUMBER. The Serial Number, Model Number, Production Certificate (PC) Number and Type Certificate (TC) Number can be found on the Identification Plate located on the forward doorpost of the left crew door on early serial airplanes or on the left side of the tailcone below the horizontal stabilizer on later serial airplanes. A Finish and Trim Plate is located on the forward doorpost of the left crew door of all airplanes and contains a code describing the interior color scheme and exterior paint combination of the airplane. The code may be used in conjunction with an applicable Parts Catalog if finish and trim information is needed.

CESSNA OWNER ADVISORIES

Cessna Owner Advisories are sent to Cessna airplane owners at no charge to inform them about mandatory and/or beneficial airplane service requirements and product improvements:

United States Airplane Owners

If your airplane is registered in the U.S., appropriate Cessna Owner Advisories will be mailed automatically according to the latest airplane registration name and address provided to the FAA.

To request a duplicate Owner Advisory to be sent to an address different from the FAA airplane registration address, please complete and return an Owner Advisory Application (otherwise no action is required on your part).

International Airplane Owners

To receive Cessna Owner Advisories, please complete and return an Owner Advisory Application.

Receipt of a valid Owner Advisory Application will establish your Cessna Owner Advisory service (duplicate Owner Advisory service for U.S. airplane owners) for one year, after which you will be sent a renewal notice.

CESSNA SECTION 8 MODEL 208B G1000 HANDLING, SERVICE, AND MAINTENANCE

PUBLICATIONS

The following publications and flight operation aids are furnished in the airplane when delivered from the factory:

- CESCOM/CUSTOMER CARE PROGRAM HANDBOOK
- PILOT'S OPERATING HANDBOOK AND FAA APPROVED AIRPLANE FLIGHT MANUAL (POH/AFM)
- FLIGHT MANUAL
- PILOT'S ABBREVIATED CHECKLIST
- CESSNA SALES AND SERVICE DIRECTORY

The following additional publications, plus many other supplies that are applicable to your airplane, are available from your Cessna Service Station:

- INFORMATION MANUAL (Contains POH/AFM Information)
- MAINTENANCE MANUALS and PARTS CATALOGS for your airplane, engine, accessories, avionics, and autopilot.

Cessna Service Stations have a Customer Care Supplies and Publications Catalog covering all available items, many of which are kept on hand. The Cessna Service Station representative can place an order for any item which is not in stock.

NOTE

A POH/AFM that is lost or destroyed may be replaced by contacting your Cessna Service Station or Cessna Product Support. An affidavit containing the owner's name, airplane serial number and registration number must be included in replacement requests since the POH/AFM is identified for a specific airplane only.

CESSNA

AIRPLANE FILE

- 1. To be displayed in the airplane at all times:
 - a. Aircraft Airworthiness Certificate (FAA Form 8100-2).
 - b. Aircraft Registration Certificate (FAA Form 8050-3).
 - c. Aircraft Radio Station License, if transmitter installed (FCC Form 556).
- 2. To be carried in the airplane at all times:
 - Pilot's Operating Handbook and FAA Approved Airplane a. Flight Manual.
 - b. Weight and Balance, and associated papers (latest copy of the Repair and Alteration Form, FAA Form 337, if applicable).
 - c. Equipment List.
- 3. To be made available upon request:
 - Aircraft Maintenance Record. a.
 - b. Engine Maintenance Record.
 - c. Propeller Maintenance Record.
 - Avionics Maintenance Record. d

Most of the items listed are required by the United States Federal Aviation Regulations. Since the Regulations of other nations may require other documents and data, owners/operators of airplanes not registered in the United States should check with their own aviation officials to determine their individual requirements.

Cessna recommends that these items, plus the Pilot's Checklists, CESCOM/Customer Care Program Handbook; and Customer Care Card be carried in the airplane at all times.

AIRPLANE INSPECTION PERIODS

FAA REQUIRED INSPECTIONS

As required by Federal Aviation Regulations, all civil airplane of U.S. registry must undergo a complete inspection (annual) each 12 calendar months. In addition to the required ANNUAL inspection, airplane operated commercially (for hire) must have a complete inspection every 100 hours of operation.

The FAA may require other inspections by the issuance of airworthiness directives applicable to the airplane, engine, propeller, and components. It is the responsibility of the owner/operator to ensure compliance with all applicable airworthiness directives and, when the inspections are repetitive, to take appropriate steps to prevent inadvertent noncompliance.

FAA REQUIRED INSPECTIONS (Continued)

In lieu of the 100 HOUR and ANNUAL inspection requirements, an airplane may be inspected in accordance with a progressive inspection schedule, which allows the work load to be divided into smaller operations that can be accomplished in shorter time periods.

The Cessna Progressive Care Program has been developed to provide a modern progressive inspection schedule that satisfies the complete airplane inspection requirements of both the 100 HOUR and ANNUAL inspections as applicable to Cessna airplanes. The program assists the owner/operator in his responsibility to comply with all FAA inspection requirements, while ensuring timely replacement of life-limited parts and adherence to factory-recommended inspection intervals and maintenance procedures.

CESSNA PROGRESSIVE CARE

The Cessna Progressive Care Program has been designed to help you realize maximum utilization of your airplane at a minimum cost and downtime. Under this program, your airplane is inspected and maintained in four operations. The four operations are recycled each 400 hours and are recorded in a specially provided Aircraft Inspection Log as each operation is conducted.

The Cessna Aircraft Company recommends Progressive Care for airplanes that are being flown 400 hours or more per year, and the 100hour inspection for all other airplanes. The procedures for the Progressive Care Program and the 100-hour inspection have been carefully worked out by the factory and are followed by the Cessna Service Organization. The complete familiarity of Cessna Authorized Caravan Service Stations with Cessna equipment and factoryapproved procedures provides the highest level of service for Cessna owners/operators.

Regardless of the inspection method selected by the owner/operator, he should keep in mind that FAR Part 43 and FAR Part 91 establishes the requirement that properly certified agencies or personnel accomplish all required FAA inspections and most of the manufacturer recommended inspections.

CESSNA CUSTOMER CARE PROGRAM

Specific benefits and provisions of the Cessna Warranty plus other important benefits are contained in the CESCOM/Customer Care Program Handbook supplied with the airplane. Thoroughly review your CESCOM/Customer Care Program Handbook and keep it in the airplane at all times.

CESSNA CUSTOMER CARE PROGRAM (Continued)

Contact a Cessna Service Station either at 100 hours for the first Progressive Care Operation, or for the first 100-hour inspection depending on the program chosen for the airplane. While these important inspections will be performed by any Cessna Caravan Service Station, in most cases it is preferable to have the facility where the airplane was purchased accomplish this work.

PHASECARD INSPECTION

As an alternative to the 100-Hour and Annual inspection program, the Caravan may be inspected in accordance with the Cessna PhaseCard Inspection Program. The Cessna PhaseCard Inspection Program is designed for Caravan operator's who fly more than 400 hours per year as a Part 135 operation. 14 CFR, Part 91 operators may also utilize the PhaseCard Inspection Program under the requirements of 14CFR, Part 91.409 (d). The PhaseCard program provides the mechanic with step-by-step, easy-to-follow instructions for each inspection task. Actual field experience has shown an average of 30% reduction in scheduled maintenance labor hours over progressive or periodic type inspection programs. The higher the utilization, the more valuable the program becomes.

CESCOM SYSTEM

CESCOM is Cessna's Computerized Maintenance Records System. This comprehensive system provides an accurate and simple method of monitoring and scheduling inspections, Service Bulletins, Service Kits, Airworthiness Directives as well as scheduled and unscheduled maintenance activities. For detail information about CESCOM, refer to the CESCOM Instruction Manual supplied with the airplane.

ENGINE CONDITION TREND MONITORING

Pratt & Whitney Canada Engine Condition Trend Monitoring is a system of recording engine instrument readings, correcting the readings for ambient conditions, and comparing actual engine operation to typical engine operating characteristics.

It has been established that engine operating characteristics, such as output torque (Tq), propeller RPM (Np), interturbine temperature (ITT), gas generator RPM (N_g), and fuel flow (Wf) are predictable for various engine types under specific ambient conditions.

ENGINE CONDITION TREND MONITORING (Continued)

Because airplane engines operate at a wide range of altitudes, outside air temperatures, and airspeeds, corrections for varying ambient conditions are also incorporated into the Trend Monitoring process.

Additional information about both of these methods may be obtained from the following sources:

- Cessna Caravan Service Station.
- Cessna Propeller Aircraft Product Support.
- Pratt & Whitney Canada, Inc.

