

INSTALLATION MANUAL FOR ROTAX® ENGINE TYPE 912 SERIES

picture: ROTAX[®] 912 ULS with options

Before starting with engine installation, please read the Installation Manual completely as it contains important safety relevant information.

These technical data and the information embodied therein are the property of BRP-Powertrain GmbH&Co. KG, Austria, acc, BGBI 1984 no. 448, and shall not, without prior written permission of BRP-Powertrain GmbH&Co. KG, be disclosed in whole or in part to third parties. This legend shall be included on any reproduction of these data, in whole or in part. The Manual must remain with the engine/aircraft in case of sale.

Copyright 2012 © - all rights reserved.

 $ROTAX_{\odot}$ is a trade mark of BRP-Powertrain GmbH&Co. KG. In the following document the short form of BRP-Powertrain GmbH&Co. KG = BRP-Powertrain is used.

Other product names in this documentation are used purely for ease of identification and may be trademarks of the respective company or owner.

Approval of translation has been done to best knowledge and judgement - in any case the original text in german language is authoritative.

INSTALLATION MANUAL

Chapter: INTRO GENERAL NOTE

Foreword Before starting with the engine installation, read this Installation Manual carefully. The Manual will provide you with basic information on correct engine installation, a requirement for safe engine operation.

If any passages of this Manual are not clearly understood or if you have any questions, please contact an authorized distributor- or Service Center for ROTAX aircraft engines.

BRP-Powertrain GmbH & Co KG (hereinafter "BRP-Powertrain") wishes you much pleasure and satisfaction flying your aircraft powered by this ROTAX aircraft engine.

Chapter structure The structure of the Manual follows whenever it is possible the structure of the ATA (Air Transport Association) standards. The aim is the compatibility with the aircraft manufacturer's documentation, which means they must then adapt the documentation to their standard. The Installation Manual is subdivided into the following chapters:

Subject	Chapter
Introduction	Chapter INTRO
List of effective pages	Chapter LEP
Table of amendments	Chapter TOA
General note	Chapter 00-00-00
Storage and Installation	Chapter 10-10-00
Electric system	Chapter 24-00-00
Propeller drive	Chapter 61-00-00
Engine	Chapter 72-00-00
Fuel system	Chapter 73-00-00
Cooling system	Chapter 75-00-00
Engine management	Chapter 76-00-00
Exhaust system	Chapter 78-00-00
Lubrication system	Chapter 79-00-00
Electric starter	Chapter 80-00-00

Effectivity: 912 Series Edition 2/Rev. 0

page 1 August 01/2012

INSTALLATION MANUAL

NOTES

d04915.fm

Effectivity: 912 Series Edition 2/Rev. 0

INSTALLATION MANUAL

Chapter: LEP LIST OF EFFECTIVE PAGES

chapter	page	date	chapter	page	date
	Title page		24-00-00	1	08 01 2012
INTRO	1	08 01 2012		2	08 01 2012
	2	08 01 2012		3	08 01 2012
	<u>۲</u>	00 01 2012		4	08 01 2012
LEP	1	08 01 2012		5	08 01 2012
	2	08 01 2012		6	08 01 2012
	3	08 01 2012		7	08 01 2012
	4	08 01 2012		8	08 01 2012
TOA	4	00.01.0010		9	08 01 2012
IUA	1	08 01 2012		10	08 01 2012
	2	08 01 2012		11	08 01 2012
	3	08 01 2012		12	08 01 2012
	4	08 01 2012		13	08 01 2012
00-00-00	1	08 01 2012		14	08 01 2012
	2	08 01 2012		15	08 01 2012
	3	08 01 2012		16	08 01 2012
	4	08 01 2012		17	08 01 2012
	5	08 01 2012		18	08 01 2012
	6	08 01 2012		19	08 01 2012
	7	08 01 2012		20	08 01 2012
	8	08 01 2012	61-00-00	1	08 01 2012
	9	08 01 2012		2	08 01 2012
	10	08 01 2012		3	08 01 2012
	11	08 01 2012		4	08 01 2012
	12	08 01 2012		5	08 01 2012
	13	08 01 2012		6	08 01 2012
	14	08 01 2012		7	08 01 2012
	15	08 01 2012		8	08 01 2012
	16	08 01 2012	72-00-00	1	08 01 2012
10-10-00	1	08 01 2012	72-00-00	1	08 01 2012
10-10-00	2	08 01 2012		2 3	08 01 2012
	3	08 01 2012		4	08 01 2012
	4	08 01 2012		4 5	08 01 2012
	5	08 01 2012		6	08 01 2012
	6	08 01 2012		7	08 01 2012
	7	08 01 2012		8	08 01 2012
	8	08 01 2012		9	08 01 2012
	9	08 01 2012		10	08 01 2012
	10	08 01 2012		10	
	11	08 01 2012			
	12	08 01 2012			
	13	08 01 2012			
	14	08 01 2012			
		-			

d04916.fm

Effectivity: 912 Series Edition 2/Rev. 0

page 1 August 01/2012

INSTALLATION MANUAL

chapter	page	date	chapter	page	date
73-00-00	1	08 01 2012	75-00-00	17	08 01 2012
	2	08 01 2012		18	08 01 2012
	3	08 01 2012		19	08 01 2012
	4	08 01 2012		20	08 01 2012
	5	08 01 2012		21	08 01 2012
	6	08 01 2012		22	08 01 2012
	7	08 01 2012		23	08 01 2012
	8	08 01 2012		24	08 01 2012
	9	08 01 2012		25	08 01 2012
	10	08 01 2012		26	08 01 2012
	11	08 01 2012		27	08 01 2012
	12	08 01 2012		28	08 01 2012
	13	08 01 2012	70.00.00		00.01.0010
	14	08 01 2012	76-00-00	1	08 01 2012
	15	08 01 2012		2	08 01 2012
	16	08 01 2012		3	08 01 2012
	17	08 01 2012		4	08 01 2012
	18	08 01 2012		5	08 01 2012
	19	08 01 2012		6	08 01 2012
	20	08 01 2012		7	08 01 2012
	21	08 01 2012		8	08 01 2012
	22	08 01 2012		9	08 01 2012
	23	08 01 2012		10	08 01 2012
	24	08 01 2012	78-00-00	1	08 01 2012
	25	08 01 2012		2	08 01 2012
	26	08 01 2012		3	08 01 2012
	27	08 01 2012		4	08 01 2012
	28	08 01 2012		5	08 01 2012
	29	08 01 2012		6	08 01 2012
	30	08 01 2012		7	08 01 2012
75-00-00	1	08 01 2012		8	08 01 2012
75-00-00	2	08 01 2012		9	08 01 2012
	3	08 01 2012		10	08 01 2012
	4	08 01 2012		11	08 01 2012
	5	08 01 2012		12	08 01 2012
	6	08 01 2012	70.00.00		00.04.0040
	7	08 01 2012	79-00-00	1	08 01 2012
	8	08 01 2012		2	08 01 2012
	9	08 01 2012		3	08 01 2012
	10	08 01 2012		4	08 01 2012
	11	08 01 2012		5	08 01 2012
	12	08 01 2012		6	08 01 2012
	13	08 01 2012		7	08 01 2012
	14	08 01 2012		8	08 01 2012
	15	08 01 2012		9	08 01 2012
	16	08 01 2012		10 11	08 01 2012 08 01 2012
	10.1				

Effectivity: 912 Series Edition 2/Rev. 0 LEP

page 2 August 01/2012

INSTALLATION MANUAL

chapter	page	date
79-00-00	12	08 01 2012
	13	08 01 2012
	14	08 01 2012
	15	08 01 2012
	16	08 01 2012
	17	08 01 2012
	18	08 01 2012
	19	08 01 2012
	20	08 01 2012
	21	08 01 2012
	22	08 01 2012
	23	08 01 2012
	24	08 01 2012
	25	08 01 2012
	26	08 01 2012
	27	08 01 2012
	28	08 01 2012
	29	08 01 2012
	30	08 01 2012
	31	08 01 2012
	32	08 01 2012
80-00-00	1	08 01 2012
	2	08 01 2012
	3	08 01 2012
	4	08 01 2012
	5	08 01 2012
	6	08 01 2012
	Rear page	

d04916.fm

page 3 August 01/2012

INSTALLATION MANUAL

NOTES

INSTALLATION MANUAL

Chapter: TOA TABLE OF AMENDMENTS

Approval*

The technical content of this document is approved under the authority of DOA ref. EASA.21J.048

no.	chapter	page	date of change	remark for approval	date of approval from authorities	date of inclusion	signature
0	INTRO	all	08 01 2012	DOA*			
0	LEP	all	08 01 2012	DOA*			
0	TOA	all	08 01 2012	DOA*			
0	00-00-00	all	08 01 2012	DOA*			
0	10-10-00	all	08 01 2012	DOA*			
0	24-00-00	all	08 01 2012	DOA*			
0	61-00-00	all	08 01 2012	DOA*			
0	72-00-00	all	08 01 2012	DOA*			
0	73-00-00	all	08 01 2012	DOA*			
0	75-00-00	all	08 01 2012	DOA*			
0	76-00-00	all	08 01 2012	DOA*			
0	78-00-00	all	08 01 2012	DOA*			
0	79-00-00	all	08 01 2012	DOA*			
0	80-00-00	all	08 01 2012	DOA*			

d04917.fm

INSTALLATION MANUAL

NOTES

Effectivity: 912 Series Edition 2/Rev. 0

page 2 August 01/2012

INSTALLATION MANUAL

Chapter: TOA SUMMARY OF AMENDMENTS

	r	ient on com	pleteness.	
Current No.	chapter	page	date of change	Comment
0	all	all	08 01 2012	New Layout
0	24-00-00	6	08 01 2012	Graphic change, modify legend
0	61-00-00	4	08 01 2012	chap. 1.2) Wording of max. moment of inertia
0	73-00-00	6	08 01 2012	chap. 1.3) Requirements of the fuel system
0	73-00-00	14	08 01 2012	chap. 2.1.2) Drainage piping to the carburetor
0	73-00-00	22	08 01 2012	CO-Measurement for configuration with not
				GENUINE-ROTAX airbox
0	75-00-00	24	08 01 2012	chap. 4.1) Note added
0	78-00-00	3	08 01 2012	chap. 1) Caution added
0	78-00-00	11	08 01 2012	chap. 4.1) Muffler graphic change

Content Summary of the relevant amendments in this context, but without requirement on completeness.

INSTALLATION MANUAL

NOTES

page 4 August 01/2012 INSTALLATION MANUAL

Chapter: 00-00-00 GENERAL NOTE

IntroductionThis section describes the installation of engine type ROTAX 912 Series.NOTE:The ROTAX 912 Series includes all engines such as the
912 A, 912 F, 912 S, 912 UL and 912 ULS.

 Table of contents
 This chapter of the Installation Manual contains general and safety information concerning the operation and maintenance of the aircraft engine.

Subject	Page
General note	Page 3
Type description	Page 4
Standard version	Page 5
Abbreviations and terms used in this Manual	Page 7
Conversion table	Page 9
Safety notice	Page 10
Safety information	Page 11
Instruction	Page 13
Technical documentation	Page 14

Effectivity: 912 Series Edition 2/Rev. 0

page 1 August 01/2012

INSTALLATION MANUAL

NOTES

page 2 August 01/2012

Effectivity: 912 Series Edition 2/Rev. 0

INSTALLATION MANUAL

1) General note

Purpose	The purpose of this Installation Manual is to acquaint maintenance ser- vice staff (iRMT) approved by the local aviation authorities with some basic installation and safety information for service work.
Documentation	For more detailed information regarding, installation, maintenance, safety- or flight operation, consult the documentation provided by the air-craft manufacturer and/or dealer.
	For additional information on engines, maintenance or parts, you can also contact yout nearest authorized ROTAX-aircraft engine distributor.
ROTAX Distributors	For ROTAX Authorized Distributors for Aircraft Engines see latest Opera- tors Manual or on the Internet at the official Website www.FLYROTAX.com.
Engine serial number	When making inquiries or ordering parts, always indicate the engine serial number, as the manufacturer makes modifications to the engine for product improvement. The engine serial number (1) is on the ignition cover, on the left, opposite the electric starter. See Fig. 1.

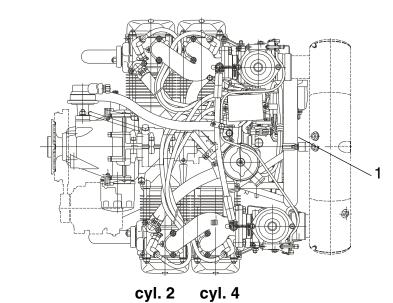



Fig. 1

d04918.fm

Effectivity: 912 Series Edition 2/Rev. 0

page 3 August 01/2012

08749

INSTALLATION MANUAL

2) Type description

e.g. ROTAX 912 The type description is made up the following.

Type Type Utype)

Designation

Designation		Description
Туре	912	4-cyl. horizontally opposed, normal aspirated engine.
Certification	Α	Certified to JAR 22 (TC No. EASA.E.121).
	F, S	Certified to FAR 33 (TC No. E00051 EN) JAR-E (TC No. EASA.E.121).
	UL, ULS	Non-certified aircraft engines.
Configuration	2	Prop shaft with flange for fixed prop.
	3	Prop shaft with flange for constant speed propeller and drive for hydraulic governor for constant speed propeller.
	4	With prop flange for fix pitch propeller, but prepared for retro-fit of hydraulic governor for constant speed prop (not supplied by manufacturer anymore.

Options

Available options (optional equipment) for the engine type mentioned above:

	External alternator	Vacuum- pump	Drive for rev counter/ hour meter	Governor
for configuration 2	yes	yes	yes	no
for configuration 3	yes	no	yes	yes
for configuration 4	yes	yes	yes	no

NOTE: Conversion of the configuration 2/4 to configuration 3 may be accomplished by ROTAX Authorized Distributors or their Service Center.

00-00-

INSTALLATION MANUAL

2.1) Standard version

Serial production	 tral camsha Liquid coole Ram air coole Dry sump for Dual ignition 2 constant of Mechanical Electric start Integrated A 	ter (12 V 0.7 kW), 912 S/ULS (12 V 0.9 kW) AC generator with external rectifier regulator ive via integrated gearbox with mechanical shock absorber
	NOTE:	The overload clutch is installed on all serial production aircraft engines which are certified and non-certified aircraft engines of the configuration 3.
Optional	External alterVacuum put	ter (12 V 0.9 kW) ernator (12 V 40 A DC) mp (only for configuration 1, 2 and 4 possible) onstant speed propeller governor (only for configuration 3)

INSTALLATION MANUAL

Auxiliary equip-NOTE:The following equipment is not included as part of the stan-
dard engine version!

NOTICE Any equipment not included as part of the standard engine version and so does not be part of the engine is not in the scope of supply. Components especially developed and tested for this engine are readily available at BRP-Powertrain.

The following auxiliary equipment has been tested on ROTAX engine type 912 for safety and durability to the standards of aviation.

The furnishing of proof in accordance to the latest FAR or EASA has to be conducted by the aircraft manufacturer.

- Airbox
- External alternator
- Engine suspension frame
- Vacuum pump (feasible on configuration 2 and configuration 4 only)
- Drive for rev counter/hour-meter
- Oil cooler with connections
- Coolant radiator
- Coolant overflow bottle

Auxiliary equipment not tested on ROTAX engine type 912 for safety and durability to the standards of aviation.

Non-compliance can result in serious injuries or death! The user assumes all risks possibly arising by utilizing auxiliary equipment.

The furnishing of proof in accordance to the latest FAR or EASA has to be conducted by the aircraft manufacturer.

- Exhaust system
- Intake filter
- Flydat
- Mechanical rev counter
- Electric rev counter
- Shock mount

d04918.fm

3) Abbreviations and terms used in this Manual

Abbreviations

Abbreviation	Description
*	Reference to another section
•	center of gravity
٥	The drop symbol indicates use of sealing agents, adhesives or lubricants (only in the Illustrated Parts Catalog).
O°	Degrees Celsius (Centigrade)
°F	Degrees Fahrenheit
rpm	Revolutions per minute
912 A	see OM (Type designation)
912 F	see OM (Type designation)
912 S	see OM (Type designation
912 UL	see OM (Type designation)
912 ULS	see OM (Type designation)
A	Ampere
a.c.	alternating current
Ah	Ampere hour
A/C	Aircraft
A/F	Across-flat dimension
ASB	Alert Service Bulletin
ACG	Austro Control GmbH
API	American Petrol Institute
ASTM	American Society for Testing and Materials
ΑΤΑ	Air Transport Association
AWG	American Wire Gauge
CAN	Controller Area Network
CAN/CGSB	Canadian General Standards Board
CSA	Constant Speed Actuator
CW	Clockwise
CCW	Counter-clockwise
DCDI	Dual Capacitor Discharge Ignition
d.c.	direct current
DOT	Department of Transport
DOA	Design Organisation Approval
EASA	European Aviation Safety Agency
iRMT	independent ROTAX Maintenance Technician
IM	Installation Manual
EGT	Exhaust Gas Temperatur

Effectivity: 912 Series Edition 2/Rev. 0

00-00-00

page 7 August 01/2012

INSTALLATION MANUAL

Abbreviation	Description
INTRO	Introduction
EMS	Engine Management System
EN	European Norm
IPC	Illustrated Parts Catalog
FAA	Federal Aviation Administration
FAR	Federal Aviation Regulation
ОМ	Overhaul Manual
hr.	hours
ОМ	Operators Manual
ТОС	Table of Contents
ISA	International Standard Atmosphere
kg	kilograms
AD	Airworthiness Directive
MS	magneto side
MON	motor octane number
N	new part (only Illustrated Parts Catalog)
nB	as necessary (only Illustrated Parts Catalog)
n.a.	not available
NDT	non-destructive testing
Nm	newtonmeter
Rev.	Revision
ROTAX	is a trade mark of BRP-Powertrain GmbH & Co KG
RON	Research Octane Number
RV	Record of Revisions
S/N	Serial Number
SB	Service Bulletin
SI	Service Instruction
SL	Service Letter
SMD	Surface Mounted Devices
part no.	Part number
TSN	Time Since New
TSNP	Time Since New Part
ТВО	Time Between Overhaul
V	Volt
VFR	Visual Flight Rules
LEP	List of Effective Pages
MM	Maintenance Manual
ХХХ	shows the serial component number

d04918.fm

00-00-00

3.1) Conversion table

	····
Units of length:	Units of power:
1 mm = 0.03937 in	1 kW = 1.341 hp
1 in = 25.4 mm	1 hp = 0.7457 kW
1 ft = 12 in	1 kW = 1.3596 PS
= 0.3048 m	1 PS = 0.7355 kW
Units of area:	Units of temperature:
$1 \text{ cm}^2 = 0.155 \text{ sq. in (in}^2)$	K = °C - 273.15
1 sq. in (in ²) = 6.4516 cm ²	°C = (°F - 32) / 1.8
	°F = (°C x 1.8) + 32
Units of volume:	Units of velocity:
$1 \text{ cm}^3 = 0.06102 \text{ cu in (in}^3)$	1 m/s = 3.6 km/h
1 cu in (in ³) = 16.3871 cm ³ (in ³)	1 ft/min = 0.3048 m/min
$1 \text{dm}^3 = 1 \text{I}$	= 0.00508 m/sec
1 dm ³ = 0.21997 gal (UK)	1 m/s = 196.85 ft/min
1 gal (UK) = 4.5461 dm ³	1 kt = 1.852 km/h
1 dm ³ = 0.26417 gal (US)	1 km/h = 0.53996 kn
1 gal (US) = 3.7854 dm ³	
Units of mass:	spec. fuel consumption:
Units of mass: 1 kg = 2.2046 lb	spec. fuel consumption: 1 g/kWh = 0.001644 lb/hph
1 kg = 2.2046 lb 1 lb. = 0.45359 kg	1 g/kWh = 0.001644 lb/hph 1 lb./hph = 608.277 g/kWh
1 kg = 2.2046 lb 1 lb. = 0.45359 kg Density:	1 g/kWh = 0.001644 lb/hph
$1 \text{ kg } = 2.2046 \text{ lb}$ $1 \text{ lb. } = 0.45359 \text{ kg}$ Density: $1 \text{ g/cm}^3 = 0.016018 \text{ lb/ft}^3$	1 g/kWh = 0.001644 lb/hph 1 lb./hph = 608.277 g/kWh Units of torque:
1 kg = 2.2046 lb 1 lb. = 0.45359 kg Density:	1 g/kWh = 0.001644 lb/hph 1 lb/hph = 608.277 g/kWh Units of torque: 1 Nm = 0.737 ft lb.
$1 \text{ kg } = 2.2046 \text{ lb}$ $1 \text{ lb. } = 0.45359 \text{ kg}$ Density: $1 \text{ g/cm}^3 = 0.016018 \text{ lb/ft}^3$	1 g/kWh = 0.001644 lb/hph 1 lb./hph = 608.277 g/kWh Units of torque: 1 Nm = 0.737 ft lb. = 8.848 in lb.
$1 \text{ kg } = 2.2046 \text{ lb}$ $1 \text{ lb. } = 0.45359 \text{ kg}$ Density: $1 \text{ g/cm}^3 = 0.016018 \text{ lb/ft}^3$	1 g/kWh = 0.001644 lb/hph 1 lb./hph = 608.277 g/kWh Units of torque: 1 Nm = 0.737 ft lb. = 8.848 in lb. 1 ft lb = 1.356 Nm
$1 \text{ kg } = 2.2046 \text{ lb}$ $1 \text{ lb. } = 0.45359 \text{ kg}$ Density: $1 \text{ g/cm}^3 = 0.016018 \text{ lb/ft}^3$ $1 \text{ lb/ft}^3 = 62.43 \text{ g/cm}^3$	1 g/kWh = 0.001644 lb/hph 1 lb./hph = 608.277 g/kWh Units of torque: 1 Nm = 0.737 ft lb. = 8.848 in lb. 1 ft lb = 1.356 Nm 1 in lb = 0.113 Nm
$1 \text{ kg } = 2.2046 \text{ lb} \\ 1 \text{ lb. } = 0.45359 \text{ kg}$ Density: $1 \text{ g/cm}^3 = 0.016018 \text{ lb/ft}^3 \\ 1 \text{ lb/ft}^3 = 62.43 \text{ g/cm}^3$ Units of force:	1 g/kWh = 0.001644 lb/hph 1 lb./hph = 608.277 g/kWh Units of torque: 1 Nm = 0.737 ft lb. = 8.848 in lb. 1 ft lb = 1.356 Nm 1 in lb = 0.113 Nm Cable cross-section:
$1 \text{ kg } = 2.2046 \text{ lb} \\ 1 \text{ lb. } = 0.45359 \text{ kg}$ Density: $1 \text{ g/cm}^3 = 0.016018 \text{ lb/ft}^3 \\ 1 \text{ lb/ft}^3 = 62.43 \text{ g/cm}^3$ Units of force: $1 \text{ N} = 0.224809 \text{ lbf} \\ 1 \text{ lbf } = 4.4482 \text{ N}$	1 g/kWh = 0.001644 lb/hph 1 lb./hph = 608.277 g/kWh Units of torque: 1 Nm = 0.737 ft lb. = 8.848 in lb. 1 ft lb = 1.356 Nm 1 in lb = 0.113 Nm Cable cross-section: Conversion table-Wire Gauge: AWG-mm ²
$1 \text{ kg } = 2.2046 \text{ lb} \\ 1 \text{ lb. } = 0.45359 \text{ kg}$ Density: $1 \text{ g/cm}^3 = 0.016018 \text{ lb/ft}^3 \\ 1 \text{ lb/ft}^3 = 62.43 \text{ g/cm}^3$ Units of force: $1 \text{ N} = 0.224809 \text{ lbf}$	1 g/kWh = 0.001644 lb/hph 1 lb./hph = 608.277 g/kWh Units of torque: 1 Nm = 0.737 ft lb. = 8.848 in lb. 1 ft lb = 1.356 Nm 1 in lb = 0.113 Nm Cable cross-section: Conversion table-Wire Gauge: AWG 4 6 8 10 12 14 16 18 20
$1 \text{ kg } = 2.2046 \text{ lb} \\ 1 \text{ lb. } = 0.45359 \text{ kg}$ Density: $1 \text{ g/cm}^3 = 0.016018 \text{ lb/ft}^3 \\ 1 \text{ lb/ft}^3 = 62.43 \text{ g/cm}^3$ Units of force: $1 \text{ N} = 0.224809 \text{ lbf} \\ 1 \text{ lbf } = 4.4482 \text{ N}$ Units of pressure:	1 g/kWh = 0.001644 lb/hph 1 lb./hph = 608.277 g/kWh Units of torque: 1 Nm = 0.737 ft lb. = 8.848 in lb. 1 ft lb = 1.356 Nm 1 in lb = 0.113 Nm Cable cross-section: Conversion table-Wire Gauge: AWG-mm ²
$1 \text{ kg } = 2.2046 \text{ lb} \\ 1 \text{ lb. } = 0.45359 \text{ kg}$ $Density: \\ 1 \text{ g/cm}^3 = 0.016018 \text{ lb/ft}^3 \\ 1 \text{ lb/ft}^3 = 62.43 \text{ g/cm}^3$ $Units \text{ of force:} \\ 1 \text{ N } = 0.224809 \text{ lbf} \\ 1 \text{ lbf } = 4.4482 \text{ N}$ $Units \text{ of pressure:} \\ 1 \text{ Pa } = 1\text{N/m}^2$	1 g/kWh = 0.001644 lb/hph 1 lb./hph = 608.277 g/kWh Units of torque: 1 Nm = 0.737 ft lb. = 8.848 in lb. 1 ft lb = 1.356 Nm 1 in lb = 0.113 Nm Cable cross-section: Conversion table-Wire Gauge: AWG 4 6 8 10 12 14 16 18 20
$1 \text{ kg } = 2.2046 \text{ lb} \\ 1 \text{ lb. } = 0.45359 \text{ kg}$ Density: $1 \text{ g/cm}^3 = 0.016018 \text{ lb/ft}^3 \\ 1 \text{ lb/ft}^3 = 62.43 \text{ g/cm}^3$ Units of force: $1 \text{ N} = 0.224809 \text{ lbf} \\ 1 \text{ lbf } = 4.4482 \text{ N}$ Units of pressure: $1 \text{ Pa } = 1\text{N/m}^2 \\ 1 \text{ bar } = 100000 \text{ Pa/1000 hPa/}$	1 g/kWh = 0.001644 lb/hph 1 lb./hph = 608.277 g/kWh Units of torque: 1 Nm = 0.737 ft lb. = 8.848 in lb. 1 ft lb = 1.356 Nm 1 in lb = 0.113 Nm Cable cross-section: Conversion table-Wire Gauge: AWG 4 6 8 10 12 14 16 18 20
$1 \text{ kg } = 2.2046 \text{ lb} \\ 1 \text{ lb. } = 0.45359 \text{ kg}$ Density: $1 \text{ g/cm}^3 = 0.016018 \text{ lb/ft}^3 \\ 1 \text{ lb/ft}^3 = 62.43 \text{ g/cm}^3$ Units of force: $1 \text{ N} = 0.224809 \text{ lbf} \\ 1 \text{ lbf } = 4.4482 \text{ N}$ Units of pressure: $1 \text{ Pa } = 1\text{N/m}^2 \\ 1 \text{ bar } = 100000 \text{ Pa/1000 hPa/} \\ 100 \text{ kPa}$	1 g/kWh = 0.001644 lb/hph 1 lb./hph = 608.277 g/kWh Units of torque: 1 Nm = 0.737 ft lb. = 8.848 in lb. 1 ft lb = 1.356 Nm 1 in lb = 0.113 Nm Cable cross-section: Conversion table-Wire Gauge: AWG 4 6 8 10 12 14 16 18 20

Effectivity: 912 Series Edition 2/Rev. 0

page 9 August 01/2012

INSTALLATION MANUAL

4) Safety notice

General note	promotes the une	ding of such information does not eliminate the hazard, it derstanding and application of the information contained of the engine. Always use common workshop safety
	Manual are correpolicy of continue	and components system descriptions contained in this ect at the time of publication. BRP-Powertrain maintains a bus improvement of its products without imposing upon on to install them on its products previously manufac-
Revision		reserves the right at any time, and without incurring obli- e, replace or discontinue any design, specification, feature
Measure	Specifications ar parenthesis.	e given in the SI metric system with the USA equivalent in
Symbols used	This Manual uses the following symbols to emphasize particular informa- tion. This information is important and must be observed.	
		Identifies an instruction which, if not followed, may cause serious injury including the possibility of death.
		Identifies an instruction which, if not followed, may cause minor or moderate injury.
	NOTICE	Denotes an instruction which, if not followed, may severely damage the engine or other component.
	NOTE: I	ndicates supplementary information which may be needed to fully complete or understand an instruction.
		<u>T NOTE</u>
	Environment not tion.	te gives you tips and behaviors to environmental protec-
		A revision bar outside of the page margin indicates a change to text or graphic.

00-00-00

INSTALLATION MANUAL

4.1) Safety information

Use for intended purpose

Non-compliance can result in serious injuries or death!

Only certified technicians (iRMT, see also Maintenance Manual Line) and trained on this product are qualified to work on these engines.

Non-compliance can result in serious injuries or death!

Never fly the aircraft equipped with this engine at locations, airspeeds, altitudes, of other circumstances from which a successful no-power landing cannot be made, after sudden engine stoppage.

- This engine is not suitable for acrobatics (inverted flight, etc.).
- This engine shall not be used on rotorcrafts with an in-flight driven rotor (e.g. helicopters).
- It should be clearly understood that the choice, selection and use of this particular engine on any aircraft is at the sole discretion and responsibility of the aircraft manufacturer, assembler and owner/user.
- Due to the varying designs, equipment and types of aircraft, BRP-Powertrain grants no warranty or representation on the suitability of its engine's use on any particular aircraft. Further, BRP-Powertrain grants no warranty or representation of this engine's suitability with any other part, component or system which may be selected by the aircraft manufacturer, assembler or user for aircraft application.

Non-compliance can result in serious injuries or death!

Unless correctly equipped to provide enough electrical power for night IFR (according latest requirement as ASTM), the ROTAX 912 UL/ULS is restricted to DAY VFR only.

- In addition to observing the instructions in our Manual, general safety and accident preventative measures, legal regulations and regulations of any aeronautical authority must be observed.
- Where differences exist between this Manual and regulations provided by any authority, the more stringent regulation should be applied.

Effectivity: 912 Series Edition 2/Rev. 0

page 11 August 01/2012

INSTALLATION MANUAL

- For continuing airworthiness see Maintenance Manual Line.
- Unauthorized modifications of engine or aircraft will automatically exclude any liability of the manufacturer for sequential damage.
- This engine may be equipped with an other than the GENUINE-ROTAX vacuum pump. The safety warning accompanying the air pump must be given to the owner/operator of the aircraft into which the air pump is installed.

Engine run

- In the interest of safety, the aircraft must not be left unattended while the engine is running.
 - To eliminate possible injury or damage, ensure any loose equipment or tools are properly secured before starting the engine.
 - When in storage protect the engine and fuel system from contamination and exposure.
 - Never operate the engine and gearbox without sufficient quantities of lubricating oil.
 - Never exceed the maximum permitted operational limits.
 - Allow the engine to cool at idle for several minutes before turning off the engine.
 - Propeller and its attachment with a moment of inertia in excess of the specified value must not be used and releases engine manufacturer from any liability.
 - Improper engine installation and use of unsuitable piping for fuel-, cooling- and lubrication system releases engine manufacturer from any liability.

page 12 August 01/2012

00 - 00 -

INSTALLATION MANUAL

4.2) Instruction

41 2) 110		
General note	Engines require instructions regarding their installation, application, use, operation, maintenance and repair.	
	Technical documentation and directions are useful and necessary com- plementary elements for personal instruction, but can by no means sub- stitute theoretical and practical instructions.	
	These instructions should cover explanation of the technical context, advice for operation, maintenance, use and operational safety of the engine.	
Safety notice	In this technical Manual passages concerning safety are especially marked. Pass on safety warnings to other users!	
Accessories	This engine must only be operated with accessories supplied, recom- mended and released by BRP-Powertrain. Modifications are only allowed after consent by the engine manufacturer.	
Spare parts	NOTICE Spare parts must meet with the requirements defined by the engine manufacturer. This is only warranted by use of GENUINE-ROTAX spare parts and/or accessories (see IPC) or suitable equivalent in the manufacturer's opinion otherwise, any limited warranty by BRP-Powertrain is null and void (see Warranty Conditions). Spare parts are available at the authorized ROTAX Distributor and their Service Center. Any warranty by BRP-Powertrain becomes null and void if spare parts and or accessories other than GENUINE-ROTAX spare parts and/or accessories are used (see latest Warranty Conditions).	
Tools	NOTICE In principle use only tools and appliances which are either cited in the Manual or in the Illustrated Parts Catalog.	
State of delivery	WARNING Engine and gearbox are delivered in "dry" conditions (without oil). Before putting engine in operation it must be filled with oil. Use only oil as specified (consult Operators Manual and SI-912-016 "Selection of suitable operating fluids" current issue).	

d04918.fm

00-00-00 page 13 August 01/2012

INSTALLATION MANUAL

4.3) Technical documentation

General n	ot
-----------	----

These documents form the instructions ensuring continued airworthiness of ROTAX aircraft engines.

The information contained is based on data and experience that are considered applicable for authorized mechanics (iRMT, see Maintenance Manual Line) under normal conditions.

Due to the fast technical progress and fulfilment of particular specifications of the customers it may occur that existing laws, safety prescriptions, constructional and operational regulations cannot be transferred completely to the object bought, in particular for special constructions, or may not be sufficient.

Documentation - Installation Manual

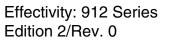
- Operators Manual
- Maintenance Manual (Line and Heavy Maintenance)
- Overhaul Manual
- Illustrated Parts Catalog
- Alert Service Bulletin
- Service Bulletin
- Service Instruction
- Service Letter

StatusThe status of the Manuals can be determined with the aid of the table of
amendments. The first column indicates the revision state.This figure should be compared with the revision provided on ROTAX-Air-

craft Engines Website: www.FLYROTAX.com.

Amendments and current versions can be downloaded free of charge.

Replacement
pagesFurthermore the Manual is constructed in such a way that single pages
can be replaced instead of the complete document. The list of effective
pages is given in the chapter LEP. The particular edition and revision num-
ber is given on the footer of each page.

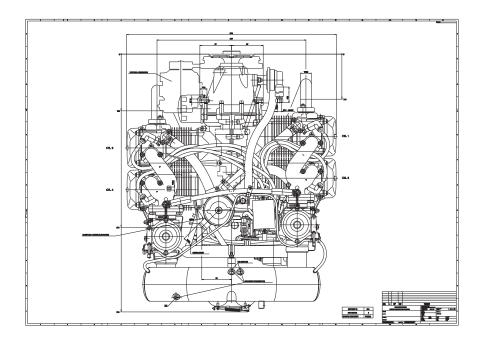

page 14 August 01/2012

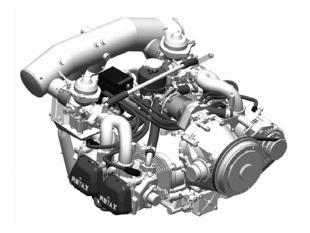
00-00-

INSTALLATION MANUAL

Reference	NOTICE	This Manual for engine installation is only part of the Technical Documentation and will be supplemented by the respective Operators Manual, Maintenance Manu- al and Illustrated Parts Catalog. Pay attention to references to other documentation, found in various parts of this Manual.
	•	a document refers to the latest edition issued by if no stated othrwise.
Illustrations	arrangement. The the parts which h	n this Manual are mere sketches and show a typical ey may not represent in full detail or the exact shape of ave the same or similar function. Therefore deduction of ner details from illustrations is not permitted.
	b v	The Illustrations in this Manual are stored in graphic data base system and are provided with a consecutive irrele- cant number. This number (e.g. 00277) is of no signifi- cance for the content.
Installation draw- ings		ngs and a DMU-model for (virtual) installation analysis n the ROTAX Authorized Distributors or their Service

d04918.fm





page 15 August 01/2012

INSTALLATION MANUAL

09171,09170

Effectivity: 912 Series Edition 2/Rev. 0

Fig. 2

page 16 August 01/2012

INSTALLATION MANUAL

Chapter: 10-10-00 STORAGE AND INSTALLATION

NOTICE

Introduction

The stated directives are measures that must be observed during every engine installation to prevent any accidents and engine damage.