1000 Marie - Victorin, Longueuil, Quebec

Canada, J4G 1A1

Attention: Customer Support, Small Turboprops

Mail Code: 1RC1

Tel: (514) 677-9411

- The publication "Engine Condition Trend Monitoring and Power Management for PT6A-114, PT6A-114A Installed in the Cessna Caravan I" supplied in this Pilot's Operation Handbook, or from sources listed above.
- Pratt & Whitney Canada Aircraft Gas Turbine Operation Information Letter, No. 23.

PILOT-CONDUCTED PREVENTIVE MAINTENANCE

A certified pilot who owns or operates an airplane not used as an air carrier is authorized by FAR Part 43 to perform limited maintenance on his airplane. Refer to FAR Part 43 for a list of the specific maintenance operations that are allowed.

NOTE

Pilots operating airplanes of other than U.S. registry should refer to the regulations of the country of certification for information on preventive maintenance that may be performed by pilots.

A current 208 Series Maintenance Manual should be obtained prior to performing any preventive maintenance to ensure that proper procedures are followed. The Cessna Service Station should be contacted for further information or for required maintenance that must be accomplished by appropriately licensed personnel.

U.S. 8-9

ALTERATIONS OR REPAIRS

It is essential that the FAA be contacted prior to any alterations on the airplane to ensure that airworthiness of the airplane is not violated. Alterations or repairs to the airplane must be accomplished by licensed personnel.

GROUND HANDLING

TOWING

The airplane is most easily and safely maneuvered by hand with the towbar attached to the nosewheel. The tow bar may be stowed in Zone 6. Moving the airplane by hand will require that the individual steering with the tow bar be assisted by personnel pushing at the wing struts.

CAUTION

Do not push or pull the airplane using the propeller blades or control surfaces.

Use extreme caution during towing operations, especially when towing with a vehicle. Do not exceed the nose gear turning angle limit (51.5°) on either side of center as shown by the steering limit marks.

If excess force is exerted beyond the turning limit, a red over-travel indicator block (frangible stop) will fracture and the block, attached to a cable, will fall into view alongside the nose strut. This should be checked routinely during preflight inspection to prevent operation with a damaged nose gear.

CAUTION

Disengage rudder lock and remove any external rudder locks before towing.

If the airplane is towed or pushed over a rough surface during hangaring, watch that the normal cushioning action of the nose gear does not cause excessive vertical movement of the tail and the resulting contact with low hangar doors or structure. A flat nose tire will also increase tail height.

CESSNA SECTION 8 MODEL 208B G1000 HANDLING, SERVICE, AND MAINTENANCE

PARKING

When parking the airplane, head into the wind and set the parking brakes. Do not set the parking brakes during cold weather when accumulated moisture may freeze the brakes, or when the brakes are overheated. Install the control wheel lock, engage the rudder lock, and chock the wheels (if the brakes are not utilized) to prevent airplane movement. In severe weather and high wind conditions, tie the airplane down as outlined in the tie down section.

CAUTION

Any time the airplane is loaded heavily, the footprint pressure (pressure of the airplane wheels upon the contact surface of the parking area or runway) will be extremely high, and surfaces such as hot asphalt or sod may not adequately support the weight of the airplane. Precautions should be taken to avoid airplane parking or movement on such surfaces.

TIE DOWN

Proper tie-down procedure is the best precaution against damage to the parked airplane by gusty or strong winds. To tie down the airplane securely, proceed as follows:

- 1. Head the airplane into the wind, if possible.
- 2. Set the parking brake.

CAUTION

Do not set the parking brake during cold weather when accumulated moisture may freeze the brakes or when the brakes are overheated. If the brakes are not utilized, chock the nose and main wheels to prevent airplane movement.

- 3. Install the control wheel lock and engage the rudder lock (if installed).
- 4. Set aileron and elevator trim tabs to neutral position so that tabs fair with control surfaces.

SECTION 8 HANDLING, SERVICE, AND MAINTENANCE

MODEL 208B G1000

TIE DOWN (Continued)

- 5. Install pitot tube cover(s), if available.
- 6. Secure ropes or chains of sufficiently strong tensile strength to the wing tie-down fittings and secure to ground anchors.
- 7. Attach a rope or chain to the tail tie-down, and secure to a ground anchor.
- 8. If additional security is desired, attach a rope (no chains or cables) to the nose gear torque link and secure to a ground anchor.
- 9. If dusty conditions exist, or the last flight of the day has been completed, install the two engine inlet covers to protect the engine from debris. The covers may be installed after the engine has cooled down (ITT indicator showing "off scale" temperature).
- 10. To prevent the propeller from windmilling, install the propeller anchor over a blade of the propeller and secure its anchor strap around the nose gear or to the bracket located on the lower right hand cowl.

JACKING

Several jack points or jacking locations are available depending on whether a cargo pod is installed. A fuselage jack point directly below the firewall and housed within the nose gear strut fairing is accessible for nose gear jacking regardless of the installation of a cargo pod. Two additional fuselage jack points are located at the main gear supports, but are not accessible with the cargo pod installed. Their use is generally reserved for maintenance such as main gear removal or raising the entire airplane whenever the cargo pod is not installed.

Anytime the cargo pod is installed, if the main gear-to-fuselage fairings are removed, jacks can be positioned adjacent to the sides of the cargo pod and raised to engage the receptacle on the end of the jacks over the head of the outboard bolt which secures the main gear attach trunnion bearing cap (aft) on the left and right gear. These jacking locations serve essentially the same purpose as the fuselage jack points at the main gear supports. An additional jack point on each main gear axle fitting is used primarily when the cargo pod is installed and it is desired to jack a single main gear for tire replacement, etc. If desired, jack stands with wing jack pads may be fabricated so that the front wing spar at stations 141.2 or 155.9 on each wing may be used as jacking locations. A tail jack must be used in conjunction with wing jacking.

CESSNA SECTION 8 MODEL 208B G1000 HANDLING, SERVICE, AND MAINTENANCE

JACKING (Continued)

CAUTION

- A tail jack stand must be used when conducting maintenance inside the tail section, and should be installed in most jacking operations. Be sure the stand is suitably heavy enough to keep the tail stable under all conditions and is strong enough to support the airplane. Placing a jack stand under the nose jack point (if not used for jacking) will provide additional stability.
- Do not use cargo pod structure for jacking or as a blocking surface.
- Raise the airplane no more than required for the maintenance being performed.

In some instances, it may be necessary to use a sling or hoisting rings for the initial lift, to be followed with jacking at the jack points. Refer to the Maintenance Manual for procedures on jacking and hoisting, and information concerning jacking equipment.

LEVELING

Longitudinal leveling of the airplane for weighing will require that the main landing gear be supported by stands, blocks, etc., on the main gear scales to a position at least 4 inches higher than the nose gear as it rests on an appropriate scale. This initial elevated position will compensate for the difference in waterline station between the main and nose gear so that final leveling can be accomplished solely by deflating the nose gear tire.

NOTE

Since the nose gear strut on this airplane contains an oil snubber for shock absorption rather than an air/oil shock strut, it cannot be deflated to aid in airplane leveling.

LEVELING (Continued)

The airplane can also be leveled longitudinally by raising or lowering the airplane at the jack points. Longitudinal leveling points are provided by backing out the two leveling screws located on the left side of the fuselage just forward of the cargo doors. Place a spirit level on the screws, then deflate the nose gear tire (if placed on scales) or adjust the jacks to center the bubble in the level. The pilot's seat rails can also be used for longitudinal leveling by moving the seat to the most forward position and placing the level on the rail just aft of the seat. To level the airplane laterally, center a spirit level across the seat rails aft of the pilot and right front passenger seats and raise or lower one side of the airplane. Refer to the 208 Series Maintenance Manual for additional information.

SERVICING

In addition to the PREFLIGHT INSPECTION covered in Section 4, COMPLETE servicing, inspection, and test requirements for your airplane are detailed in the 208 Series Maintenance Manual. The Maintenance Manual outlines all items that require attention at 100, 200, and 400-hour intervals, plus those items that require servicing, inspection, and/or testing at special intervals.

Since Cessna Service Stations have the training and equipment necessary to conduct all service, inspection, and test procedures in accordance with applicable maintenance manuals, it is recommended that owner/operators contact the Cessna Service Station concerning these requirements and begin scheduling the airplane for service at the recommended intervals.

Cessna Progressive Care ensures that these requirements are accomplished at the required intervals to comply with the 100-hour or ANNUAL inspection as previously covered.

Depending on various flight operations, your local Government Aviation Agency may require additional service, inspections, or tests. For these regulatory requirements, owners/operators should check with local aviation officials where the airplane is being operated.