Table of contents

This section of the Installation Manual contains state of delivery, transport, storage and aircraft engine installation.

Subject	Page
Preparations for engine installation	Page 3
State of delivery	Page 3
Unpacking/handling of the engine	Page 3
Preservation and storage of the engine	Page 4
Protective coverings	Page 5
Engine suspension and installation position	Page 6
Engine suspension instructions	Page 6
Attachment points	Page 8
Definition of attachment points	Page 9
Permissible installation positions	Page 12
Preparations for trial run of engine	Page 14
Conduct test run	Page 14
Verification of the throttle lever detent for max. continuous power	Page 14

Effectivity: 912 Series Edition 2/Rev. 0

page 1 August 01/2012

INSTALLATION MANUAL

NOTES

page 2 August 01/2012

Effectivity: 912 Series Edition 2/Rev. 0

INSTALLATION MANUAL

1) Preparations for engine installation

1.1) State of delivery

Attachment

Risk of consequential damage to engine and aircraft as a result of corrosion and damage. Under no circumstances is a corroded or damaged engine to be installed in an aircraft! The attachment screws are only for transport and must not be used in the aircraft.

The engine can be attached with steel angles anchored on a timber plate.

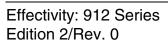
- When the engine is delivered, check that the GENUINE-ROTAX packing is not damaged.
- If the packing is damaged, contact the authorised sales and service partner for ROTAX aircraft engines.

1.2) Unpacking/handling of the engine

Unpacking the engine

To unpack a new engine, proceed as follows:

Step	Procedure
1	Remove the wooden cover.
2	Remove the protective packaging.
3	Remove the protective film around the engine.

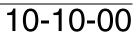

After unpacking

To check the state of delivery, proceed as follows:

Step	Procedure
1	Check that the serial number and engine type designation on the type plate are identical to those shown on the delivery note.
2	Check the engine for damage or corrosion. If everything is deemed "OK", the engine can be accepted.

Suspension point The engine to be lifted by two hooks or straps around the middle (A) of the intake manifolds. See chapter engine views, numbering of cylinders and definitions of main

axes.


page 3 August 01/2012

INSTALLATION MANUAL

1.3) Preservation and storage of the engine

General note	The engine is preserved at BRP-Powertrain thus guaranteeing proper pro- tection against corrosion damage for at least 24 months after the date of delivery from BRP-Powertrain.
Warranty	This warranty is subject to the following conditions:
	 The engine must be stored in the GENUINE-ROTAX packing as sup- plied by BRP-Powertrain.
	- The covers on various openings must not be removed.
	 The engine must be stored in a suitable place (at min40 °C/-40 °F and max. +80 °C/176 °F).
	- The flat bag (blue) surrounding the engine must not be damaged or removed, as it protects the engine from corrosion and oxidation.
Storage	If the engine is stored for a period longer than 12 months (not stored in the GENUINE-ROTAX packing) then maintenance tasks must be carried out every 3 months as per the currently valid Maintenance Manual, section "Preservation of a new engine".

d04919.fm

INSTALLATION MANUAL

1.4) Protective covering

NOTICE

General note

Protective coverings are only for use during transport and engine installation. They must be removed before the engine is operated.

All openings are protected against ingress of contamination and dampness. It is recommended to leave the protective plugs in place until installation of the specific feed line.

NOTE: The transport equipment and plugs must be reattached if the engine will be sent to the manufacturer or distributor.

Protective cover-

List of protective covering:

Installation place	Number
Exhaust socket	1x cone plug
Connection for manifold pressure	1x cap
Airbox	2x cap
Fuel pump inlet	1x cap
Connection for fuel return	1x plug
Connection for fuel pressure	1x plug
Oil supply and oil discharge	1x each cap
Supply and discharge of coolant	1x each cone plug
Propshaft on configuration 3	1x disk plug
Carburetor (if not equipped with an airbox)	2x disk plug

d04919.fm

Effectivity: 912 Series Edition 2/Rev. 0

page 5 August 01/2012

INSTALLATION MANUAL

2) Engine suspension and installation position

General note	NOTICE During engine installation take into account the total engine weight and ensure careful handling.
Engine suspen- sion	The engine suspension is essentially determined by the aircraft design. Eight attachment points are provided (4 on engine and 4 on engine frame).
Engine suspen- sion frame	NOTICE If the engine suspension frame is not used or if modified, certification in accordance with the latest regulations, such as FAR or EASA, must be conducted by the aircraft manufacturer.

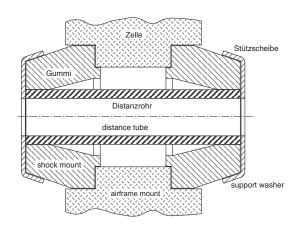
The engine is supplied with a tested and certified suspension frame for the fireproof bulk head. Installation in the aircraft is carried out using standard captive rubber mounts which also isolate vibration and noise from the aircraft frame.

2.1) Engine suspension instructions

General note	NOTICE	The rubber mounts for neutralising vibrations and all engine suspension components not in the scope of de- livery must be ground run tested at the specified loads and tested for vibration behaviour. Certification to the latest regulations, such as FAR and EASA, must be conducted by the aircraft manufactur- er.
Noise emmision	NOTICE	The engine suspension must be designed to prevent
and vibration	excessive engl	excessive engine movement and to minimise noise emission and vibration on the airframe.
	NOTICE	If the GENUINE-ROTAX engine suspension frame is not being used, a vibration test must be carried out.
		See SL-912-010.

page 6 August 01/2012

10-10-00

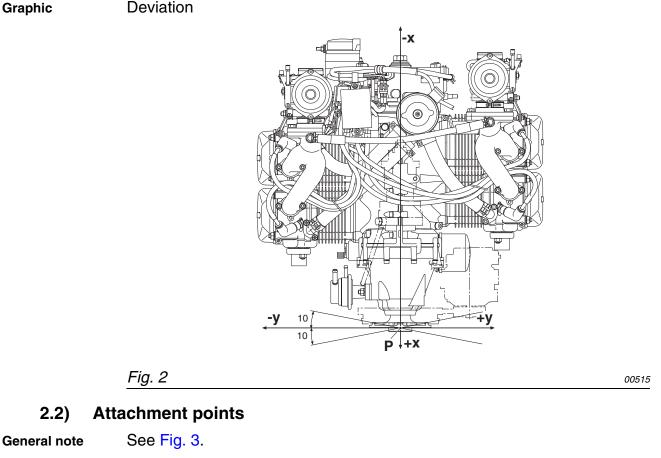

INSTALLATION MANUAL

NOTE: With suspension on the 4 top lugs L3, R3, L4 and R4 only, the tilting moment due to the pull of the propeller will be avoided while, if attached on the bottom lugs only, the moment of tilting has to be taken care of accordingly.

Standard aircraft industry damping elements (e.g. Lord) are suitable. See Fig. 1.

Graphic

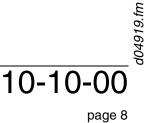
Engine suspension


	NOTE:	The illustration shows Lord J 3608-1 or J 3608-2. rubber mounts. Consult the manufacturer for the dimensions of the rubber mounts.	
	Fig. 1	07600	
Vibration neutral- isation	The vibration and acoustic insulation factor is dependent on the cell man- ufacturer. Perform the determination as described in SL-912-010.		
Damping ele- ments	NOTICE	All elements for neutralising vibrations must be cap- tive.	
Vertical axis	The y-axis must be perpendicular to the longitudinal axis of the aircraft.		
Deviation	Permissible deviation from perpendicular: $\pm 10^{\circ}$. See Fig. 2.		

d04919.fm

page 7 August 01/2012

INSTALLATION MANUAL


Deviation

The hex. screws M10x60 in the attachment points are for transport only and must not be used for engine suspension.

It is recommended that the 4 stated attachment points R2, L2, R3 and L3 of the engine suspension frame are used.

A minimum of 4 attachement points must be used. These must be distributed symmetrically between the left (L) and right (R) sides.

August 01/2012

INSTALLATION MANUAL

2.3) Definition of attachment points

General note See Fig. 3.

Non-compliance can result in serious injuries or death!

The aircraft or fuselage manufacturer must design the engine suspension so that it can safely carry the maximum occurring operational loads without exceeding the max. allowable forces and bending moments on the engine housing and attachment points.

Tighten all engine suspension screws as specified by the aircraft manufacturer.

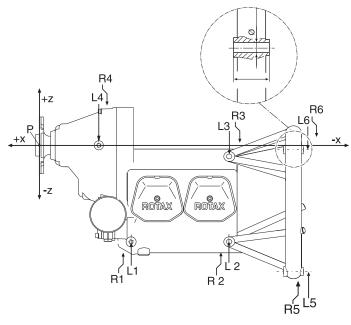


Fig. 3

08318

Effectivity: 912 Series Edition 2/Rev. 0

page 9 August 01/2012

10-10-00

INSTALLATION MANUAL

attachment points	x-axis mm/in	y-axis mm/in	z-axis mm/in
L1	-200,8/-7.90 in.	71,0/2.80 in.	-211,0/-8.31 in.
R1	-200,8/-7.90 in.	-71,0/-2.80 in.	-211,0/-8.31 in.
L2	-414,3/-16.31 in.	71,0/2.80 in.	-211,0/-8.31 in.
R2	-414,3/-16.31 in.	-71,0/-2.80 in.	-211,0/-8.31 in.
L3	-414,3/-16.31 in.	75,0/2.96 in.	-22,0/-0.87 in.
R3	-414,3/-16.31 in.	-75,0/-2.96 in.	-22,0/-0.87 in.
L4	-128,3/-5.05 in.	87,0/3.43 in.	0
R4	-128,3/-5.05 in.	-87,0/3.43 in.	0
L5	-564,0/-22.20 in.	105,0/4.13 in.	-277,0/-10.91 in.
R5	-564,0/-22.20 in.	-105,0/-4.13 in.	-277,0/-10.91 in.
L6	-564,0/-22.20 in.	105,0/4.13 in.	-7,0/-0.28 in.
R6	-564,0/-22.20 in.	-105,0/-4.13 in.	-7,0/-0.28 in.

attachment points	max. permissible forces (secure load) in (N) in. x, y and z axis	max. permissible bending mo- ment (secure load) in (Nm) in. x, y and z axis
L1	5000 N/196.85 in.	77 Nm /56.8 ft.lb
R1		
L2	5000 N/196.85 in.	77 Nm/56.8 ft.lb
R2		
L3	5000 N/196.85 in.	77 Nm/56.8 ft.lb
R3		
L4	1900 N/74.80 in.	39 Nm/28.8 ft.lb
R4	1	

	max. permissible forces (secure load) in (N)in.			max. permissible bending moment (secure load) in (Nm)
attach- ment points	x axis	y axis	z axis	x, y, and z axis
L5	5000 N/	2000 N/	3000 N/	100 Nm/ 73.75 ft.lb
R5	196.85 in.	78.74 in.	118.11 in.	
L6				
R6				

10-10-00

INSTALLATION MANUAL

attachment point	thread size	max. usable thread length mm/in.
L1	M10	25 mm/0.98 in.
R1		
L2	M10	25 mm/0.98 in.
R2		
L3	M10	25 mm/0.98 in.
R3		
L4	M10	19 mm /0.75 in. ¹⁾
R4	1	16 mm /0.63 in. ²⁾

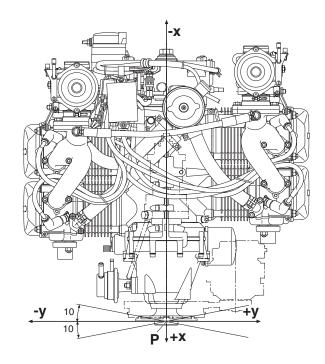
¹⁾ up to gearbox S/N 28986
 ²⁾ starting from gearbox S/N 28987

Effectivity: 912 Series Edition 2/Rev. 0

page 11 August 01/2012

INSTALLATION MANUAL

2.4) Permissible installation positions


General note	See Fig. 4	•	
	NOTICE	The oil system, fuel system and the cooling system are unsuitable for upside-down/inverted installation of the engine.	
		Dimensions are always from zero reference point and the coordinate system position remains unchanged.	Э
Installation posi- tions	parked position - Engine suitabl	e for propeller in tractor or pusher arrangement with propeller shaft above cylinders	
Propeller axis	to the y-axis. Permissible dev	tachment points L1 and R1 must be on a y2 axis parallel riation from parallelism: $\pm 5^{\circ}$	
	Fig. 4	02454	4

page 12 August 01/2012

INSTALLATION MANUAL

Vertical axisThe y-axis must be perpendicular to the longitudinal axis of the aircraft.Permissible deviation from perpendicular: ± 10°

00515

d04919.fm

Effectivity: 912 Series Edition 2/Rev. 0

page 13 August 01/2012

INSTALLATION MANUAL

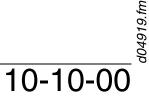
3) Preparations for trial run of engine

General note

Non-compliance can result in serious injuries or death! Prior to engine start and operation review all instructions stated in the Operators Manual.

3.1) Conduct test run

Instruction See Operators Manual 912 chapter. 3.


3.2) Verification of the throttle lever detent for max. continuous power:

Instruction

Performance check in accordance with Operators Manual. If nominal performance won't be reached or is in excess of, examination of

the installation and engine will be necessary.

NOTICE Don't conduct any test flights before fault has been traced and found.

page 14 August 01/2012

INSTALLATION MANUAL

Chapter: 24-00-00 ELECTRIC SYSTEM

The engine is supplied with the wiring completed and ready to operate. Only the following connections to the aircraft have to be established:

- integrated generator
- external rectifier-regulator
- electronic modules
- electric starter
- start relay
- items conditional for operation like circuit breakers, ON-OFF switches, control lamps, relays, instrumentation and capacitors.

Optional extras

- external alternator (as option if the output of the integrated generator is inadequate.
- electric rev counter (accessory).
- cosumer (battery).

Table of contents

Intro

This section contains information about electronic modules, electric starter and wiring diagram of the engine.

Subject	Page
Requirements for the circuit wiring	Page 3
Electromagnetic compatibility (EMC/EMI)	Page 4
Technical data and connection of the electric components	Page 5
Integrated generator	Page 5
Rectifier-regulator	Page 6
Requirements for flawless operation of the rectifier-regu-	Page 7
lator	
Electronic modules	Page 8
Ignition switches (MAG switch)	Page 9
Connection	Page 9
Assembly of the flat pin terminal	Page 11
External alternator (optional extra)	Page 13
Technical data	Page 13
Connection	Page 13
Requirements for correct operation of the integrated rec-	Page 14
tifier-regulator	
Connection of the electric rev counter (tachometer)	Page 16
Technical data	Page 16
Connection	Page 17

24-00-00

d04920.fm

page 1 August 01/2012

INSTALLATION MANUAL

Subject	Page
Battery	Page 17
Capacitor (Option electrical fuel pump)	Page 17
Easy start function on the electronic module (optional)	Page 17
Wiring diagram	Page 18

Effectivity: 912 Series Edition 2/Rev. 0

page 2 August 01/2012 INSTALLATION MANUAL

1) Requirements for the circuit wiring

General note	NOTICE	The connections have to be made by the aircraft man- ufacturer in accordance with applicable regulations and the enclosed wiring diagram. See chap. 24-00-00 section: Switch requirements.
	NOTICE	The power supply to the various consumers (e.g. bat- tery) must be adequately protected by fuses. Using in- correctly rated fuses may result in destruction of the equipment.
		Under no circumstances must consumer cables (e.g. battery) be routed alongside the ignition cable. There is a risk of electromagnetic interference or damage.
	NOTICE	Do not bend, kink, pinch or otherwise improperly stress the wiring harness. Use proper routing, clamping and strain relief on wiring harnesses.

Effectivity: 912 Series Edition 2/Rev. 0

page 3 August 01/2012

INSTALLATION MANUAL

1.1) Electromagnetic compatibility (EMC/EMI)

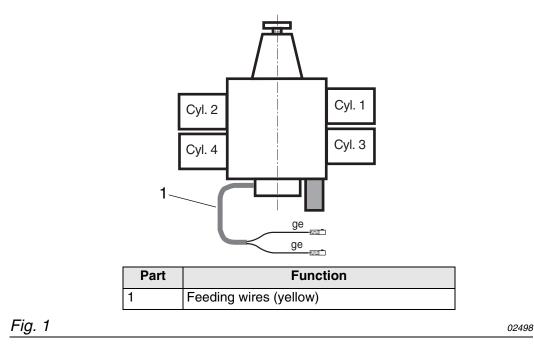
Electromagnet-	Flectromagne	tic interference (EMI) and lightning		
ic interference	The engine cor	mplies with EMI and lightning requirements as per DO- 18, 20-22 as detailed in the following paragraphs.		
Emission	Emission			
	Conductive rad	lio interference:		
	Narrowband and broadband emissions meet RTCA DO160C Section 21-2 Cat. B (AZ) requirements except in the frequency range of 150 kHz-2 MHz where emissions are up to 20 dB higher than allowable limits.			
	Radiated radio interference:			
	item 21-6 and 2	nd broadband emissions meet RTCA DO160C Section 22, 21-7, Cat. B requirements except in the frequency range of z where emissions are up to 35 dB higher than allowable		
	NOTE:	Consult the aircraft manufacturer if further interpretation is needed. The exceeded limits do not affect the operation of the engine.		
Electromagnet-	Electromagneti	ic compatibility (EMC)		
ic compatibility	The engine complies with the electromagnetic interference and lightning strike requirements of DO-160C, section 18, 20-22 and IEC 801-2.			
	The following EMC tests have been carried out:			
	 Radio frequency (RF) sensitivity (conducted) 			
	 Radio frequency (RF) sensitivity (radiated) 			
	- Audio frequency sensitivity			
	- Lightning strike sensitivity			
	- Conducted radio frequency (RF) interference			
	- Radiated rac	dio frequency (RF) interference		

d04920.fm

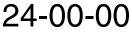
INSTALLATION MANUAL

2) Technical data and connection of the electric components

2.1) Internal generator


General note NOTE: Approx. 250 W AC output at 5800 rpm. For DC output in connection with rectifier-regulator. See chap. 24-00-00 section: 3).

Connection See Fig. 1. Feeding wires (1) from the generator to rectifier-regulator on left side of


ignition housing.

- 2 flexible cables, 1.5 mm² yellow (in shielding metal braid)
- length approx. 660 mm (26 in.) starting from ignition housing
- with on each plug socket 6.3 x 0.8 to DIN 46247

Graphic Connection

d04920.fm

INSTALLATION MANUAL

Rectifier regulator 2.2)

2.2) ne		
Туре	Electronic full-wave rectifier regulator.	
Output voltage	14.2 V±0.3 (from 1000 ±250 rpm).	
Current limit	Current limit: Max. 22 A.	
Component tem- perature	Max. permissible component temperature: +80 °C (176 °F) (measured in area (1)). NOTE: The performance specification cooled components. If necessary for the rectifier regulator.	
Weight	See chap. 72-00-00 section: weight.	
Graphic	Connection	
	PartFunction1Area component temperature2Description of connections:3G = yellow - from generatorR = red - to battery, positiveB = battery positive terminalL = warning lamp circuitC = control or field circuit	
Effectivity: 912 S Edition 2/Rev. 0		24-00-00

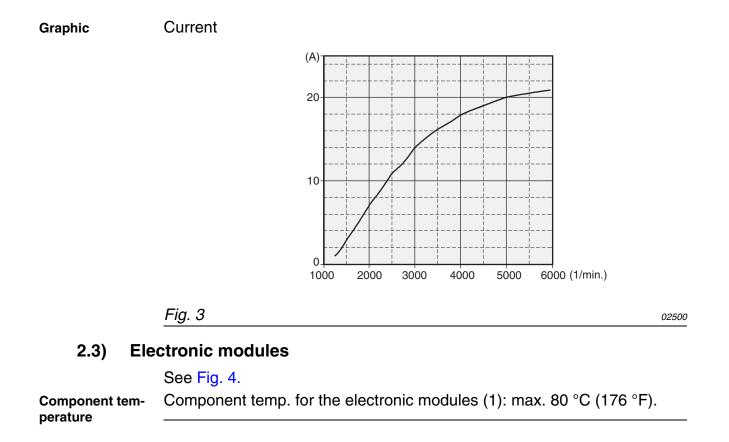
Effectivity: 912 Series Edition 2/Rev. 0

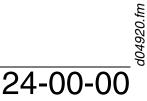
page 6 August 01/2012

INSTALLATION MANUAL

2.2.1) Requirements for flawless operation of the rectifier-regulator

	,	
General note	NOTICE	The voltage difference between battery and terminal C of regulator should be less than 0.2 V.
		Use cables in this area as short as possible and with adequate cross section.
	NOTICE	Never sever connection between terminal C and B of regulator (e.g. by removal of a fuse) while the engine is running. Overvoltage and regulator damage can occur.
		During engine stop break circuit between battery and terminal C to avoid discharge of battery! (see Fig. 11). charge-indicating lamp 3 W/12 V (see Fig. 11 pos. 18) ay be fitted on the instrument panel.
Body of regula- tor	Body of regulator r	must be grounded with no restance allowed.
Fuse	The rectifier-regula	ator has to be protected by a slow blowing 25 A fuse.
Wire size	Wire size of the ma	ain circuit of at least 2.5 mm ² (14 AWG).
Capacitor	A capacitor (see Fig. 11 pos. 14) of at least 22000 μ F/25 V is necessary to protect the correct function of regulator and to flatten voltage. The regulator is not designed to store any electrical charge. If for any reason the battery or bus system is disconnected from the regulator while the engine is running (i.e. the master switch is shut off) the capacitor will safely absorb and dissipate the electrical charge produced by the generator. Otherwise the regulator would be damaged.	
Amperage	NOTICE	The graph current over engine speed has been deter- mined and is valid only at the following conditions:
	- Ambient temper	ature: 20 °C (68 °F)
	•	nanent 13.5 V
	- Tolerance: max	


d04920.fm


s

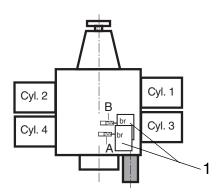
page 7 August 01/2012

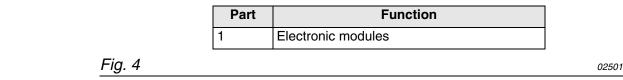
INSTALLATION MANUAL

page 8 August 01/2012

INSTALLATION MANUAL

2.4) Ignition switches (MAG switch)


Туре	Two separate, suitable on-off switches (Fig. 11 pos. 15).
Switching volt- age	Min. 250 V.
Switching cur-	Min. 0.5 A.
2.4.1) Connection


Wires

See Fig. 4.

Wires from the ignition switches connect to the electronic module (1).

Graphic Electronic modules

Wire

See Fig. 5.

NOTICE

The electromagnetic compatibility (EMC) and electromagnetic interference (EMI) depends essentially on the wire used.

Min. section area: 2x 0.75 mm² (18 AMG) (shielded flexible cable, shielding braid on both ends grounded to prevent EMI (e.g. specification MIL-27500/18).

Effectivity: 912 Series Edition 2/Rev. 0

24-00-00

page 9 August 01/2012

INSTALLATION MANUAL

	NOTICE	No or insufficient shielded cables can cause engine shut-off due to electromagnetic and radio interference. The metal base of each ignition switch must be grounded to aircraft frame to prevent EMI.	
Wire A	Wire of top e	lectronic module (marked "A") for ignition circuit A.	
-	·		
Wire B	Wire of bottom electronic module (marked "B") for ignition circuit B.		
Ignition circuit A	NOTE:	Ignition circuit A controls: top spark plugs of cylinder 1 and 2; lower spark plugs of cylinder 3 and 4.	
Ignition circuit B	NOTE:	Ignition circuit B controls: top spark plugs of cylinder 3 and 4; lower spark plugs of cylinder 1 and 2.	
Graphic	Wire		
		Part Function	
		1 Wire for ignition circuit A 2 Wire for ignition circuit B	
	Fig. 5	07602	
Flexible wire		xible wire 0.75 mm ² (18 AMG), brown. bx. 35 mm (1 3/8") beginning at electronic module with one	

Length approx. 35 mm (1 3/8") beginning at electronic module with one each plug socket and insulating sleeve 3.96 mm. At the new version the cable grommet and fasten connector are integrated in the 6-pole connector housing. See also SI-912-013, latest issue.

page 10 August 01/2012

24-00-00

d04920.fm

INSTALLATION MANUAL

2.4.2) Assembly of the flat pin terminal

General note	See Fig. 6.	
		e each cable grommet (1) and flat pin terminal (2) are oplied loosely packed.
Special tools	The following special tools and equipment are necessary for fitting the Faston connector.	
	Part number	Description
	n.a.	MOLEX Crimping pliers 64016-0035

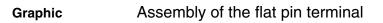
Procedure Assembly of the flat pin terminal

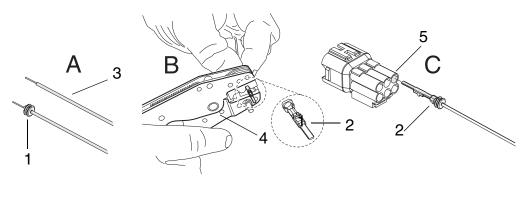
n.a.

Step	Procedure
1	Strip cable (3) as required.
2	Install the cable grommet (1) in correct position and direction (A).
3	Use suitable crimping pliers (4) to fit the fasten connector (B).
4	The rubber grommet is held by the secondary crimp.
5	Push the faston connector in the corresponding slot (4) of the connector receptacle until it is locked in place (C).
6	Check for tight fit.
7	Press the pin holder (white) downwards using the long nose pliers.

MOLEX Disassembly total 63813-1500

NOTE:	Faston connector and insulation sheath of the old version are available as spare part. See also SI-912-013, latest issue.
	The pip helder must pet be pressed with every


NOTE: The pin holder must not be pressed with excessive force.



Effectivity: 912 Series Edition 2/Rev. 0

page 11 August 01/2012

INSTALLATION MANUAL

Part	Function	
1	Cable grommet	
2	Flat pin terminal	
3	Wiring (airframe)	
4	Crimping pliers	
5	Position in the connector housing	

Fig. 6

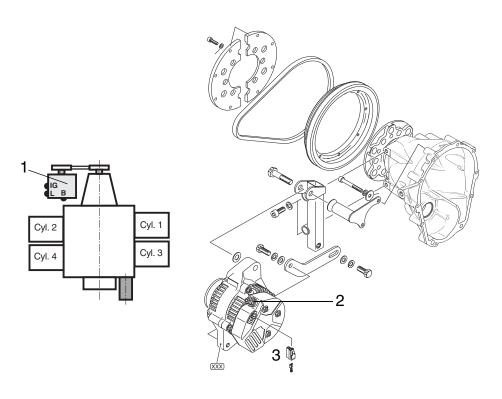
08323

page 12 August 01/2012

INSTALLATION MANUAL

2.5) External alternator (optional extra)

, General note	See Fig. 7.		
) Technical da	ata	
General note	NOTE: The voltage regulator is integrated in the alternator.		
Output	Output: Max. 600 W/DC at 6000 r.p.m.		
Output Voltage	Output Voltage: 14.2 V - 14.8 V.		
Ambient temper- ature range	Ambient temperature:		Min30 °C (-22 °F) Max. +90 °C (194 °F)
Weight	See chap. 72-00-00 section: Technical data.		
2.5.2)) Connection		
Power supply wires	Power supply wires to external alternator (1) located on the outside of propeller gear.		
Positive terminal	 Positive terminal (2): M6 screw connection suitable for cable terminal acording to DIN 46225 (tightening torque 4 Nm (35 in.lb). 		
Grounding	Via engine block.		
Control wiring	U		umitomo 6111-2568) and 6.3 x 0.8 Fasten


d04920.fm

page 13 August 01/2012

INSTALLATION MANUAL

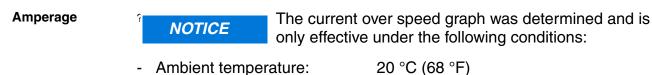
Graphic External alternator

Teil	Funktion	
1	External alternator	
2	Positive terminal	
3	Control wiring	

Fig. 7

03199,02764,00547

2.6) Requirements for correct operation of the integrated rectifier regulator

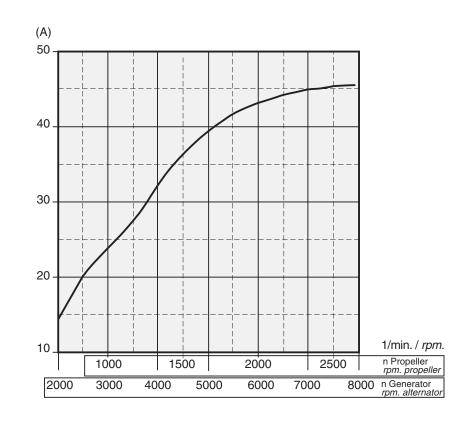

FuseThe rectifier regulator must be protected by a slow blowing fuse or circuit
breaker. Fuse or circuit breaker rating must be determined by load, wire
size and length.

Cross section Wire size of the main circuit at least 4 mm^2 (0.006 in²).

Capacitor A capacitor of at least 22000 µF/25 V is necessary to flatten voltage.

d04920.fm

INSTALLATION MANUAL



- Voltage:
- Tolerance:

constant 13.5 V max. ± 5%

NOTE: The speed of the external generator is 1.24 times the crankshaft speed or 3 times the propeller speed.

Graphic

00547

Effectivity: 912 Series Edition 2/Rev. 0

page 15 August 01/2012

INSTALLATION MANUAL

2.7) Connection of the electric rev counter (tachometer)

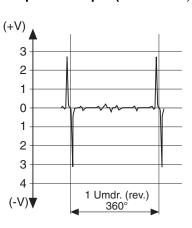
ote See Fig. 9.

2.7.1) Technical data

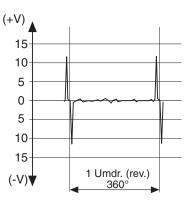
NOTICE

Output signal

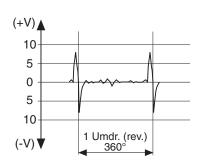
The graphs depicting output signals have been determined and are effective only at the following conditions:

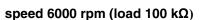

- Ambient temperature: 20 °C (68 °F)

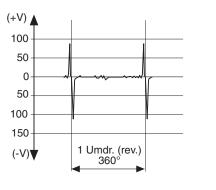
Tolerance: Max. ± 5%


NOTE: The pick-up for the rev counter generates one pulse per revolution. Pulse shape and pulse voltage as per record-ings (oscillogram).

Graphic


Oscillogram speed 500 rpm (load 100 Ω)


speed 500 rpm (load 100 k Ω)



speed 6000 rpm (load 100 Ω)

d04920.fm

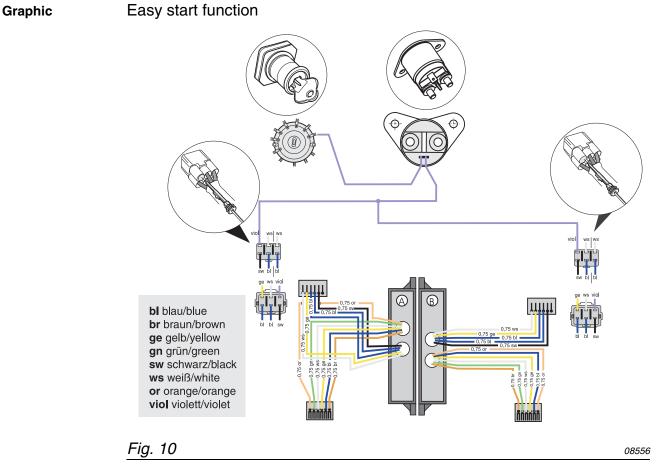
Effectivity: 912 Series Edition 2/Rev. 0

page 16 August 01/2012

INSTALLATION MANUAL

2.7.2) Connection

2.1.2)	Connection			
General note		BRP-Powertrain developed especially for this applica- tion a non-certified electric rev counter. Certification to the latest requirements such as FAR or EASA has to be conducted by the aircraft manufacturer. See also SI-13-1996, latest issue.		
Feeding wiring	Feeding wiring to electric rev counter on left side of ignition housing.Length approx. 600 mm (24 in.) starting from ignition housing.			
Connections	2 flexible cables 0.5 wrap).	2 flexible cables 0.5 mm ² , white/yellow and blue/yellow (in insulation wrap).		
2.8) Bat	tery			
General note	See Fig. 11.			
	NOTICE	To warrant reliable engine start use a battery of at least 16 Ah capacity.		
2.9) Cap	pacitor (Option ele	ectrical fuel pump)		
General note	See Fig. 11.			
		To warrant reliable operation of the electrical fuel pump the use of capacitor of at least 22 000 μ F/25 V is necessary.		
2.10) Eas	sy start function o	n the electronic module (optional)		
General note	See Fig. 10.			
	In order to use the easy start function the relevant connections to the starter relays and ignition switch need to be made.			
	The start function caproblem in cold con	an be used for aircraft, which have an engine start ditions.		
		addition also a modified fly wheel hub is offered, which s improved starting.		



Effectivity: 912 Series Edition 2/Rev. 0

page 17 August 01/2012

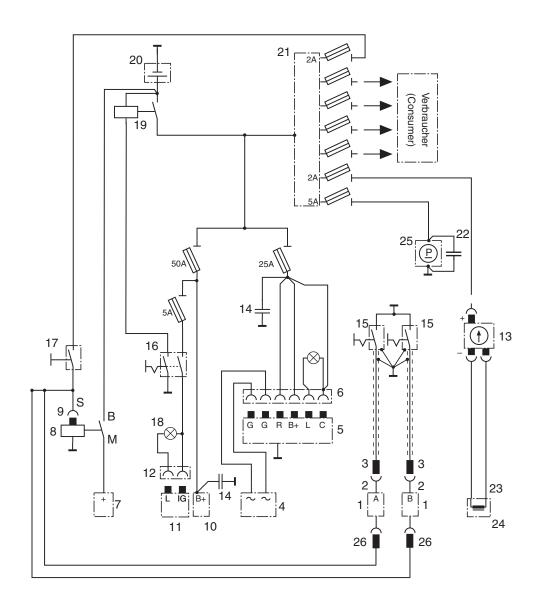
INSTALLATION MANUAL

2.11) Wiring diagram

General note

See Fig. 11.

Scope of delivery NOTICE


Items/components which are not included in the standard engine scope of delivery must be certified the aircraft or fuselage manufacturer in accordance with the latest regulation, such as FAR or EASA.