For quick and ready reference, quantities, materials, and specifications for frequently used service items are as follows:

CESSNA SECTION 8 MODEL 208B G1000 HANDLING, SERVICE, AND MAINTENANCE

OIL

OIL GRADE (SPECIFICATION)

Oil conforming to Pratt & Whitney Engine Service Bulletin No. 1001, and all revisions or supplements thereto, must be used. The oils listed below comply with the engine manufacturers specification PWA521 and have a viscosity Type II rating. These oils are fully approved for use in Pratt & Whitney Canada commercially operated engines. When adding oil, service the engine with the type and brand that is currently being used in the engine. Refer to the airplane and engine maintenance records for this information. Should oils of different viscosities or brands be inadvertently mixed, the oil system servicing instructions in the Maintenance Manual shall be carried out.

- BP Turbo Oil 2380
- Exxon Turbo Oil ETO 85 (Third generation lubricant)
- Aero Shell Turbine Oil 500
- Aero Shell Turbine Oil 555
- Aero Shell Turbine Oil 560 (Third generation lubricant)
- Royco Turbine Oil 500
- Royco Turbine Oil 555
- Royco Turbine Oil 560 (Third generation lubricant)
- Mobil Jet Oil II
- Mobil Jet Oil 254 (Third generation lubricant)
- Castrol 5000
- Turbonycoil 600

CAUTION

- Do not mix brands or types of oils.
- When changing from an existing lubricant formulation to a "third generation" lubricant formulation (see list above), the engine manufacturer strongly recommends that such a change should only be made when an engine is new or freshly overhauled. For additional information on use of third generation oils, refer to the engine manufacturer's pertinent oil service bulletins.

SECTION 8 HANDLING, SERVICE, AND MAINTENANCE MODEL 208B G1000

OIL (Continued)

NOTE

The oils listed above are recommended when operation will result in frequent cold soaking at ambient temperatures of 0°F (-18°C). Refer to Pratt & Whitney Engine Service Bulletin No. 1001 for additional approved oils:

If one or more of the following conditions exist, the accessory gearbox scavenge pump inlet screen and any drained oil should be inspected for the presence of carbon particles, per airplane and engine maintenance manual procedures and the engine manufacturer's pertinent engine and oil service bulletins:

- 1. Engine oil has been switched to a "third generation" lubricant during mid-life.
- 2. High oil consumption.
- 3. Oil leaking from engine intake.

If carbon particles are found, refer to the above referenced maintenance manuals and service bulletins for corrective action.

TOTAL OIL CAPACITY - 14 U.S. Quarts (including oil in filter, cooler and hoses).

DRAIN AND REFILL QUANTITY - Approximately 9.5 U.S. Quarts.

OIL QUANTITY OPERATING RANGE:

Fill to within 1.5 guarts of MAX HOT or MAX COLD (as appropriate) on dipstick. Quart markings indicate U.S. quarts low if oil is hot. For example, a dipstick reading of 3 indicates the system is within 2 quarts of MAX, if the oil is cold and within 3 quarts of MAX if the oil is hot.

CESSNA SECTION 8 MODEL 208B G1000 HANDLING, SERVICE, AND MAINTENANCE

OIL (Continued)

WARNING

Make sure oil dipstick cap is securely latched down. Operating the engine with less than the recommended oil level and with the dipstick cap unlatched will result in excessive oil loss and eventual engine stoppage.

NOTE

To obtain an accurate oil level reading, it is recommended the oil level be checked either within 10 minutes after engine shutdown while the oil is hot (MAX HOT marking) or prior to the first flight of the day while the oil is cold (MAX COLD marking). If more than 10 minutes has elapsed since engine shutdown and engine oil is still warm, perform an engine dry motoring run before checking oil level.

OIL DRAIN PERIOD

For engines operated in corporate or utility airplanes with a typical utilization of 50 hours per month or less, it is recommended the oil be changed every 400 hours or 12 months, whichever occurs first. For engines operated in high utilization commuter airline type operation, a basic oil drain period of 1200 hours or 12 months is recommended. Regardless of the degree of utilization, if operating in a sandy or dusty environment, the oil change interval must be at least every 6 months.

FUEL

APPROVED FUEL GRADE (SPECIFICATION):

- Jet A (ASTM-D1655).
- Jet A-1 (ASTM-D1655).
- Jet B (ASTM-D1655).
- JP-1 (MIL-L-5616).
- JP-4 (MIL-T-5624).
- JP-5 (MIL-T-5624).
- JP-8 (MIL-T-83133A).

SECTION 8 HANDLING, SERVICE, AND MAINTENANCE MODEL 208B G1000

CESSNA

FUEL (Continued)

ALTERNATE/EMERGENCY FUEL:

· Aviation Fuel (All grades of military and commercial aviation gasoline).

CAUTION

Aviation gasoline is restricted to emergency use and shall not be used for more than 150 hours in one overhaul period. A mixture of one part aviation gasoline and three parts of Jet A, Jet A-1, JP-1, or JP-5 may be used for emergency purposes for a maximum of 450 hours per overhaul period.

CAPACITY EACH TANK:

• 167.8 U.S. Gallons.

CAUTION

To obtain accurate fuel quantity indicator readings, verify the airplane is parked in a laterally level condition, or, if in flight, make sure the airplane is in a coordinated and stabilized condition.

FUEL ADDITIVES

A variety of fuels may be used in the airplane; however, each must have an anti-icing additive, EGME or DIEGME, incorporated or added to the fuel during refueling.

It is recommended that fuel anti-icing additive be used to control bacteria and fungi. The anti-ice additives EGME/DIEGME have shown (through service experience) that they provide acceptable protection from microorganisms such as bacteria and fungi that can rapidly multiply and cause serious corrosion in tanks and may block filters, screens and fuel metering equipment.

CESSNA SECTION 8 MODEL 208B G1000 HANDLING, SERVICE, AND MAINTENANCE

FUEL ADDITIVES (Continued)

CAUTION

- JP-4 and JP-5 fuels per MIL-T-5624 and JP-8 fuel per MIL-T-83133A contain the correct premixed quantity of an approved type of anti-icing fuel additive and no additional anti-ice compounds should be added.
- Proper mixing of EGME or DIEGME compound with the fuel is extremely important. A concentration in excess of that recommended (0.15% by volume maximum) will result in detrimental effects to the fuel tanks, such as deterioration of protective primer and sealants and damage to o-rings and seals in the fuel system and engine components.
- Use only blending equipment that is recommended by the manufacturer to obtain proper proportioning.

PROCEDURE FOR ADDING FUEL ANTI-ICING ADDITIVE

When the airplane is being refueled, use the following procedure to blend anti-icing additive to nontreated fuel:

- 1. Attach additive to refuel nozzle, making sure blender tube discharges in the refueling stream.
- 2. Start refueling while simultaneously fully depressing and slipping ring over trigger of blender.

WARNING

Anti-icing additives containing Ethylene Glycol Monomethyl Ether (EGME) are harmful if inhaled, swallowed, or absorbed through the skin, and will cause eye irritation. It is also combustible. Before using this material, refer to all safety information on the container.

FUEL ADDITIVES (Continued)

CAUTION

- Diethylene Glycol Monomethyl Ether (DIEGME) is slightly toxic if swallowed and may cause eye redness, swelling and irritation. It is also combustible. Before using this material, refer to all safety information on the container.
- Assure the additive is directed into the flowing fuel stream with the additive flow started after the fuel flow starts and stopped before fuel flow stops. Do not allow concentrated additive to contact coated interior of fuel tank or airplane painted surface.
- Use not less than 20 fluid ounces of additive per 156 gallons of fuel or more than 20 fluid ounces of additive per 104 gallons of fuel.

PROCEDURE FOR CHECKING FUEL ADDITIVES

Prolonged storage of the airplane will result in a water buildup in the fuel which "leaches out" the additive. An indication of this is when an excessive amount of water accumulates in the fuel tank sumps. The concentration of additive can be checked using an anti-icing additive concentration test kit. For additional information about this kit, refer to Chapter 12 of the 208B Series Maintenance Manual. It is imperative that the instructions for the test kit be followed explicitly when checking the additive concentration. The additive concentrations by volume for EGME/DIEGME shall be 0.10% minimum and 0.15% maximum, either individually or mixed in a common tank. Fuel, when added to the tank, should have a minimum concentration of 0.10% by volume.

CAUTION

If the fuel additive concentration has fallen below 0.035% by volume, the airplane should be defueled and refueled.