Position	Supply
1-9	Are included in the standard volume of supply of the engine.
22-24	Are included in the standard volume of supply of the engine.
10-14	Are available as accessory.
15-22	Can't be supplied by BRP-Powertrain.
25	Can't be supplied by BRP-Powertrain.

d04920.fm

INSTALLATION MANUAL

Graphic Wiring diagram

d04920.fm

Effectivity: 912 Series Edition 2/Rev. 0

24-00-00

page 19 August 01/2012

INSTALLATION MANUAL


Legend to wiring diagram

Part	Function	Part	Function
1	2 Electronic modules (A and B)	17	Starter switch
2, 3	Plug connection for igni- tion switch	18	Control lamp
4	Integrated generator	19	Battery relay
5, 6	External regulator - recti- fier with plug connec- tions	20	Battery
7	Electric starter	21	Bus Bar
8, 9	Starter relay with plug connection	22	Capacitor
10, 11, 12	External alternator with connection	23	Plug connection for trigger coil assy.
13	Electric rev counter	24	Trigger coil assy. (tachometer)
14	2 capacitor 22000 μF	25	Electrical fuel pump
15	2 ignition switches	26	Starting equipment at the electronic modules
16	Masterswitch		

Fig. 11

08639

d04920.fm

Effectivity: 912 Series Edition 2/Rev. 0

page 20 August 01/2012

INSTALLATION MANUAL

Chapter: 61-00-00 PROPELLER DRIVE

Instruction

Danger of explosion. Never operate the engine without propeller as this re-

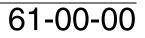
sults in serious engine damage from overspeeding. Never fit the propeller directly on the crankshaft.

Table of contents

This section of the Installation Manual contains information on the engine propeller component.

Subject	Page
Propeller drive	Page 3
Technical data	Page 3
Operating limits	Page 4
Vacuum pump	Page 5
Technical data	Page 5
Hydraulic governor for constant speed propeller	Page 7
Technical data for connections	Page 7

Effectivity: 912 Series Edition 2/Rev. 0



page 1 August 01/2012

INSTALLATION MANUAL

NOTES

Effectivity: 912 Series Edition 2/Rev. 0

pages 2 August 01/2012

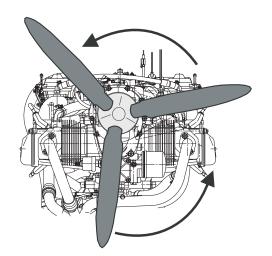
INSTALLATION MANUAL

1) Propeller drive

General note The propeller in tractor or pusher arrangement must be fitted on the propeller flange in accordance with applicable regulations. As required utilize one of the three possible pitch circle diameters (P.C.D) on the flange.

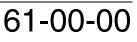
The propeller design must be certified in accordance with applicable regulations, such as FAR or EASA, by the aircraft manufacturer.

1.1) Technical data


Direction of rota- See Fig. 1.

tion

Direction of rotation of the propeller flange:


- left, counter clockwise, looking towards face of flange.

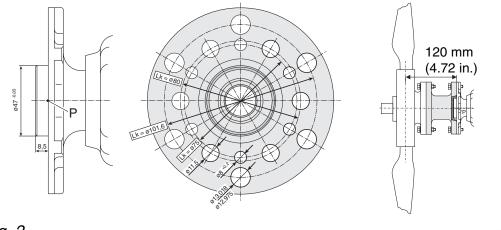
Graphic Direction of rotation

	Fig. 1	08629
Transmission	Gear transr	mission:
	- i= 2.2727 (50 T eeth/22 T)	
	- i= 2.4286	6 (51 T eeth/21 T)
Vibration analy- sis	NOTE:	Vibration analysis of the whole system (engine, suspen- sion, propeller etc.) should be carried out as part of the certification process.
		If no limits are available in the technical literature, a max. of 1.0 IPS (inches per second) at 5000 rpm. can be as- sumed.

d04921.fm

page 3 August 01/2012

INSTALLATION MANUAL


Propeller shaft flange	See Fig. 2. Attachment of propeller on prop shaft flange:		
	Pitch circle diameter 75 mm (2.95 in.)	6x through holes 8 mm (0.31 in.)	
	Pitch circle diameter 80 mm (3.15 in.)	6x through holes 11.5 mm (0.45 in.)	
	Pitch circle diameter 101.6 mm (4")	6x through holes 13 mm (0.51 in.)	

Graphic

Torque

Propeller shaft flange

Hub diameter

47 mm (1.85 in.)

Fig. 2

1.2) Operating limits

NOTICE Modification of the propeller shaft is not permitted.

Max. torque:

- ROTAX 912 A, F, UL for i=2.2727
 ROTAX 912 A, F, UL for i=2.4286
 238 Nm (176 ft.lb) (at propeller)
 255 Nm (188 ft.lb) (at propeller)
- ROTAX 912 S, ULS for i=2.4286 315 Nm (232 ft.lb) (at propeller)

Max. moment of	Max. permissible moment of inertia on propeller:	
inertia	- 6000 kg cm ² (14.238 lb ft ²)	
	 Normal between 1500 kg cm² and 6000 kg cm² (3.559 lb ft² and 14.238 lb ft²) 	
Extension of propeller shaft	- Max. extension of the propeller shaft: 120 mm (4.72 in.)	_
Out of balance	Dynamic balancing of the proppeller as specified by the propeller manu- facturer must be carried out.	d04921.fm

Effectivity: 912 Series Edition 2/Rev. 0

61-00-00

page 4 August 01/2012

INSTALLATION MANUAL

2) Vacuum pump

2.1) **Technical data**

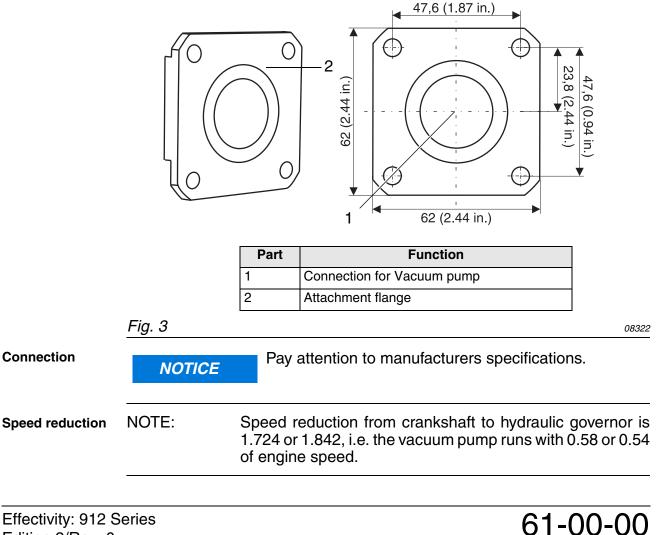
General note

See Fig. 3.

NOTICE

Certification to the latest requirements such as FAR or EASA has to be conducted by the aircraft manufacturer.

Drive


Drive via propeller gear.

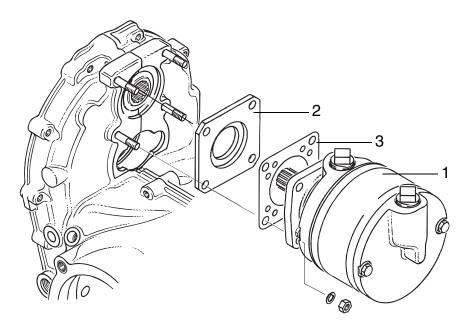
Location of the necessary connection (1) on the crankcase.

	Coordinates		
Connection	x-Axis mm	y-Axis mm	z-Axis mm
	-206.3 mm (-8.12 in.)	0	51.5 mm (2.03 in.)

Graphic

Attachment flange

d04921.fm


INSTALLATION MANUAL

Connections

Thread size	M6
Effective thread length	Max. 17 mm (9/16")
Governor drive	Internal spline 20/40 SMS 1834 NA 14x1.27x30x12
Power consumption	Max. 600 W

Graphic

Vacuum pump

Part	Function
1	Vacuum pump
2	Attachment flange
3	Gasket

08328

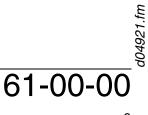


Fig. 4

page 6 August 01/2012

INSTALLATION MANUAL

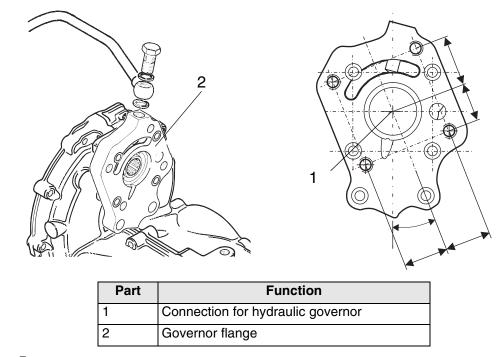
3) Hydraulic governor for constant speed propeller

3.1) Technical data for connections

NOTE:

General note See Fig. 5.

See therefore also SB-912-052 "Installation/Use of governors for ROTAX engine type 912 and 914", latest issue.


Drive

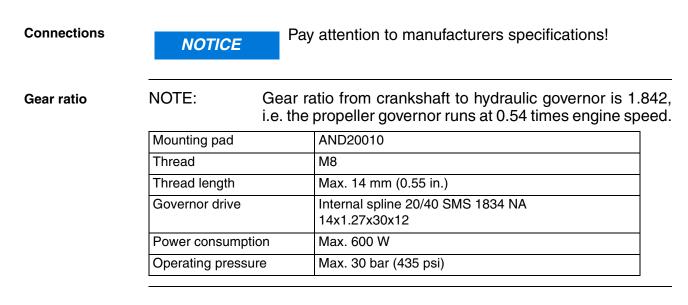
Drive via propeller gearbox.

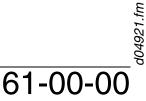
- Position of the propeller connection (1) on the governor flange

	Axes		
Point of support	x-Axis mm	y-Axis mm	z-Axis mm
	-206.3 mm (-8.12 in.)	0	51.5 mm (2.03 in.)

Graphic Crankcase flange

00256,08179


d04921.fm


Effectivity: 912 Series Edition 2/Rev. 0

page 7 August 01/2012

INSTALLATION MANUAL

page 8 August 01/2012

INSTALLATION MANUAL

Chapter: 72-00-00 ENGINE

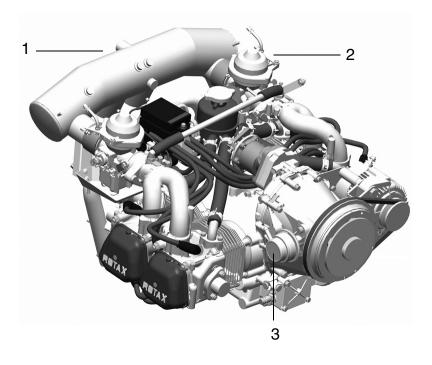
Introduction

Certification in accordance with the latest regulations, such as FAR or EASA, must be carried out by the aircraft or fuselage manufacturer.

Table of contentsThis section of the Installation Manual contains views of the aircraft
engine, technical data and installation dimensions of the engine.

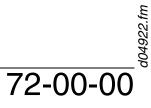
NOTICE

Subject	Page
Engine components, engine views, cylinder designation	Page 3
Side view	Page 3
Front view	Page 4
Top view	Page 5
Technical data	Page 7
Weight	Page 7
Installation dimensions	Page 8
Centre of gravity of engine and standard accesso-	Page 8
ries	
Moments of inertia	Page 8
Operating limits	Page 9
Deviation from the apparent perpendicular	Page 9


Effectivity: 912 Series Edition 2/Rev. 0

page 1 August 01/2012

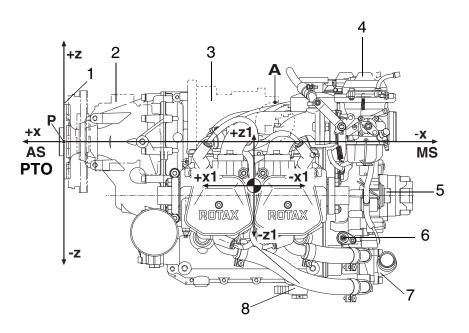
INSTALLATION MANUAL


Overview Engine

Part	Function
1	Airbox
2	Carburetor
3	Mechanical fuel pump

Fig. 1

09170



INSTALLATION MANUAL

1) Engine components, engine views, cylinder designation

General note	See Fig. 2.	
	PTO power take off side	
	MS magneto side	
	A points of attachn	nent (for engine transport) - centre of gravity
P zero reference point for all dimensions		oint for all dimensions
		ow \pm 1 mm on all stated dimensions as manufacturing erance.
	x , y , z axes for sys	stem of coordinates
	Cyl. 1 Cylinder 1	Cyl. 3 Cylinder 3
	Cyl. 2 Cylinder 2	Cyl. 4 Cylinder 4

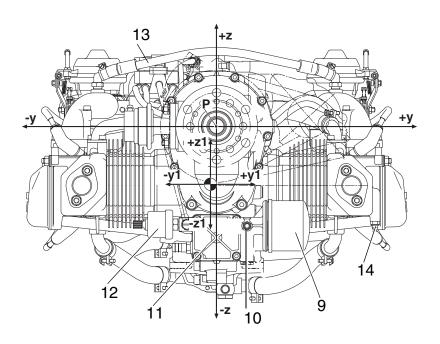
Side view

Part	Function	
1	Propeller flange	
2	Propeller gear	
3	Vacuum pump or hydraulic governor for con- stant speed propeller	
4	Constant depression carb	
5	Ignition cover	

d04922.fm

Effectivity: 912 Series Edition 2/Rev. 0

72-00-00


page 3 August 01/2012

INSTALLATION MANUAL

Part	Function	
6	Connection for mechanical rev counter	
7	Coolant pump	
8	Connection for oil return line	

Fig. 2

Front view

Part	Function
9	Oil filter
10	Sensor for oil temperature
11	Oil pump
12	Sensor for oil pressure
13	Compensation tube
14	Sensor for cylinder head temperature

Fig. 3

00503

00502

Effectivity: 912 Series Edition 2/Rev. 0

INSTALLATION MANUAL

Top view

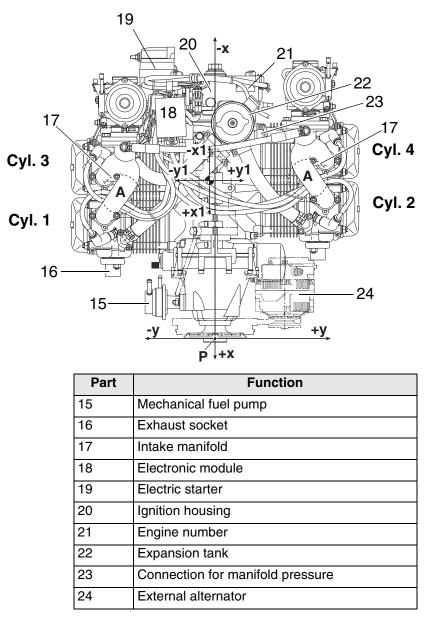
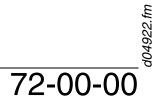


Fig. 4

00504

d04922.fm


Effectivity: 912 Series Edition 2/Rev. 0

72-00-00 page 5

August 01/2012

INSTALLATION MANUAL

NOTES

Effectivity: 912 Series Edition 2/Rev. 0

page 6 August 01/2012

INSTALLATION MANUAL

2) Technical data

General note To maintain clarity, only data relevant for engine installation and operation will be stated in the Manual.

NOTE: Connecting sizes, capacities, gear and reduction ratios, electric power, permissible temperatures, etc. can be found in the respective section of engine installation or other relevant engine type documentation.

2.1) Weight

General note The engine weight is defined by the following conditions:

- **Engine dry** from serial production with internal alternator, with overload clutch (see chapter Description of design).

Version

ROTAX 912 A, 912 F, 912 UL:

Version	Weight
Version 2 and 4	57.1 kg (125 lb)
Version 3	59.8 kg (132 lb)

ROTAX 912 S, 912 ULS:

Version	Weight
Version 2 and 4	58.3 kg (128 lb)
Version 3	61.0 kg (134 lb)

Accessories Overview:

Accessories	Weight
External alternator assy.	3.0 kg (6.6 lb)
Overload clutch	1.7 kg (3.7 lb)
Vacuum pump assy.	0.8 kg (1.76 lb)
Hydraulic governor assy. incl. drive (depending on type)	approx. 2.2 (4.8 lb) to 2.7 kg (6 lb)
HD-starter	additional +0.43 kg (1 lb)
Rectifier regulator	0.3 kg (0.66 lb)
Starter relais	0.145 kg (0.32 lb)
Radiator	1.0 kg (2.2 lb)
Air guide hood	0.36 kg (0.79 lb)
Airbox	1.3 kg (2.8 lb)
2 air filter	0.3 kg (0.66 lb)
Oil radiator	0.55 kg (1.21 lb)

d04922.fm

72-00-0

page 7 August 01/2012

INSTALLATION MANUAL

Accessories	Weight
Exhaust system	approx. 4.0 kg (8.8 lb)
Engine mount	2.0 kg (4.4 lb)

2.2) Installation dimensions

Standard engine version

See Fig. 3. NOTE:

All dimensions from zero reference points (P).

	Standard engine version		
	Pos. (+)	Neg. (-)	Total
max. dimension along x-axis (mm)	8.5 (0.33 in.)	-581 (-22.87 in.)	589.5 (23.21 in.)
max. dimension along y-axis (mm)	288 (11.34 in.)	-288 (-11.34 in.)	576 (22.68 in.)
max. dimension along z-axis (mm)	118 (4.65 in.)	-276 (-10.87 in.)	394 (15.51 in.)

2.3) Centre of gravity of engine and standard accessories

Centre of gravity

See Fig. 3. NOTE:

All dimensions from zero reference points (P).

	Standard engine version 3	External alternator	Hydraulic governor	Vacuum pump
centre of gravity on x-axis (mm)	-316 (-12.44 in.)	-100 (-3.94 in.)	-276 (-10.87 in.)	-255 (-10.04 in.)
centre of gravity on y-axis (mm)	-5 (-0.20 in.)	139 (5.47 in.)	0	0
centre of gravity on z-axis (mm)	-83 (-3.27 in.)	6 (0.24 in.)	56 (2.20 in.)	56 (2.20 in.)

2.4) Moments of inertia

Moments of inertia See Fig. 3.

Engine Engine version 2/4 version 3 11100 moment of inertia around 11600 axis x1-x1 (kg cm^2) (26.341 lb ft^2) (27.527 lb ft²) moment of inertia around 10900 11390 (27.029 lb ft²) axis y1-y1 (kg cm²) $(25.866 \text{ lb } \text{ft}^2)$ moment of inertia around 17400 18200 axis z1-z1 (kg cm²) (41.291 lb ft²) (43.190 lb ft²)

72-00-

d04922.fm

INSTALLATION MANUAL

3) Operating limits

Manuals

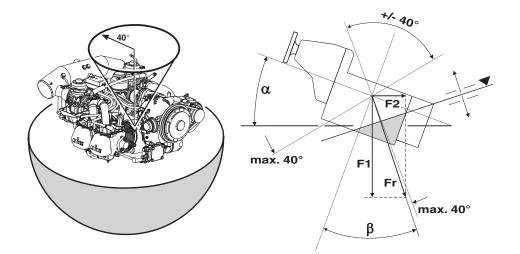
Documentation overview:

Operating limits	Manual		
Engine speed	See Operators Manual 912 Series, chap. 2.1		
Acceleration	See Operators Manual 912 Series, chap. 2.1		
Oil pressure	See Operators Manual 912 Series, chap. 2.1		
Oil temperature	See Operators Manual 912 Series, chap. 2.1		
Coolant temperature	See Operators Manual 912 Series, chap. 2.1		
Exhaust gas temperature	See chap. 78-00-00 section: Operating limits.		
Ambient temperature for start up	See Operators Manual 912 Series, chap. 2.1		
Ambient temperature for electronic module	See chap. 24-00-00 section: Electronic module.		
Fuel pressure	See Operators Manual 912 Series, chap. 2.1		
Governor	See Operators Manual 912 Series, chap. 2.1		
External alternator	See Operators Manual 912 Series, chap. 2.1		
Deviation from the apparent per- pendicular	See Operators Manual 912 Series, chap. 2.1		

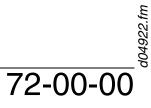
3.1) Deviation from the apparent perpendicular

General note See Fig. 5.

The engine design is for a conventional, non-aerobatic, tractor or pusher configuration with the oil return port in the optimum position. Assuming these points are taken into consideration, the engine will be properly lubricated in all flight profiles.


Bank angleThe resulting bank angle β (depending on acceleration/deceleration) may
never exceed the max. bank angle.NOTE:Pitch or role angle α is not equal with β , except stabilized
condition (without acceleration).

INSTALLATION MANUAL



α	Bank or rotation	F1	Gravity
β	Bank angle	F2	Acceleration
		Fr	Result of F1 and F2

Fig. 5

07191, 08325

INSTALLATION MANUAL

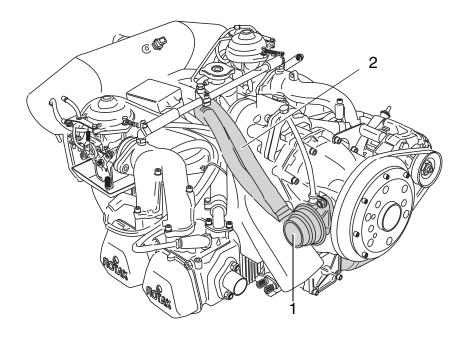
Chapter: 73-00-00 FUEL SYSTEM

 Instruction
 NOTICE
 The design of the fuel system is the responsibility of the aircraft manufacturer.

 The fuel system must be designed to ensure that the engine is supplied with sufficient fuel at the correct pressure in every operational situation. Operating limits must be adhered to!

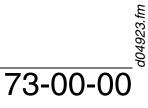
 Table of contents
 This section of the Installation Manual contains information on the aircraft engine fuel system.

Subject	Page
Fuel system	Page 3
Description of system	Page 3
Operating limits	Page 5
Fuel pressure	Page 5
Electrical fuel pump	Page 6
Requirements of the fuel system	Page 6
Connecting dimensions, location of joints and directives for in- stallation	Page 7
Fuel manifold	Page 7
Fuel pump	Page 9
Check valve	Page 10
Carburetor	Page 11
Requirements on the carburetor	Page 11
Drainage piping on airbox and drip trays	Page 13
Drainage piping on carburetor	Page 14
Connections for Bowden cable actuation and permissible load	Page 15
Technical data	Page 15
Requirements on cable actuation	Page 17
Requirements on the throttle lever	Page 18
Air intake system	Page 21
Operating limits	Page 21
Requirements on the air intake system	Page 22
Air intake socket for fresh air or pre-heated air	Page 22
Requirements on the intake air ducting	Page 23
Airfilter	Page 23
Airbox	Page 23
Technical data	Page 25
Data for optional components of air intake system	Page 27


Effectivity: 912 Series Edition 2/Rev. 0

page 1 August 01/2012

INSTALLATION MANUAL



Part	Function	
1	Fuel pump	
2	Fuel hose assy.	

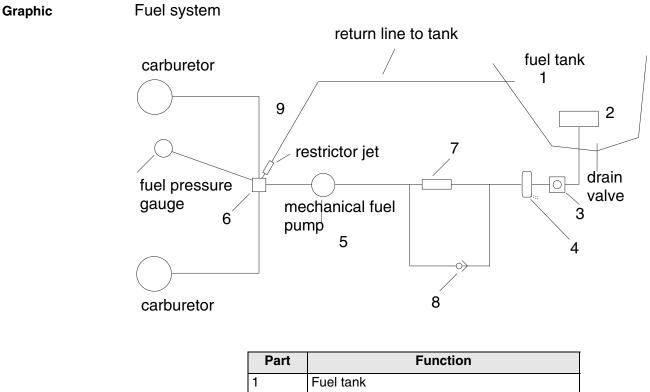
Fig. 1

08825

INSTALLATION MANUAL

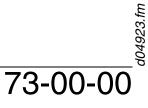
1) Fuel system

1.1) Description of system


General note	Soo Fig. 2	•	
General note	See Fig. 2. NOTE:	The fuel system from tank to the inlet of engine-driven fuel pump has to be installed by the aircraft manufacturer.	
Fuel	The fuel flows from the tank (1) via a coarse filter and fire cock (3) con- tinue to water trap/fine (4) to the mechanical fuel pump (5), from the pumps fuel passes on via the fuel manifold (3) to the two carburetors.		
Fuel lines	pump to the	n the configuration of the engine the fuel lines from fuel carburetors are already installed by the manufacturer some engine).	
	Only the follo	wing connections per Fig. 2 have to be established:	
	- Feeding lines to suction side of the mechanical fuel pump (5).		
	 Lines from pressure side of the mechanical fuel pump to inlet of fuel manifold (6). 		
	- Returnline	from fuel pressure control to fuel tank.	
Return line	Via the return line (5) surplus fuel flows back to the fuel tank and suction side of fuel system.		
	NOTE:	The return line prevents malfunctions caused by the for- mation of vapor lock.	
Components	The fuel syst	em includes the following items:	
	- Tank		
	- Coarse filt	er	
	- Fine filter/water trap		
	- Fuel shut off valve		
	- Electrical fuel pump		
	- Manomete		
	- Return line	e from tank to engine (with integrated adapter sleeve)	
	as well as the required fuel lines and connections.		

d04923.fm

page 3 August 01/2012


INSTALLATION MANUAL

1	Fuel tank
2	Coarse filter
3	Fire cock
4	Fine filter/water trap
5	Mechanical fuel pump*
6	Fuel pressure control*
7	Electrical fuel pump
8	1x check valve
9	Return line from tank to engine (with integrated adapter sleeve)
	* Standard version

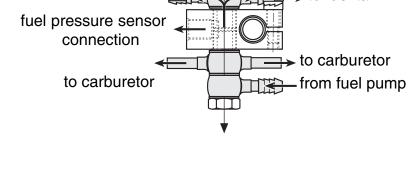
Fig. 2

07306

INSTALLATION MANUAL

1.2) Operating limits

General note


NOTICE

The design and layout of the entire fuel system must ensure engine operation within the specified operating limits.

See 912 Series Operators Manual, section 2.1) Operating Limits.

1.2.1) Fuel pressure

General note	See Fig. 3.		
		Fuel pressure	ce can result in serious injuries or death! in excess of stated limit can lead to an float valve with subsequent engine stop.
		•	uel pressure are taken at the pressure on the fuel manifold.
Operating limits	Fuel pressure:		
	Max.		0.4 bar (0.5 bar (7.26 psi))*
	Min.		0.15 bar (2.2 psi)
	* applicable only f	or fuel pump fror	n S/N 11.0036.
Graphic	Fuel pressure		
	fuel press	sure gauge ure sensor nection	z_4 \rightarrow to fuel tank

d04923.fm

Fig. 3

Effectivity: 912 Series Edition 2/Rev. 0

73-00-00

page 5 August 01/2012

09139

INSTALLATION MANUAL

1.2.2) Electrical fuel pump

The engine manufacturer recommends the use of an electrical auxiliary General note fuel pump, if this is not already required by airworthiness requirements. The electrical auxiliary fuel pump is not just required in case of a malfunction or defect of the mechanical fuel pump, but also provides required fuel supply e.g. in case of vapour formation at high altitudes and temperatures. NOTE:

Operating limits

If an electrical auxiliary fuel pump is installed, the whole fuel system has to be designed to warrant engine operation within the specified pressure limits.

NOTICE

The fuel pressure of an additional auxiliary fuel pump should not exceed 0.3 bar (4.4 psi).

1.3) **Requirements of the fuel system**

Delivery rate Electric or mechanical fuel pump: - Min. 35 l/h (8.2 US gal/h).

Fuel lines

See Fig. 2.

Fuel lines have to be established to the latest require-NOTICE ments such as FAR or EASA by the aircraft manufacturer.

For prevention of vapour locks, all the fuel lines on the NOTICE suction side of the fuel pump have to be insulated against heat in the engine compartment and routed at distance from hot engine components, without kinks and protected appropriately.

> At very critical conditions e.g. problems with vapour formation the fuel lines could be routed in a hose with cold air flow.

Secure fuel hoses with suitable screw clamps or by crimp connection.

The engine manufacturere requires the use of a fuel NOTICE return line. The fuel pressure can be adjusted using different adapter sleeve.

Fuel return line

73-00-

d04923.fm

INSTALLATION MANUAL

Fuel filter	See Fig. 2.		
	Fuel filter		
	Coarse fil- ter	On fuel tank as per valid certification.	
	Fine filter	In the feed line from tank to the fuel pumps an additional fine filter with meshsize 0.1 mm (.004 in.) has to be provided. The filter has to be controllable for service. A combination of filter/water-trap (gascolator) is recommended.	
Water trap	A suitable water trap must be installed at the lowest point of the fuel feed line.		
Fuel temperature	To avoid vapour locks keep the temperature of the fuel lines, float cham- ber and related deviced below 45 °C (113 °F).		
	If you should encounter problems in this respect during the test period, than the affected components such as the supply line to the fuel pumps have to be cooled.		
1.4) Con latio	•	nensions, location of joints and directives for instal-	
1.4.1)	Fuel manif	old	
Return line	See Fig. 4.		
	Return line	(1) to tank:	
	Outside dia.	7 mm (.28 in.)	
	Slip-on lengt	n Max. 17 mm (.67 in.)	
Pressure gauge	Pressure g	auge connection (2):	
	Outside dia.	6 mm (.24 in.)	
	Slip-on lengt	n Max. 17 mm (.67 in.)	

Fuel pressure switch

Fuel pressure switch connection (3):

M10
Max. 9 mm (.35 in.)
15 Nm (135 in.lb) und LOCTITE 221
ľ

Banjo bolt

NOTICE

At loosening or tightening of the banjo bolt (4) (tightening torque 10 Nm = 90 in.lb) support the fuel manifold appropriately.

Effectivity: 912 Series Edition 2/Rev. 0

73-00-00

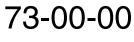
page 7 August 01/2012

INSTALLATION MANUAL

Connection nip- ple	NOTE:	The connection n (0.35 mm = 0.014 system. If the pressure ga hose nipple (7) in with a colour dot orifice (8) (0.35 m eration of the fuel sure.	4 in.) essential fo auge connection istalled, the banjo or marked "FUEI im = 0.014 in.). T	r operation of the (2) is not used a bolt assy. (4) ma "is furnished wi his is essential fo	e fuel and a arked th an or op-
Coordinates	Position of z4 a	xis of the fuel mar	nifold:		
	NOTE:	Dimensions alway	ys from point of re	eference (P).	
			Coordinates [mm]	-	
		x-axis	y-axis	z-axis	
	Fuel manifold	-385.0 mm (-15.16 in.)	-50.0 mm (-1.97 in.)	approx 110 mm (4.33 in.)	
Graphic			8		
					d04923.fm

INSTALLATION MANUAL

Part	Function
1	Fuel manifold
2	Pressure gauge connection
3	Fuel pressure switch connection
4	Banjo bolt
5	Connection nipple
6	Orifice (0.35 mm = 0.014 in.)
7	Hose nipple
8	Orifice (0.35 mm = 0.014 in.)


Fig. 4

09192,09139

1.4.2) Fuel pump

General note	See Fig. 5.		
	NOTICE		the supply line to fuel pump nts or load will rest on the
	NOTICE	Utilize max. slip on lengt screw clamps or crimp.	h. Secure hoses with suitable
Slip-on joint	Hose connection of	on fuel pump (1) inlet by s	lip-on joint.
	Fuel intake connection (3):		
	Outside dia.	9 mm (.35 in.)	
	Slip-on length	Max. 24 mm (.95 in.)	
	Fuel outlet connection (4):		
	Outside dia.	6 mm (.24 in.)	
	Slip-on length	Max. 24 mm (.95 in.)	
Sleeved lines	Hose connection of	on fuel pump (2) supplied	with fire sleeved lines.
	Fuel intake connection (5):		
	Fitting (8)	9/16-18 UNF (AN-6)	
	Tightening torque	15 Nm (135 in.lb)	
	Fuel outlet connec	ction (6):	
	Hose nipple (7)	3/4 DIN 7642	


d04923.fm

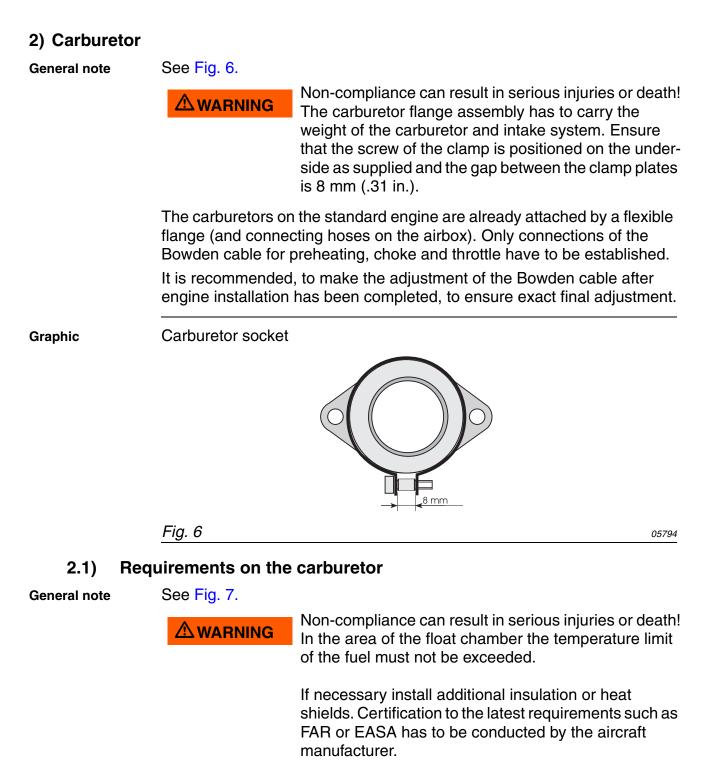
page 9 August 01/2012

INSTALLATION MANUAL

Part	Function
1,2	Fuel pump
3,5	Fuel intake connection
4,6	Fuel outlet connection
7	Hose nipple
8	Fitting

Fig. 5

00537,02064


1.4.3) Check valve

Specification

Opening pressure	0.1 bar - 0.15 bar (1.5 psi 2.2 psi.)
Permitted pressure in reverse-biasing	2 bar (29 psi.)
Burst pressure	5 bar (72.5 psi.)