FUEL ADDITIVES (Continued)

If additional anti-static protection is desired, the following additive is approved for use:

• Dupont Stadis 450

CAUTION

Additives shall not exceed a maximum concentration of 1 part per million by weight.

If additional biocidal protection is desired, an additive is permitted for use in certain conditions. Fuel tank maintenance practices are of prime importance in controlling microbial growth. However, other factors such as climate, airplane design, route structure, and utilization also affect microbial growth; therefore, occasional use of a biocide may be required.

Biocide additive may be used on a limited basis, defined as intermittent or non-continuous use in a single application, to sterilize airplane fuel systems suspected or found to be contaminated by microbial organisms. For those operators, where the need for biocide use is dictated, Pratt & Whitney Canada recommends, as a guide, a dosage interval of once a month. This interval can then be adjusted, either greater or lesser as an operator's own experience dictates. An engine operated in private and corporate airplanes, where utilization rates are relatively low, may use the additive continuously. The following additives are permitted for use:

- Sohio Biobor JF
- Kathon FP 1.5

CAUTION

Additive shall not exceed a maximum concentration of 270 parts per million by weight.

FUEL CONTAMINATION

Fuel contamination is usually the result of foreign material present in the fuel system and may consist of water, rust, sand, dirt, microbes, or bacterial growth. In addition, additives that are not compatible with fuel or fuel system components can cause the fuel to become contaminated.

Before each flight and after each refueling, use a clear sampler and drain at least one sampler full of fuel from the inboard fuel tank sump quick-drain valves, fuel tank external sump quick-drain valves, fuel reservoir quick-drain valve (actuated by a push-pull drain control on cargo pod), and fuel filter guick-drain valve to determine if contaminants are present and that the airplane has been fueled with the proper fuel. If the airplane is parked with one wing low on a sloping ramp, draining of the outboard fuel tank sump quick-drain valves (if installed) is also recommended.

If contamination is detected, drain all fuel drain points again. Take repeated samples from all fuel drain points until all contamination has been removed. If (after repeated sampling) evidence of contamination still exists, the fuel tanks should be completely drained and the fuel system cleaned.

Do not fly the airplane with contaminated or unapproved fuel. Anytime the filter bypass flag (red warning button) is found to be extended, the filter element has become clogged. Disassemble the filter, clean the element, and check the fuel system to determine the cause of contamination before further flight.

In addition, owners/operators who are not acquainted with a particular fixed base operator must verify that the fuel supply has been checked for contamination and is properly filtered before allowing the airplane to be serviced. Also, fuel tanks must be kept full between flights, provided weight and balance considerations will permit, to reduce the possibility of water condensing on the inside walls of partially filled tanks.

CESSNA SECTION 8 MODEL 208B G1000 HANDLING, SERVICE, AND MAINTENANCE

FUEL CONTAMINATION (Continued)

To further reduce the possibility of contaminated fuel, routine maintenance of the fuel system must be performed in accordance with the Airplane Maintenance Manual. Only the proper fuel, as recommended in this POH/AFM, should be used, and fuel additives must not be used unless approved by Cessna and the Federal Aviation Administration.

WARNING

- It is the pilot's responsibility to make sure that the airplane's fuel supply is clean before flight.
- Do not fly the airplane with contaminated or unapproved fuel.
- Any traces of solid contaminants such as rust, sand, pebbles, dirt, microbes and bacterial growth or liquid contamination resulting from water, improper fuel type, or additives that are not compatible with the fuel or fuel system components must be considered hazardous.
- Carefully sample fuel from all fuel drain locations during each preflight inspection and after every refueling.

LANDING GEAR

NOSE WHEEL TIRE PRESSURE:

30-42 psi on 22x8.00-8, 6-Ply Rated Tire.

MAIN WHEEL TIRE PRESSURE:

53-57 psi on 8.50-10, 8-Ply Rated Tires.

35-45 psi on 29x11.00-10, 10-Ply Rated Tires.

NOSE GEAR SHOCK STRUT:

Keep filled with MIL-H-5606 hydraulic fluid per filling instructions placard. No air pressure is required in strut.

BRAKES:

Service brake fluid reservoir with MIL-H-5606 hydraulic fluid as placarded on reservoir. Maintain fluid level between MIN and MAX markings.

OXYGEN

AVIATOR'S BREATHING OXYGEN:

Spec. No. MIL-O-27210.

MAXIMUM PRESSURE (cylinder temperature stabilized after filling):

1850 psi at 21°C (70°F).

Refer to Oxygen Supplements (Section 9) for filling pressures.

GROUND DEICE/ANTI-ICE OPERATIONS

During cold weather operations, flight crews are responsible for making sure that the airplane is free of ice contamination. Type I deice, and Type II, Type III, or Type IV anti-ice fluids may be used sequentially to ensure compliance with FAA regulations, which require that all critical components (wings, control surfaces and engine inlets as an example) be free of snow, ice, or frost before takeoff. The deicing process is intended to restore the airplane to a clean configuration so that neither aerodynamic characteristics nor mechanical interference from contaminants will occur.

CESSNA SECTION 8 MODEL 208B G1000 HANDLING, SERVICE, AND MAINTENANCE

GROUND DEICE/ANTI-ICE OPERATIONS (Continued)

WARNING

Type II, Type III, and Type IV anti-ice fluid is designed for use on airplanes with a V_r speed of 85 knots or greater. Whenever Type II or Type IV antiice fluid is applied to the airplane, the takeoff flap setting is limited to UP and the V_r is 88 KCAS. Refer to Section 2 for limitations and Section 5 for takeoff distances with flaps UP setting and liftoff speeds in KIAS. The takeoff distance charts for flaps UP setting start with the airplane's maximum weight for normal operations. However, when icing conditions exist, the airplane must only be loaded to its maximum weight for flight into known icing conditions.

NOTE

It is recommended that flight crews refamiliarize themselves seasonally with the following publications for expanded deice and anti-ice procedures:

- Cessna 208 Series Maintenance Manual, Chapter 12.
- FAA Advisory Circular AC135-17, dated 14 December 1994 or later.
- FAA Advisory Circular AC20-117, dated 17 December 1982 or later.
- Cessna Aircraft Company SNL 08-1 and FAA notice 8900.22: FAA-Approved deicing program updates, winter 2007-2008.

Deicing and anti-icing fluids are aqueous solutions which work by lowering the freezing point of water in either the liquid or crystal phase, thus delaying the onset of freezing. For this reason, they are referred to as Freezing Point Depressant (FPD) fluids. Deicing fluid is classified as Type I. Anti-icing fluid is classified as Type II, Type III, or Type IV. Deicing and anti-icing with fluids may be performed as a one-step or two-step process. The one-step deicing procedure involves using Type I deice fluid to remove ice and slush from the airplane prior to departure and to provide minimal anti-icing protection as provided in the Type I holdover timetable (refer to FAA notice 8900.22, dated 10-12-07 or later).

(Continued Next Page)

208BPHBUS-00

U.S. 8-25

GROUND DEICE/ANTI-ICE OPERATIONS (Continued)

The procedure involves applying Type II, Type III, or type IV anti-ice fluid to make sure the airplane remains clean after deicing. Type II, Type III, or Type IV fluid is used to provide longer-term anti-icing protection. Type I, Type II, Type III, and Type IV fluids have time limitation before refreezing begins, at which time additional deicing is required. This time limitation is referred to as "holdover time". Because holdover time depends highly on a number of factors, charts can provide only approximate estimates. It remains the responsibility of the pilot-in-command to determine the effectiveness of any deicing or antiicing procedure. Refer to FAA notice 8900.22, dated 10-12-07 or later for Type I, Type II, Type III or Type IV fluids.

CAUTION

Type I, Type II, Type III, and Type IV fluids are not compatible and may not be mixed. Additionally, most manufacturers prohibit the mixing of brands within a type. However, the same spray equipment may apply Type I and Type III fluids. Line personnel should be supervised by the pilot in command to ensure proper application of Type I deice, and Type II, Type III, or Type IV anti-ice fluids.

NOTE

Deicing fluids are not intended for use in removing snow deposits. Snow is best removed by mechanically sweeping or brushing it from the airplane structure. Use caution not to damage any airplane structure or antennas when removing snow.

(Continued Next Page)

U.S.