INSTALLATION MANUAL

73-00-00

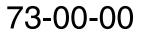
page 11 August 01/2012

INSTALLATION MANUAL

	NOTICE	rout airbo BRF The dow Pres pres	float chamber venting lines (1) lines have to be ed into a ram-air and vacuum free zone or into the ox, according to the requirements and release of P-Powertrain. See chapter "air intake system". se lines must not be routed into the slipstream or in the firewall. ssure differences between intake pressure and ssure in the carburetor chambers may lead to ine malfuction due to incorrect fuel supply.
Drip tray		each di	sitioned above the exhaust sockets. Below the rip tray (2) with a draining connection (3) is fitted shield as well.
Graphic	Drip tray and dra	aining co	onnection
		Part	Function
		1 2	Float chamber venting lines
		2 3	Drip tray
		3	Draining connection
	Fig. 7		08644 004923.1m
Effectivity: 912 Se Edition 2/Rev. 0	eries		73-00-00
· · · · · · · · · · · · · · · · · · ·			nage 12

page 12 August 01/2012

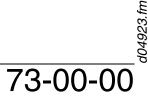
INSTALLATION MANUAL


2.1.1) Drainage piping on airbox and drip trays

2.1.1	brainage piping on anoox and drip trays
General note	See Fig. 7 Marning Non-compliance can result in serious injuries or death! Connect drainage lines well, otherwise emerging fuel from a possible leakage could drip onto the exhaust system. RISK OF FIRE!
Drainage piping	Requirements on the drainage piping:NOTICEWith closed or blocked leakage piping, fuel could end up on exhaust system. RISK OF FIRE!
	 The lines have to be routed such that in case of damage the surplus fuel is drained off suitably. Route the lines without kinks and avoid tight bends. Route the lines with a continuous decline. The lines have to be protected against any kind of blockage e.g. by formation of ice.
Float chamber venting lines	Float chamber venting lines (1): NOTICE The float chamber venting lines (1) have to be routed into a ram-air and vacuum free zone or into the airbox, according to the requirements and release of BRP-Powertrain. See chapter "air intake system". These lines must not be routed into the slipstream or down the firewall. Pressure differences between intake pressure and pressure in the carburetor chambers may lead to engine malfunction due to incorrect fuel supply.
Connecting nip-	Connecting nipple (3) for leakage line:
ple for leakage line	Outside dia. 6 mm (1/4"") Oliverante service Mag. 47 mag. (44/4.0%)

0 11 (, 0
Outside dia.	6 mm (1/4''')
Slip on length	Max. 17 mm (11/16")

Effectivity: 912 Series Edition 2/Rev. 0



page 13 August 01/2012

INSTALLATION MANUAL

2.1.2) Drainage piping on carburetor

- **General note** The primary function of the carburetor float chamber venting lines, is to provide ambient air pressure to the float bowl chambers. However, it is possible for fuel to be expelled from these lines. Normally these lines are connected to fitting on the ROTAX airbox to provide the ideal ambient air pressure and away of draining any expelled fuel overboard.
- **Drainage piping** If an airbox is not installed, the vent lines will need to be routed according to the following instructions:
 - The lines have to be routed such that in case of fuel being expelled it is drained off suitably.
 - Route the lines without kinks and avoid tight bends.
 - Route the lines with a continuous decline.
 - The lines have to be protected against any kind of blockage e.g. by formation of ice.
 - **NOTICE** The carburetor float chamber venting lines have to be routed into a ram-air and vacuum free zone (or into the airbox, according to the release of BRP-Powertrain. These lines must not be routed into the slipstream or any other location that is subject to ram-air or vacuum during flight or ground operations. Pressure differences between intake pressure in the carburetor float chamber may lead to engine malfunction due to incorrect fuel supply.

page 14 August 01/2012

INSTALLATION MANUAL

2.2) Connections for Bowden cable actuation and permissible load

General note

NOTICE

The specified permissible loads must never be exceeded!

2.2.1) Technical data

See Fig. 8.

Coordinates P1 Centre position of carburetor socket (P1) of the respective carburetor:

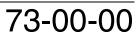
	Coordinates P1 [mm]		
Carburetor for	x-axis	y-axis	z-axis
Cylinder 1/3	-521 mm	-180 mm	25 mm
	(-20.52 in.)	(-7.1 in.)	(0.988 in.)
Cylinder 2/4	-553 mm	180 mm	25 mm
	(-21.772 in.)	(7.1 in.)	(0.988 in.)

Reference point Limit load on point of reference P2:

	Reference point P2
Max. allowable forces (limit load) in (N) in x, y and z-axis	60 N (44 ft.lb)
Max. allowable bending moments (limit load) in (Nm) in x, y and z-axis	4 Nm (3.32 lb ft)

Connection

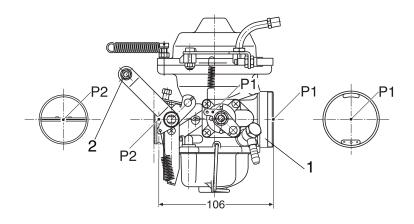
P2


Connection (1) for air filter or intake silencer:

Outside dia.	50 mm (2 in.)
Slip-on length	12 mm (.47 in.)

Connection (2) for throttle actuation:

Connection on throttle lever	Set screw M5x12
Tightening torque	4 Nm (3.32 lb ft) (suitable for 1.5 mm (.06 in.) steel wire).
Action travel	65 mm (2.56 in.)
Actuating force	Min. 1.5 N (.3 lb) Max. 8 N (1.8 lb)
Limit load	20 N (4.5 lb-force)
NOTE: Throttle o	none by enring


NOTE: Throttle opens by spring.

page 15 August 01/2012

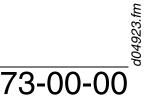
INSTALLATION MANUAL

Graphic Coordinates P1 and Reference point P2

Part	Function	
1	Connection for air filter or intake silencer	
2	Connection for throttle actuation	

Fig. 8

Starting carb

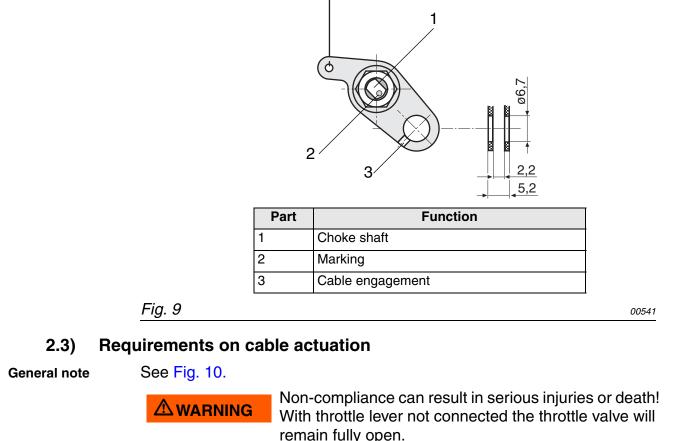

See Fig. 9.

Connection for starting carb (choke) actuation (1):

Connection on choke lever	Clamping nippel 6 (suitable for 1.5 mm (.06 in.) steel wire).
Action travel	23 mm (15/16")
Actuating force	Min. 10 N (2.2 lb) Max. 45 N (10 lb)
Limit load	100 N (22 lb)

Directive for choke actuation:

The choke shaft (1) is marked (2). This mark has to point towards cable engagement (3).


08339

page 16 August 01/2012

INSTALLATION MANUAL

Choke actuation

Graphic

The starting position of the throttle valve is therefore full throttle!

Therefore never start the engine without connecting the throttle lever first.

WARNING Non-compliance can result in serious injuries or death! The cable actuations being used must not be affected at all by vibrations emanating from the engine or the airframe.

Bowden cable The two throttles have to be controlled by two separate Bowden cables working synchronously.

Adjust the cables to a free travel of 1 mm (.04 in.).

Effectivity: 912 Series Edition 2/Rev. 0

73-00-

page 17 August 01/2012

INSTALLATION MANUAL

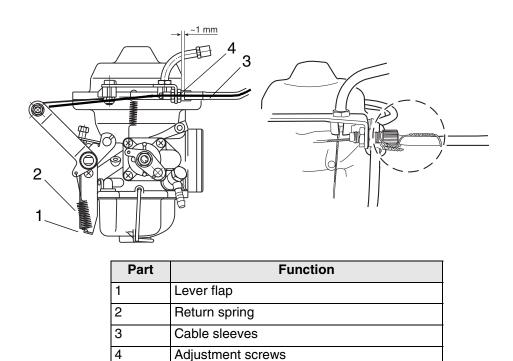
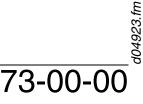
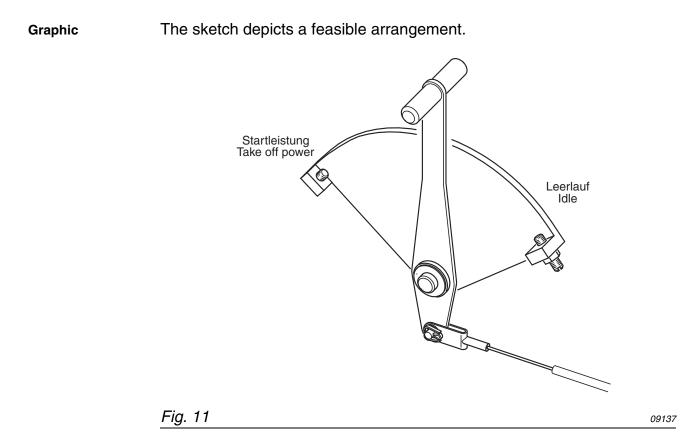


Fig. 10

08338,08354


Adjust Bowden cable such that throttle and choke can be fully opened and closed.			
Use Bowden cable with minimized friction so that the spring on the throttle can open the throttle completely. Otherwise increase pretension of spring by bending lever flap (1) or fit a stronger return spring, (2) or a cable with pull-push action would have to be used. Secure the bowden cable sleeves (3) in the adjustment screws (4) (e.g. safety wire).			

2.4) Requirements on the throttle lever


Mechanical stops See Fig. 11.

Adjustable positive stops for idle- and full throttle position are of course required.

These stops have to be designed such to render adjustibility and to prevent overload of the idle stop on the carburetor.

INSTALLATION MANUAL

d04923.fm

Effectivity: 912 Series Edition 2/Rev. 0

page 19 August 01/2012

INSTALLATION MANUAL

NOTES

Effectivity: 912 Series Edition 2/Rev. 0

page 20 August 01/2012

INSTALLATION MANUAL

3) Air intake system

General note	See Fig. 12.		
	NOTICE	The performance is given at ISA (15 °C) (59 °F) condition only. Engine is equipped with unchanged GENUINE-ROTAX tuned exhaust muffler system and air intake box.	
	The intake system is determined essentially by the demands of engine and of the acceptable noise emission on the intake side. An airbox can be supplied by BRP-Powertrain as an option.		
		ata as specified and limits of operation can only be war- oyment of the GENUINE-ROTAX airbox.	
Installation note	If it will be necessary to use a different airbox or a modified genuine ROTAX airbox for reasons of installation the certification to the latest requirements such as FAR and EASA has to be conducted by the aircraft manufacturer.		
Airbox retrofitted	NOTE:	If an airbox or GENUINE-ROTAX airbox is retrofitted at a ROTAX 912 (A, F, UL) Series, a change in the carb jetting is required. See Illustrated Part Catalog 912/914 chapter 22 and/or SB-912-044 "Use of the ROTAX supplied airbox", latest issue.	

3.1) Operating limits

Fuel-mixture dis- Fuel-mixture distribution:

Low (cold) air temperature in the airbox is favourable for engine performance and to reduce knocking tendency at combustion.

The certification to the latest requirements such as FAR and EASA has to be conducted by the aircraft manfacturer.

NOTICE Any changes on the air intake system (e.g. modification on the airbox etc.) can affect the flow rate in the air intake system and fuel mixture ratio. In the course of certification the fuel mixture process must be proofed by a CO-measurement.

tribution

Effectivity: 912 Series Edition 2/Rev. 0

page 21 August 01/2012

CO-Measurement CO-Measurement for configuration with not GENUINE-ROTAX airbox:

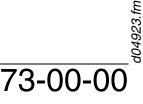
CO-Measurement 912 (A, F, UL) Min. 2 % CO. 912 (S, ULS) Min. 3.0 % CO (wide open throttle (WOT); an rpm of min. 5200 1/min needs to be achieved).

Measurement in original configuration of aircraft e.g. with installed cowling.

Measured on each single cylinder. Measuring point is the same as the EGT-measurement. See chap. 78-00-00 section: Exhaust system.

3.2) Requirements on the air intake system

General note	WARNING	Non-compliance can result in serious injuries or death! Carb icing is a common reason for engine trouble. No implements are included in the supply volume for preheating of the intake air. If an airbox of not ROTAX origin is used provisions for preheating the intake air have to be made to prevent formation of ice in the intake system. Preheating of the intake air will result in performance loss because of the lower air density.
	NOTICE	The certification to the latest requirements such as FAR and EASA has to be conducted by the aircraft manufacturer.
	NOTICE	All items of the air intake have to be secured against loss.


3.2.1) Air intake socket for fresh air or pre-heated (intake side)

General note

See Fig. 12.

NOTICE

Utilize the full slip-on length on all connection. Secure hoses by suitable spring type clamp or screw clamp.

page 22 August 01/2012

INSTALLATION MANUAL

Air intake socket Air intake socket (1):

Outside dia. Ø	60 mm (2 3/8")
Slip-on length	Max. 25 mm (1")

3.2.2) Requirements on the intake air ducting

Technical data High engine performance needs air temperature as low as possible at air intake. Therefore the air filter should be located in a recess of the engine cowling or separated from warm air by baffles such that fresh air can be aspirated.

Max. length of ducting	500 mm (20 in.)
Inside dia.	Min. inside dia. at least outside dia. of the intake socket on airbox.
Min. mean bending radius	100 mm (4")

3.2.3) Airfilter

General note BRP-Powertrain offers an air filter as described below.

		Non-compliance can result in serious injuries or death! Use only filter elements which will not tend to restrict the flow when in contact with water.
	NOTICE	The certification to the latest requirements such as FAR and EASA has to be conducted by the aircraft manufacturer.
	NOTICE	A minimum flow rate of 220 m ³ /h (260 yd ³ /h) has to be warranted for all conditions. The pressure loss must not exceed 2 hPa.
Choice of a suit- able filter	of a suitable filter:	ts should assist the aircraft manufacturer at the choice
	- four fold cotton	
	- surface covered	d with metal screen
	- total filter area a	at least 1400 cm ² (217 in ²)
	- a min. flow rate	of 6.23 m ³ /min (220 yd ³ /h)
3.2.4) Airbox	
General note	- Volume at least	2.5 Liter (.66 US gal)
	- Outline dimensi	on see Fig. 12.

d04923.fm

73-00-00

page 23 August 01/2012

INSTALLATION MANUAL

The airbox is furnished with 2 drain holes (2) at the lowest position possible.

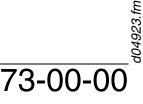
The holes are necessary to drain fuel from flooding float chambers caused by badly closing float valve.

Drainage lines:

NOTICE

WARNING	Non-compliance can result in serious injuries or death!	
	Connect draining lines without fail, otherwise emerg- ing fuel could drip onto the exhaust system. RISK OF FIRE!	

Requirements


Observe the following requirements!

With closed or blocked drainage bores fuel could flow into combustion chamber, possibly ruining the engine by hydraulic lock or emerging fuel could drip onto the exhaust system. RISK OF FIRE!

Step	Procedure
1	The lines have to be routed such that in case of damage the surplus fuel is drained away suitably.
2	Route the lines without kinks and avoid narrow bends.
3	Route the lines with a continuous decline.
4	The lines have to be protected against any kind of blockage e.g. by formation of ice.

NOTICE	The drainage lines (2) have to be routed into a ram-air and vacuum free or into the airbox, according to the	
	requirements and release of BRP-Powertrain. See also chap. Carburetor. These lines must not be route into the slipstream. If the drainage lines of the airbo are connected with the drainge lines of the drip tray or the carburetors by a T-piece, these lines must not be routed down the firewall (drainage lines of the airbox separately are allowed).	
NOTICE	Pressure differences between intake pressure and	

NOTICE Pressure differences between intake pressure and pressure in the carburetor chambers may lead to engine malfunction due to incorrect fuel supply.

Effectivity: 912 Series Edition 2/Rev. 0

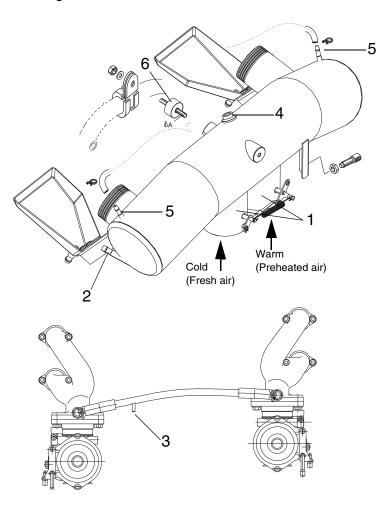
page 24 August 01/2012

INSTALLATION MANUAL

/		
General note	See Fig. 12.	
	NOTICE	Utilize the complete slip-on length. Secure hoses by suitable screw clamps or by crimp connection.
	NOTICE	If the engine has been installed without employment of the optional ROTAX engine frame which includes also support of the airbox, than provide an appropriately support (6) for the airbox.
Connecting nip-	Connecting nipple	(2) of drainage line:
ple	Outside dia.	6 mm (1/4")
	Slip-on length	Max. 17 mm (11/16")
Manifold pres- sure	Provide connection to take readings of manifold pressure (3).	
Temperature sen-	Provide connection	s for temperature sensor (4):
sor	Outside dia.	6 mm (.24 in.)
	Slip-on length	Max. 17 mm (.67 in.)
Connecting nip- ple	Connecting nipple Outside dia. Slip-on length	(5) of float chamber venting lines: 6 mm (1/4") Max. 17 mm (11/16")

3.2.5) Technical data

Effectivity: 912 Series Edition 2/Rev. 0


page 25 August 01/2012

INSTALLATION MANUAL

Graphic

Air intake system

NOTE: Make sure that the air intake tubes of the airbox for fresh air and preheated air are connected correctly, Fig. shows the GENUINE-ROTAX airbox.

Part	Function
1	Air intake socket
2	Connecting nipple of drainage line
3	Connection for manifold pressure
4	Connection for temperature sensor
5	Connection for float chamber venting lines
6	Rubber puffer

Fig. 12

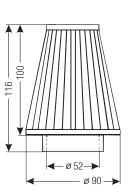
page 26 August 01/2012

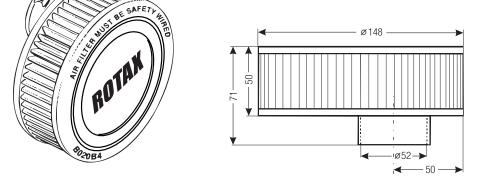
73-00-00

INSTALLATION MANUAL

3.3) Data for optional components of air intake system

Air filter


See Fig. 13.