GROUND DEICE/ANTI-ICE OPERATIONS (Continued)

Deicing may be accomplished using the ambient temperature available from a heated hangar or by mechanical means using a glycol-based Freezing Point Depressant (FPD) Type I fluid. A heated hangar is an excellent option to deice airplanes and must be utilized whenever possible. However, care must be exercised to make sure that all melted precipitation is removed from the airplane to prevent refreezing once the airplane is moved from the hangar to the flight line. Type I deicing fluids should be sprayed on the airplane (with engine shutdown) in a manner that minimizes heat loss of fluid to the air. The fluid should be applied in a temperature range from 160°F to 180°F (71°C to 82°C) using a solid cone pattern of large coarse droplets. Fluid should be sprayed as close as possible to the airplane surfaces, but not closer than approximately 10 feet if a high-pressure nozzle is used.

Application techniques for Type II, Type III, and Type IV fluids are the same as Type I, except that since the airplane is already clean, the application should last only long enough to properly coat the airplane surfaces. However, Type II, Type III, or Type IV fluid is sometimes heated and sprayed as a deicing fluid. For this case, it should be considered a Type I fluid as the heat may change the characteristics of the thickening agents in the fluid. Therefore, Type II, Type III, or Type IV fluid applied in this manner will not be as effective as it would be if it were applied at ambient temperature.

Refer to the Essential Areas to be Deiced figure for areas to spray Type I deicing fluid, Essential Areas to Apply Anti-Ice Fluid figure for areas to spray Type II, Type III and Type IV anti-icing fluid, Deice and Anti-Ice Fluid Direct Spray Avoidance Areas figure for areas to avoid spraying directly, and Deicing and Anti-icing Application figure for sequence of application. Heated solutions of FPD are more effective than unheated solutions because thermal energy is used to melt the ice, snow, or frost formations. Type I deicing fluids are used in the diluted state, with specific ratios of fluid-to-water dependent on ambient temperature. Type I deicing fluids have a very limited holdover time (refer to FAA notice 8900.22, dated 10-12-07 or later).

GROUND DEICE/ANTI-ICE OPERATIONS (Continued)

CAUTION

Type I fluids should never be used full strength (undiluted). Undiluted glycol fluid is quite viscous below 14°F (-10°C) and can actually produce lift reductions of about 20 percent. Additionally, undiluted glycol has a higher freezing point than a glycol/water mixture.

NOTE

- Deicing and anti-icing procedures must be closely coordinated between the pilot in command and ground crews, and carried out in a timely manner. Ultimate responsibility for safety of flight rests with the pilot in command, and any decisions to deice or anti-ice an airplane must be accomplished under his or her direct supervision.
- The first area to be deiced and anti-iced must be visible from the cockpit and must be used to provide a conservative estimate for subsequent ice accumulations on unseen areas of the airplane before initiating takeoff.
- Due to the weight and C.G. changes that occur while deicing the airplane, a tail stand must be placed under the tail to prevent the airplane from tipping on its tail.

HOLDOVER TIMETABLE (TYPE I, TYPE II, TYPE III, AND TYPE IV FLUIDS)

NOTE

Refer to FAA notice 8900.22, dated 10-12-07 or later for holdover timetables.

The length of time that deicing and anti-icing fluids remain effective is known as "holdover time". The holdover timetables for Type I deicing, and Type II, Type III, or Type IV anti-icing fluids are only an estimation and vary depending on many factors (temperature, precipitation type, wind, and airplane skin temperature). The holdover times are based on the mixture ratio appropriate for the OAT. Holdover times start when the last application has begun.

HOLDOVER TIMETABLE (TYPE I, TYPE II, TYPE III, AND TYPE IV FLUIDS) (Continued)

Guidelines for maximum holdover times anticipated by SAE Type I, Type II, Type III or Type IV, and ISO Type I, Type II, Type III, or Type IV fluid mixtures are a function of weather conditions and outside air temperature (OAT).

CAUTION

- Aircraft operators are solely responsible for ensuring that holdover timetables contain current data.
- The tables are for use in departure planning only and should be used in conjunction with pretakeoff contamination check procedures.
- The time of protection will be shortened in heavy weather conditions. High wind velocity and jet blast may cause a degradation of the protective film. If these conditions occur, the time of protection may be shortened considerably. This is also the case when fuel temperature is significantly lower than OAT.

NOTE

- Holdover timetables in FAA notice 8900.22, dated 10-12-07 or later or later do not apply to other than SAE or ISO Type I, Type II, Type III or Type IV fluids.
- The responsibility for the application of this data remains with the user.

SECTION 8 CESSNA HANDLING, SERVICE, AND MAINTENANCE MODEL 208B G1000

HOLDOVER TIMETABLE (TYPE I, TYPE II, TYPE III, AND TYPE IV FLUIDS) (Continued)

WARNING

When ground icing conditions are present, a pretakeoff contamination check must be conducted by the pilot in command within 5 minutes of takeoff, preferably just prior to taxiing onto the active runway. Critical areas of the airplane such as empennage, wings, windshield, control surfaces, and engine inlets must be checked to make sure they are free of ice, slush, and snow and that the anti-ice fluid is still protecting the airplane.

TYPE I DEICE FLUID

NOTE

- Freezing point of Type I fluid mixture must be at least 10°C (18°F) below OAT.
- Holdover time starts when last application has begun.
- Type I fluid should be sprayed on the airplane (with engine off) in a manner which minimizes heat loss to the air. If possible, fluid should be sprayed in a solid cone pattern of large coarse droplets at a temperature of 160°F to 180°F. The fluid should be sprayed as close as possible to the airplane surfaces, but not closer than 10 feet if a high pressure nozzle is used.

WARNING

When ground icing conditions are present, a pretakeoff contamination check should be conducted by the pilot in command within 5 minutes of takeoff, preferably just prior to taxiing onto the active runway. Critical areas of the airplane such as empennage, wings, windshield, control surfaces, and engine inlets should be checked to make sure they are free of ice, slush, and snow, and that the anti-ice fluid is still protecting the airplane.

TYPE II ANTI-ICE FLUID

NOTE

- Freezing point of Type II fluid mixture must be at least 10°C (18°F) below OAT.
- Holdover time starts when last application has begun.
- Application techniques for Type II fluid are the same as for Type I, except that since the airplane is already clean, the application should last only long enough to properly coat the airplane surfaces.
- Type II fluid must be applied undiluted at ambient temperature to a "clean" airplane within 3 minutes after deicing is completed due to the limited holdover times of Type I deice fluid. However, Type II fluid is sometimes heated and sprayed as a deicing fluid. For this case, it should be considered a Type I fluid, as the heat may change the characteristics of the thickening agents in the fluid. Therefore, Type II fluid applied in this manner will not be as effective as it would be if it were applied at ambient temperature.

WARNING

When ground icing conditions are present, a pretakeoff contamination check must be conducted by the pilot in command within 5 minutes of takeoff, preferably just prior to taxiing onto the active runway. Critical areas of the airplane such as empennage, wings, windshield, control surfaces, and engine inlets must be checked to make sure they are free of ice, slush, and snow, and that the anti-ice fluid is still protecting the airplane.

TYPE III ANTI-ICE FLUID

NOTE

- Freezing point of Type III fluid mixture must be at least 10°C (18°F) below ÖAT.
- Holdover time starts when last application has begun.
- Application techniques for Type III fluid are the same as for Type I and Type II, except that since the airplane is already clean, the application should last only long enough to properly coat the airplane surfaces.
- Type II fluid must be applied undiluted at ambient temperature to a "clean" airplane within 3 minutes after deicing is completed due to the limited holdover times of Type I deice fluid. However, Type II fluid is sometimes heated and sprayed as a deicing fluid. For this case, it should be considered a Type I fluid, as the heat may change the characteristics of the thickening agents in the fluid. Therefore, Type II fluid applied in this manner will not be as effective as it would be if it were applied at ambient temperature.

TYPE IV ANTI-ICE FLUID

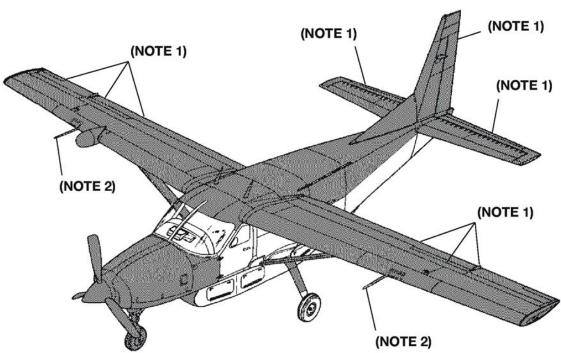
CAUTION

The time of protection will be shortened in heavy weather conditions. Heavy precipitation rates, high moisture content, high wind velocity, or jet blast may reduce holdover time below the lowest time stated in the range. Holdover time may be reduced when airplane skin temperature is lower than OAT.

TYPE IV ANTI-ICE FLUID (Continued)

NOTE

- Freezing point of Type IV fluid mixture must be at least 10°C (18°F) below OAT.
- Holdover time starts when last application has begun.
- Application techniques for Type IV fluid are the same as for Type I, except that since the airplane is already clean, the application should last only long enough to properly coat the airplane surfaces.
- Type IV fluid must be applied undiluted at ambient temperature to a "clean" airplane within 3 minutes after deicing is completed due to the limited holdover times of Type I deice fluid. However, Type IV fluid is sometimes heated and sprayed as a deicing fluid. For this case, it should be considered a Type I fluid, as the heat may change the characteristics of the thickening agents in the fluid. Therefore, Type IV fluid applied in this manner, will not be as effective as it would be if it were applied at ambient temperature.


CAUTION

- Some Type IV fluids could form a thick or high strength gel during "dry-out" and when rehydrated form a slippery film.
- Some Type IV fluids exhibit poor aerodynamic elimination (flow-off) qualities at colder temperatures.
- Heated areas of airplane (i.e., heated leading edge) should be avoided due to the fact that fluid may "dryout" into hard globular nodules.
- Type IV fluid should not be used undiluted below -24°C (-11°F).

CESSNA

ESSENTIAL AREAS TO BE DEICED

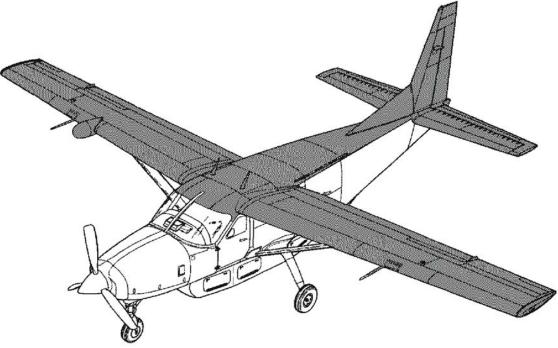
A39412

2685R1035

SHADED AREAS INDICATE ESSENTIAL AREAS TO BE DEICED.

NOTE

- 1. Give special attention to the gaps between the flight controls. All snow, ice, and slush must be removed from these gaps.
- 2. Remove snow, ice and slush from pitot tubes by hand only.


DIRECT SPRAY AVOIDANCE AREAS:

Engine Inlets and Exhaust, Brakes, Pitot-Static Tubes, Windshields, Cabin Windows, and Stall Warning Vane.

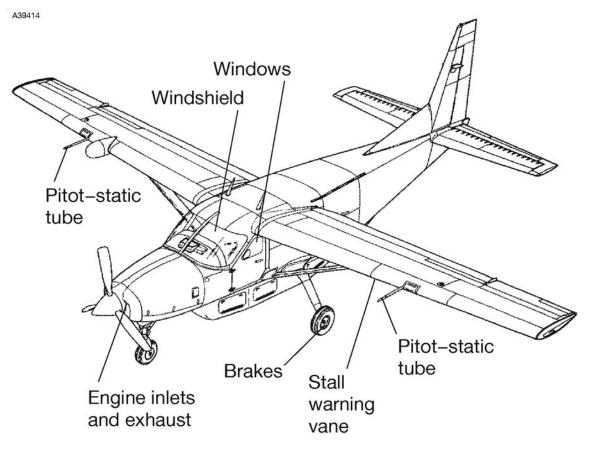
CESSNA SECTION 8 MODEL 208B G1000 HANDLING, SERVICE, AND MAINTENANCE

ESSENTIAL AREAS TO APPLY ANTI-ICE FLUID

A39413

2685R1035

Shaded areas indicate essential areas where anti-ice fluid is applied.


NOTE

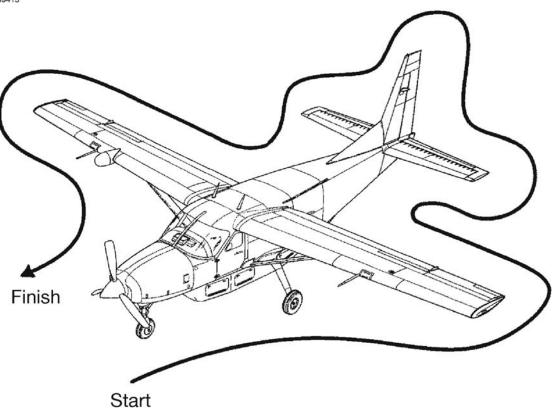
Anti-ice fluid must be applied at low pressure to form a thin film on surfaces. Fluid must just cover airplane without runoff.

DIRECT SPRAY AVOIDANCE AREAS:

Pitot-Static Tubes, Windshields, Cabin Windows, and Stall Warning Vane.

DEICE AND ANTI-ICE FLUID DIRECT SPRAY AVOIDANCE AREAS

2685B1035


DIRECT SPRAY AVOIDANCE AREAS:

Engine Inlets and Exhaust, Brakes, Pitot-static Tubes, Windshields, Cabin Windows, and Stall Warning Vane.

DEICING AND ANTI-ICING APPLICATION NOTE

Start the deice and anti-ice application at the left front area of the airplane. The pilot can then get a conservative estimate of how quickly ice forms by observation from inside the cockpit. Because the cockpit is the first area deiced or anti-iced, it will be the first area where ice will form again.

A39415

2685R1035

Figure 8-4

CLEANING AND CARE

WINDSHIELD AND WINDOWS

The windshield and windows are constructed of cast acrylic. The surface hardness of acrylic is approximately equal to that of copper or brass. Do not use a canvas cover on the windshield unless freezing rain or sleet is anticipated. Canvas covers may scratch the plastic surface. When cleaning and waxing the windshield and windows, use only the following prescribed methods and materials.

WINDSHIELD AND WINDOW MAINTENANCE PROCEDURES

The following procedures provide the most current information regarding cleaning and servicing windshields and windows. Improper cleaning or use of unapproved cleaning agents can cause damage to these surfaces.

CLEANING INSTRUCTIONS

CAUTION

Windshields and windows can be easily damaged by improper handling and cleaning techniques.

- 1. Place airplane inside hangar or in shaded area and allow to cool from heat of sun's direct rays.
- 2. Using clean (preferably running) water, flood the surface. Use bare hands with no jewelry to feel and dislodge any dirt or abrasive materials.
- 3. Using a mild soap or detergent (such as a dishwashing liquid) in water, wash the surface. Again, use only the bare hand to provide rubbing force. (A clean cloth may be used to transfer the soap solution to the surface, but extreme care must be exercised to prevent scratching the surface.)

CESSNA SECTION 8 MODEL 208B G1000 HANDLING, SERVICE, AND MAINTENANCE

CLEANING INSTRUCTIONS (Continued)

- 4. On acrylic windshields and windows, if soils which cannot be removed by a mild detergent, Type II aliphatic naphtha applied with a soft clean cloth may be used as a cleaning solvent. Be sure to frequently refold the cloth to avoid redepositing soil and/or scratching the windshield and windows with any abrasive particles.
- 5. Rinse surface thoroughly with clean fresh water and dry with a clean cloth.

CAUTION

Do not use any of the following on, or for cleaning, windshields and windows: methanol, denatured alcohol, gasoline, benzene, xylene, MEK, acetone, carbon tetrachloride, lacquer thinners, commercial or household window cleaning sprays. When in doubt about any product, do not use it.

- 6. Hard polishing wax should be applied to acrylic surfaces. (The wax has an index of refraction nearly the same as transparent acrylic and will tend to mask any shallow scratches).
- 7. Acrylic surfaces may be polished using a polish meeting Federal Specification P-P-560 applied per the manufacturer's instructions.

CAUTION

On acrylic surfaces, use only rain repellents that conform to specification MIL-W-6882. Refer to the Materials For Acrylic Windshields and Windows chart for specific rain repellent products approved by Cessna.

NOTE

When applying or removing wax or polish, use a clean soft cloth.

8. Windshields may have rain repellent applied per the manufacturer's instructions. Caution must be used not to get rain repellent on painted surfaces surrounding the windshield.

WINDSHIELD AND WINDOW PREVENTIVE MAINTENANCE

CAUTION

Utilization of the following techniques will help minimize windshield and window crazing.

- 1. Keep all surfaces of windshields and windows clean.
- 2. If desired, wax acrylic surfaces.
- 3. Carefully cover all surfaces during any painting, powerplant cleaning or other procedure that calls for the use of any type of solvents or chemicals. The following coatings are approved for use in protecting surfaces from solvent attack:
 - a. White Spray Lab, MIL-C-6799, Type I, Class II.
 - b. WPL-3 Masking Paper St. Regis, Newton, MA.
 - 5 X N Poly-Spotstick St. Regis, Newton, MA. C.
 - Protex 40 Mask Off Company, Monrovia, CA and d. Southwest Paper Co., Wichita, KS.
 - Protex 10VS Mask Off Company, Monrovia, CA and e. Southwest Paper Co., Wichita, KS
 - Scotch 344 Black Tape 3M Company f.
- 4. Do not park or store the airplane where it might be subjected to direct contact with or vapors from: methanol, denatured alcohol, gasoline, benzene, xylene, MEK, acetone, carbon tetrachloride, lacquer thinners, commercial or household window cleaning sprays, paint strippers, or other types of solvents.
- 5. Do not use solar screens or shields installed on inside of airplane or leave sunvisors up against windshield. The reflected heat from these items causes elevated temperatures which accelerate crazing.
- 6. Do not use power drill motor or powered device to clean, polish, or wax surfaces.

CESSNA MODEL 208B G1000

MATERIALS REQUIRED FOR ACRYLIC WINDSHIELDS AND WINDOWS

MATERIAL	MANUFACTURER	USE
Mild soap or detergent (hand dishwashing type without abrasives)	Commercially available	Cleaning windshields and windows.
Aliphatic naphtha Type II conforming to Federal Specification TT-N-95	Commercially available	Removing deposits that cannot be removed with mild soap solution on acrylic windshields and windows.
Polishing wax: (Refer to Note 1) Turtle Wax (paste)	Turtle Wax, Inc. Chicago, IL 60638	Waxing acrylic windshields and windows.
Great Reflections Paste Wax	E.I. duPont de Nemours and Co., (Inc.) Wilmington, DE 19898	
Slip-Stream Wax (paste)	Classic Chemical Grand Prairie, TX 75050	
Acrylic polish conforming to Federal Specification P-P-560 such as:		Cleaning and polishing acrylic windshields and windows.
Permatex plastic cleaner Number 403D	Permatex Company, Inc. Kansas City, KS 66115	
Mirror Glaze MGH-17	Mirror Bright Polish Co. Pasadena, CA	
Soft cloth, such as: Cotton flannel or cotton terry cloth material	Commercially available	Applying and removing wax and polish.
Rain repellent conforming to Federal Specification MIL-W-6882, such as:		Rain shedding on acrylic windshields.
REPCON (Refer to Note 2)	UNELKO Corp. 7428 E. Karen Dr. Scottsdale, AZ 85260	

NOTE

- 1. These are the only polishing waxes tested and approved for use by Cessna Aircraft Company.
- 2. This is the only rain repellent approved for use by Cessna Aircraft Company for use on Cessna Model 208B series airplanes.

PAINTED SURFACES

The painted exterior surfaces of the Cessna 208B have a durable, longlasting finish. Approximately 10 days are required for the paint to cure completely; in most cases, the curing period will have been completed prior to delivery of the airplane. In the event that polishing or buffing is required within the curing period, it is recommended that the work be done by someone experienced in handling uncured paint. Any Cessna Service Station can accomplish this work.

Generally, the painted surfaces can be kept bright by washing with water and mild soap, followed by a rinse with water and drying with cloths or a chamois. Harsh or abrasive soaps or detergents that cause corrosion or scratches must never be used. Remove stubborn oil and grease with a cloth moistened with Stoddard solvent.

To seal any minor surface chips or scratches and protect against corrosion, the airplane must be waxed regularly with a good automotive wax applied in accordance with the manufacturer's instructions. If the airplane is operated in a sea coast or other salt water environment, it must be washed and waxed more frequently to assure adequate protection. Special care must be taken to seal around rivet heads and skin laps, which are the areas most susceptible to corrosion. A heavier coating of wax on the leading edges of the wings and tail and on the cowl nose cap and propeller spinner will help reduce the abrasion encountered in these areas. Re application of wax will generally be necessary after cleaning with soap solutions or after chemical deicing operations.

When the airplane is parked outside in cold climates and it is necessary to remove ice before flight, care must be taken to protect the painted surfaces during ice removal with chemical liquids. Isopropyl alcohol will satisfactorily remove ice accumulations without damaging the paint. However, keep the isopropyl alcohol away from the windshield and cabin windows since it will attack the plastic and may cause it to craze.

STABILIZER ABRASION BOOT CARE

If the airplane is equipped with stabilizer abrasion boots, keep them clean and free from oil and grease, which can swell the rubber. Wash them with mild soap and water, using Form Tech AC cleaner or naphtha to remove stubborn grease. Do not scrub the boots and be sure to wipe off all solvent before it dries. Boots with loosened edges or small tears must be repaired. Your Cessna Service Station has the proper material and knowledge how to do this correctly.

PROPELLER CARE

Always conduct a preflight inspection and occasionally wipe the blades with a cloth dampened with oil to clean off grass and bug stains, minimize corrosion, and assure a longer blade life. Waxing the blades with an automotive type paste wax on a regular basis will further minimize corrosion. Damaged or blistered paint must be repainted. During the preflight inspection, check the blades for nicks, gouges, scratches, corrosion pits, etc., the anti-ice boots for security, the propeller hub for evidence of grease and oil leaks, and the propeller spinner for condition and security. Repair of small nicks and scratches may be performed by qualified mechanics in accordance with procedures specified in FAA Advisory Circular 43.13-1A. However, whenever a significant amount of metal is removed, or in the case of previously reworked blades that may be at or near minimum width and thickness limits, the appropriate McCauley Service Manual must be consulted to determine if minimum allowable blade width and thickness limits have been exceeded. If these limits are exceeded, blade replacement is required. After filing and polishing, the damaged area must be inspected by the dye penetrant method to verify that all damage has been removed and the blade is not cracked. The area should then be reprotected by localized application of chemical film per MIL-C-5541 (e.g., Alodine) and repainted as necessary. Large nicks or scratches or other damage involving such things as bent blades, balance, diameter reduction, etc. must be corrected by an FAA approved propeller repair station.

ENGINE CARE

ENGINE EXTERIOR/COMPARTMENT CLEANING

The engine exterior and compartment may be cleaned using a suitable solvent. Most efficient cleaning is done using a spray-type cleaner. Before spray cleaning, make sure that protection is afforded for components that might be adversely affected by the solvent. Refer to the Maintenance Manual for proper lubrication of controls and components after engine cleaning.

The benefits of performance improvements and increased service life of hot section parts accruing from instituting a regular compressor wash program cannot be overemphasized. A compressor wash ring is installed on the top of the engine adjacent to the induction air inlet screen to facilitate this maintenance program.

Compressor washes can be performed by either motoring the engine with the starter or running the engine. Depending on the nature of the operating environment and the type of deposits in the engine gas path, either of the two wash methods can be used to remove salt or dirt and other baked-on deposits that accumulate over a period of time and cause engine performance deterioration. When the wash is performed solely to remove salt deposits, it is known as a "desalination" wash. A wash performed to remove baked on deposits to improve engine performance is known as a performance recovery wash. A motoring wash is conducted at a gas generator RPM of 14-25%; the running wash is carried out at an N_g of approximately 60% (23,000 RPM). The water or cleaning mixture and rinsing solution, dependent on ambient temperature, is injected at different pressure, depending on the wash method being conducted.

Operating environment determines the nature of the wash, the frequency, and wash method recommended. If operating in a continuously salt-laden environment, a desalination wash is recommended following the last flight of the day by means of the method. Occasionally. salt-laden motoring environments may necessitate a desalination wash each week using the motoring method. Less severe and more general operating environments are not as conducive to rapid deposit buildup but eventually can contribute to performance deterioration and necessitate a performance recovery wash at intervals of 100-200 hours. In these general environments, a motoring wash is recommended for light soil and multiple motoring or a running wash is suggested for heavy soil.

CAUTION

Always observe engine starting cycle limits when conducting motoring wash procedures.

ENGINE COMPRESSOR WASH

A number of cleaning agents are recommended for addition to water to form the cleaning solution used for compressor wash. However, the mixture proportion of all the cleaning agents is not identical. Depending on the prevalent ambient temperature, aviation kerosene and methanol must be added to the cleaning solution in various proportions. The quality of the water used is also important; any drinking quality water is permissible for a motoring wash, but demineralized water only is recommended for a running wash. Detailed information concerning the cleaning mixture components, mixture formulation, recommended quantity and application equipment can be found in Pratt & Whitney Aircraft Gas Turbine Operation Information Letter No. 7.

COMPRESSOR TURBINE BLADE WASH

Pratt & Whitney Canada has developed a procedure for performing a compressor turbine blade motoring wash. This technique will facilitate the removal of contaminants from the compressor turbine blade airfoil surfaces, thereby minimizing sulphidation attack of these surfaces. This serves as an aid for obtaining optimum blade service life. With this method, a water or water/methanol solution is injected directly into the combustion chamber by way of a special spray tube which is installed in one of the igniter plug ports. This method of engine wash does not replace the need for a normal engine compressor wash for performance recovery or desalination purposes.

Compressor turbine blade washing is accomplished using water of drinking quality (potable) only at ambient temperatures of $+2^{\circ}C$ ($36^{\circ}F$) and above. Use a water/methanol solution at ambient temperatures below $+2^{\circ}C$ ($36^{\circ}F$). Consult the Engine Maintenance Manual for solution strength according to ambient temperature and review Special Instruction P & WC: 4-84 for washing procedures and limitations.

SECTION 8 HANDLING, SERVICE, AND MAINTENANCE MODEL 208B G1000

INTERIOR CARE

The instrument panel, control wheel, and control knobs need only be wiped off with a damp cloth. Oil and grease on the control wheel and control knobs can be removed with a cloth moistened with Stoddard solvent. Volatile solvents, such as mentioned in paragraphs on care of the windshield, must never be used since they soften and craze the plastic.

The plastic trim, headliner, door panels, and floor covering in the crew area of both versions and the rear cabin headliner and sidewalls of the Passenger Version need only be wiped off with a damp cloth. In Cargo Versions, the sidewalls, cargo doors, and overhead in the cargo area are not easily soiled or stained. Dust and loose dirt must be picked up with a vacuum cleaner. Stubborn dirt can be wiped off with a cloth moistened in clean water. Mild soap suds, used sparingly, will remove grease. The soap must be removed with a clean damp cloth.

The protective plywood floor panels (if installed) and aft bulkhead covering in the cargo area must be vacuum cleaned to remove dust and dirt. A cloth moistened with water will aid in removing heavy soil. Do not use excessive amounts of water, which would deteriorate the protective floor panels.

To remove dust and loose dirt from seating upholstery, clean the seats regularly with a vacuum cleaner.

Blot up any spilled liquid on the seats promptly with cleansing tissue or rags. Do not pat the spot; press the blotting material firmly and hold it for several seconds. Continue blotting until no more liquid is taken up. Scrape off sticky materials with a dull knife, then spot-clean the area.

Oily spots on the seats may be cleaned with household spot removers, used sparingly. Before using any solvent, read the instructions on the container and test it on an obscure place on the fabric to be cleaned. Never saturate the fabric with a volatile solvent; it may damage the padding and backing materials.

Soiled seating upholstery may be cleaned with foam-type detergent used according to the manufacturer's instructions. To minimize wetting the fabric, keep the foam as dry as possible and remove it with a vacuum cleaner.

PROLONGED OUT-OF-SERVICE CARE

Prolonged out-of-service care applies to all airplanes that will not be flown for an indefinite period (less than 60 days) but which are to be kept ready to fly with the least possible preparation. If the airplane is to be stored temporarily or indefinitely, refer to the Airplane Maintenance Manual for proper storage procedures. The Maintenance Manual provides amplification for the following procedures:

1. The procedure to be followed for preservation of an engine in service depends on the period of inactivity and whether or not the engine may be rotated during the inactive period. The expected period of inactivity must be established and reference made to the Engine Preservation Schedule. The preservation carried out must be recorded in the engine maintenance record and on tags secured to the engine. The following preservation schedule lists procedures to be followed:

CAUTION

Under no circumstances should preservative oil be sprayed into the compressor or exhaust ports of the engine. Dirt particles deposited on blades and vanes during engine operation will adhere and alter the airfoil shape, adversely affecting compressor efficiency.

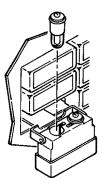
- a. 0 to 7 Days The engine may be left in an inactive state, with no preservation protection, provided the engine is sheltered, humidity is not excessively high, and the engine is not subjected to extreme temperature changes that would produce condensation.
- b. 8 to 28 Days An engine inactive for up to 28 days requires no preservation provided all engine openings are sealed off and relative humidity in the engine is maintained at less than 40%. Humidity control is maintained by placing desiccant bags and a humidity indicator on wooden racks in the engine exhaust duct. Suitable windows must be provided in the exhaust closure to facilitate observation of the humidity indicators.

PROLONGED OUT-OF-SERVICE CARE (Continued)

- c. 29 to 90 Days An engine inactive for a period exceeding 28 days, but less than 91 days, need only have the fuel system preserved, engine openings covered, and desiccant bags and humidity indicators installed.
- d. 91 Days and Over An engine inactive over 90 days in the airframe or removed for long-term storage in a container, must, in addition to the 29 to 90 day procedure, have the engine oil drained and unused accessory drive pads sprayed.
- 2. Place a cover over the pitot tube and install the two engine inlet covers. To prevent the propeller from windmilling, install the propeller anchor over a blade of the propeller and secure the strap around the nose gear or to the bracket located on the lower right hand cowl. Cover all other openings to prevent entry of foreign objects.
- 3. Keep the fuel tanks full to minimize condensation in the tanks.
- 4. If the airplane will be out of service for 5 days or more, disconnect the battery. If the battery is left in the airplane, it must be removed and serviced regularly to prevent discharge. If the battery is removed from the airplane, check it regularly for state of charge.
- 5. If the airplane is stored outside, tie-down the airplane in accordance with the procedure in this section. Chock the nose and main wheels; do not set the parking brake if a long period of inactivity is anticipated as brake seizing can result.
- 6. Every two weeks, move the airplane to prevent flat areas on the tires. Mark the tires with tape to ensure the tires are placed approximately 90° from their previous position.
- 7. Drain all fuel drain points every 30 days and check for water accumulation. Prolonged storage of the airplane will result in a water buildup in the fuel which "leaches out" the fuel additive. An indication of this is when an excessive amount of water accumulates at the fuel drain points. Refer to Fuel Additive in this section for minimum allowable additive concentrations.

BULB REPLACEMENT DURING FLIGHT

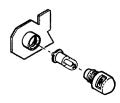
The Bulb Replacement figure provides instructions to aid the pilot to replace annunciator panel light bulbs without tools during flight. It is suggested that spare bulbs be stored in the map compartment. However, if a spare bulb is not available, an identical bulb, which is available from other lights listed herein can be substituted for the defective bulb. For a listing of other bulb requirements and specific tools needed, refer to the Maintenance Manual for this airplane.



BULB REPLACEMENT

000410

ANNUNCIATOR PANEL LIGHTS


Push in on face of light assembly and allow assembly to pop out. Pull assembly out to limit of its hinged retainer and allow it to rotate 90 degrees down. Retainer will keep light assembly suspended in this postion. Lift defective bulb out of assembly and replace with MS25237–327 bulb (MS25237– 8918 14–volt bulb in IGNITION ON light assembly only). Rotate light assembly upward into position and press into place.

NOTE: Each light assembly contains two bulbs, and , if necessary, remains sufficiently illuminated with one bulb defective.

POST LIGHTS

Grasp lens cap and pull straight out from socket. Pull bulb from cap and replace with MS25237–327 bulb. Replace cap in socket and rotate cap to direct light in desired direction.

CONTROL WHEEL MAP LIGHT

Grasp rim of bulb, push straight up and turn counterclockwise as far as possible, then pull bulb straight down and out of socket. Replace with 24R8 bulb. To install new bulb in socket, align pins on bulb with slots in socket, then push straight up and rotate bulb clockwise as far as possible.

2685R1048

SUPPLEMENTS

INTRODUCTION

This section consists of a series of supplements, each covering a single system which may be installed in the airplane. Each supplement contains a brief description, and when applicable, Limitations, Emergency Procedures, Normal Procedures, and Performance.

Operators should refer to each supplement to ensure that all limitations and procedures appropriate for their airplane are observed.

NOTE

Some supplements contain references to equipment manufacturers pilot's manuals which are supplied with the airplane at the time of delivery from the factory, or whenever equipment is installed after delivery. These manuals must be kept up-to-date with the latest revisions issued by the publisher. These vendor manuals contain a user registration form or instructions for obtaining future revisions or changes.

WARNING

- Complete familiarity with the airplane and its systems will not only increase the pilot's proficiency and ensure optimum operation, but could provide a basis for analyzing system malfunctions in case an emergency is encountered. Information in this section will assist in that familiarization. The responsible pilot will want to be prepared to make proper and precise responses in every situation.
- Limitations contained in the following supplements are FAA approved. Observance of these operating limitations is required by Federal Aviation Regulations.