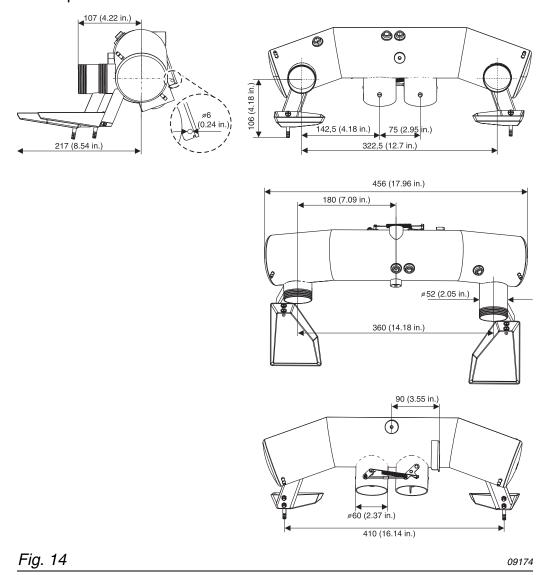

Weight:

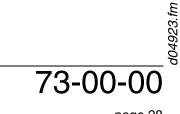
- See chap. 72-00-00 section: Technical data.

Graphic Air filter

Effectivity: 912 Series Edition 2/Rev. 0

73-00-00


INSTALLATION MANUAL


AirboxSee Fig. 14.Airbox (configuration part no. 867756).Weight:

See also chap. 72-00-00 section: Technical data.

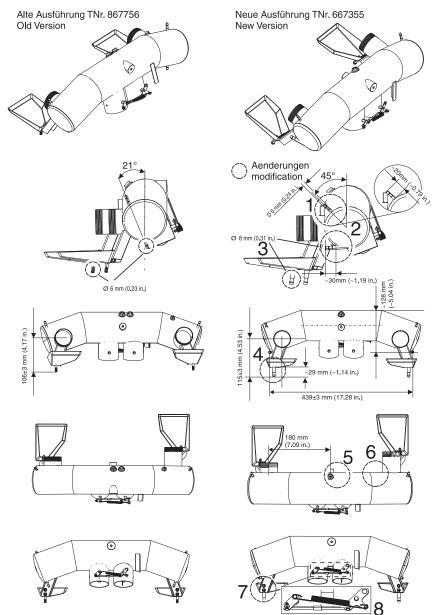
Graphic

Airbox part no. 867756.

Effectivity: 912 Series Edition 2/Rev. 0

page 28 August 01/2012

INSTALLATION MANUAL


Airbox See Fig. 15.

Airbox (new version part no. 667355 in comparison to the old version). Weight:

See also chap. 72-00-00 section: Technical data.

Graphic

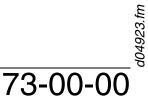
Airbox part no. 667355

08646

08646

d04923.fm

Effectivity: 912 Series Edition 2/Rev. 0


Fig. 15

73-00-00

page 29 August 01/2012

INSTALLATION MANUAL

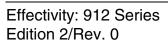
NOTES

Effectivity: 912 Series Edition 2/Rev. 0

page 30 August 01/2012

INSTALLATION MANUAL

Chapter: 75-00-00 COOLING SYSTEM

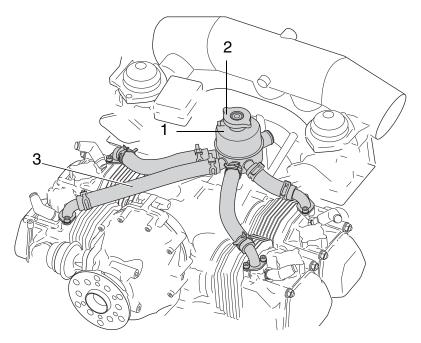

General note The shape, size and position of the radiator(s) depends mainly on the space available in the aircraft.

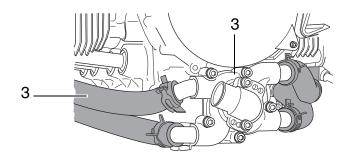
When correctly installed in the aircraft, the optionally available BRP-Powertrain radiator has enough cooling capacity to keep within the standard specified operating limits. The flow resistance of the radiator coolant is correctly adjusted to the cooling system. The tube size must be sufficient. The size , shape, orientation of all cooling components must not compromise the engine cooling under all operation conditions.

Table of con-
tentsThis section of the Installation Manual contains system description, oper-
ating limits and requirements for the aircraft engine cooling system.

Subject	Page
Cooling system	Page 3
System description	Page 3
Operating limits	Page 5
Coolant types	Page 7
Checking the efficiency of the cooling system	Page 11
Determination of operating limits, Coolant and nec-	Page 13
essary modification on radiator installation	
Requirements on the cooling system	Page 15
Connecting size and position of connection	Page 16
Feasible location of radiator, expansion tank, over-	Page 19
flow bottle	
General notes for the cooling system	Page 23
Coolant capacity	Page 24
Cooling air duct	Page 25
General notes on the cooling air ducts	Page 26
Data for optional components of cooling system	Page 27

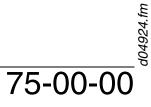
d04924.fm





page 1 August 01/2012

INSTALLATION MANUAL



Part	Function	
1	Expansion tank	
2	Radiator cap	
3	Water tube	
4	Water pump	

08532

Effectivity: 912 Series Edition 2/Rev. 0

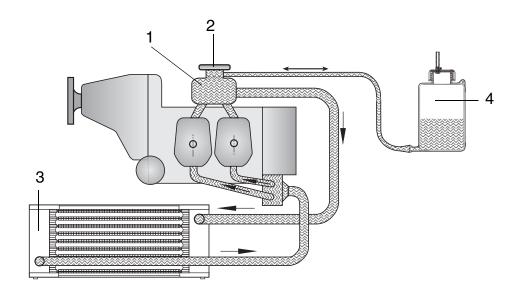
page 2 August 01/2012

INSTALLATION MANUAL

1) Cooling system

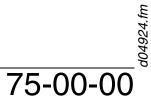
1.1) System description

Cooling	See Fig. 2. The engine cooling system is designed for liquid cooling of the cylinder		
	heads and ram air cooling of the cylinders. The cooling system of the cylinder heads is a closed circuit with an expansion tank and overflow bottle.		
Coolant	The coolant flow is forced by a water pump, driven from the camshaft, from the radiator to the individual cylinder heads. The coolant flows from the top of the cylinder heads to the expansion tank (1). Since the standard location of the radiator (3) is below engine level, the expansion tank located on top of the engine allows for coolant expansion.		
Expansion tank	The expansion tank is closed with a pressure cap (2) (with pressure relief valve and return valve). As the coolant heats up and expands, the pressure relief valve opens and the coolant flows via a thin hose at atmospheric pressure to the transparent overflow bottle (4). As it cools down, the coolant is sucked back into the cooling circuit.		
Shape, size and location	The shape, size and position of the radiator(s) depends mainly on the space available in the aircraft.		
Measuring the coolant temp.	Readings are taken on measuring point of the hottest cylinder head, depending on engine installation.		
	NOTE: The temperature sensors are located in cylinder head 2 and 3.		
Radiator	If a GENUINE-ROTAX radiator is being used, then an oil-water heat exchanger must not be present. The radiator is dimensioned to cater for the heat of the coolant and cannot cope with the additional heat generated by the oil system.		



page 3 August 01/2012

INSTALLATION MANUAL



Part	Function	
1	Expansion tank	
2	Pressure cap	
3	Radiator	
4	Overflow bottle	

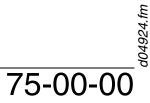
Fig. 2

09152

INSTALLATION MANUAL

1.2) Operating Limits

) Op			
General note		Non-compliance can result in serious in The cooling system must be designed ing temperatures will not exceed the m	so that operat-
Optional radia- tor	When correctly installed in the aircraft, the optionally available BRP-Pow- ertrain radiator has enough cooling capacity to keep within the standard specified operating limits. The flow resistance of the radiator coolant is correctly adjusted to the cooling system. The tube size must be sufficient.		
Boiling point of the coolant	 Monitoring the cooling system is important for controlling engine cooling and prevent knocking combustion within the operating limits. It is important that the coolant circuit is designed so that the coolant does not reach boiling point under any conditions. If the temperature exceeds the boiling point, the engine can quickly overheat due to loss of coolant. The boiling point of the coolant is mainly influenced by: the type of coolant mixture ratio (percentage water rate) the system pressure (opening pressure of radiator cap). 		
Coolant temper-	Using conventional coolant:		
ature	Coolant tem	perature: (coolant exit temperature)	
	Max.	120 °C (248 °F)	
	Cylinder head temperature:		
	912 A/F/UL	Max. 150°C (300 °F)	
	912 S/ULS	Max. 135°C (275 °F)	
	Permanent monitoring of coolant temperature and cylinder head temperature is necessary.		
	Using waterless	coolant:	
	C	ylinder head temperature:	
	912 A/F/UL	Max. 150 °C (300 °F)	
	912 S/ULS	Max. 135 °C (275 °F)	


Permanent monitoring of cylinder head temperature is necessary. Additional monitoring of the actual coolant temperature is possible but not necessary for waterless coolant.

page 5 August 01/2012

INSTALLATION MANUAL

Coolant temper- ature and cylin-	Correlation be ture	tween coolant temperature and cylinder head tempera-	
der head temperature	and cylinder he bustion heat to than the cylinde between coolar	ere is in principle a regular relationship between coolant temperature d cylinder head temperature. The coolant transfers some of the com- stion heat to the radiator. Thus, the coolant temperature is usually lower in the cylinder head temperature. But the temperature difference ween coolant and cylinder head is not constant and can vary with dif- ent engine installation (cowling or free installation, tractor or pusher, ht speed, etc.).	
	NOTE:	The basic requirement for safe operation is that boiling of conventional coolant must be prevented. The boiling point of conventional coolant is 120 °C (248 °F) with a 50/50 mixture proportion and a system pressure of 1.2 bar (18 psi).	

page 6 August 01/2012

INSTALLATION MANUAL

1.3) Coolant types

General note

ote In principle, 2 different types of coolant are permitted:

	Description		
	1 Conventional coolant based on ethylene glycol		
	2 Waterless coolant based on propylene glycol		
	NOTICE When selecting a suitable coolant, the information in Service Instruction SI-912-016, latest issue, must be observed.		
Conventional coolant	Conventional coolant is recommended as it commonly available and has a greater thermal heat transfer capability. Its limitation is its lower boiling point.		
Waterless cool- ant	Waterless coolant is recommended if the design of the aircraft can not maintain the coolant temperature limit.		
Mixing ratio	NOTICE The manufacturers instructions regarding the coolant must be observed.		

Mixing ratio			
Description	Concentrate	Water	
Conventional coolant	50 %	50 %	
Some conventional coolant is available pre-mixed by the manufacturer. In this case do not mix with water, instead follow the manufacturers instructions			
Waterless coolant	100 %	0	

Boiling point Conventional coolant:

Conventional coolant with a rate of 50 % water cannot boil at a temperature below 120 °C (248 °F) at a pressure of 1.2 bar (18 psi). The max. coolant temperature limit is therefore 120° C (248 °F).

Permanent monitoring of coolant temperature and cylinder head temperature is necessary.

INSTALLATION MANUAL

Waterless coolant:

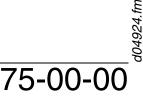
Waterless coolant has a very high boiling point that prevents coolant loss due to "boiling over" (vapor loss), but not to prevent detonation, which can occur with cylinder head temperatures higher than 150 °C (300 °F) (for ROTAX 912 A/F/UL) and 135 °C (275 °F) (for ROTAX 912 S/ULS). It does not require pressure to maintain its boiling point. Due to a lower thermal conductivity the engine temperature will typically run about 5-10 °C (41-50 °F) higher with waterless coolant.

Permanent monitoring of cylinder head temperature is necessary.

Additional monitoring of the actual coolant temperature is possible but not necessary for waterless coolant.

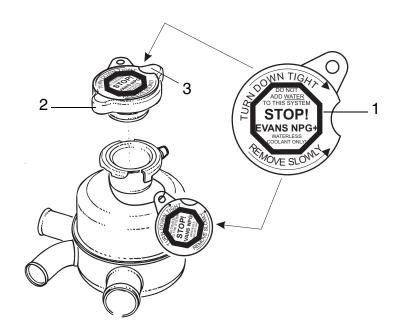
NOTE: When using EVANS NPGR, NPG+ or added pure ethylene glycol as a coolant, note that these fluids have a flammability rating 1 (classification LOW at a scale from 0 to 4). The mentioned coolants are complying according to their material safety data sheet with a flammability classification, which has only low danger and a low risk of flammability. To date, no cases in engine operation or flight operation, laboratory conditions or from the field were reported, which show unsafe conditions of ROTAX aircraft engines in combination with the relevant coolants.

Marking


See Fig. 3.

Marking of the coolant to be used:

NOTICE

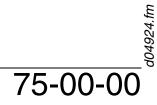

The coolant to be used and its concentration (percentage water rate) must be correctly communicated to the owner.

Waterless coolant must not mix with water, as otherwise it will lose the advantages of a high boiling point.

INSTALLATION MANUAL

Part	Function
1	Warning sticker
2	Radiator cap
3	Opening pressure information of radiator cap

Effectivity: 912 Series Edition 2/Rev. 0



page 9 August 01/2012

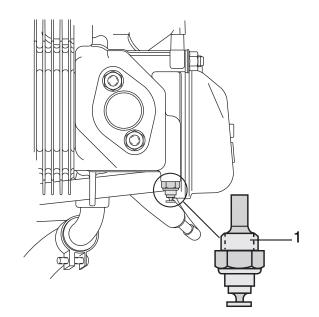
08809

INSTALLATION MANUAL

NOTES

Effectivity: 912 Series Edition 2/Rev. 0

page 10 August 01/2012 INSTALLATION MANUAL

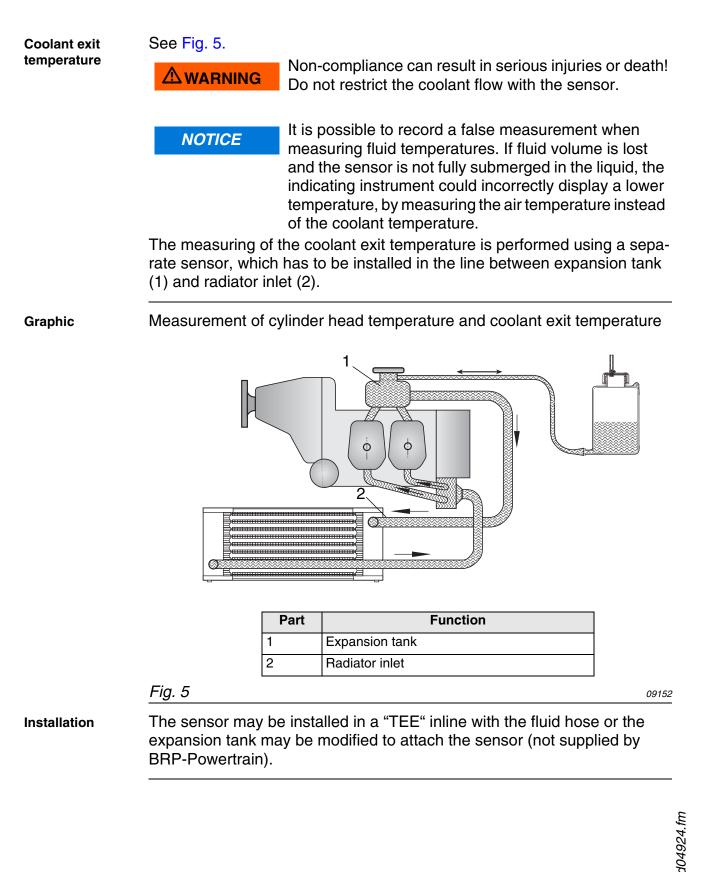

2) Checking the efficiency of the cooling system

General note The maximum coolant temperature must be determined in order to check the efficiency of the cooling system.

Cylinder head See Fig. 4.

temperature There are two temperature sensors (1) on the cylinder 2 and 3 for measuring the cylinder head temperature. During flight test the place with the highest cylinder head temperature must be found, this can vary with different engine installation (cowling or free installation, tractor or pusher, fight speed etc.).

Graphic Temperature sensors



Effectivity: 912 Series Edition 2/Rev. 0

75-00-00

page 11 August 01/2012

INSTALLATION MANUAL

page 12 August 01/2012

75-00-

2.1) Determination of operating limits, Coolant and necessary modification on radiator installation

Maximum values Depending on the achieved maximum values of the cylinder head temperature and the coolant temperature following action are necessary:

	-	-	
Maximum values for		Coolant used for tests	
Coolant temperature	Cylinder head temperature	Conventional coolant	Waterless coolant
less than 120 °C (248 °F)	less than 135 °C ¹ (275 °F) (150 °C) ² (300 °F)	Additional instruments for displaying coolant temperature is neces- sary. b)	Modifications to the in- struments or limit not necessary. a)
more than 120 °C (248 °F)	less than 135 °C ¹ (275 °F) (150 °C) ² (300 °F)	Cooling capacity too low. Check of the in- stallation necessary.	
less than 120 °C (248 °F)	more than 135 °C ¹ (150 °C) ² (300 °F)	ic)	Cooling capacity too low. Check of the instal- lation necessary.
more than 120 °C (248 °F)	more than 135 °C ¹ (275 °F) (150 °C) ² (300 °F)		c)

1. engine type 912 S/ULS

2. engine type 912 A/F/UL

- a) Maximum cylinder head temperature is below operating limits. Operating with waterless coolant, is permissible without modification to the installation.
- b) Maximum cylinder head temperature and coolant exit temperature is below operating limit.

For operating with conventional coolant it is necessary to monitoring constantly cylinder head temperature and coolant exit temperature.

NOTE: For detection of possible indication error an additional monitoring of the cylinder head temperature is necessary which shows an exceeding in case of coolant loss.

Flight test The aircraft manufacturer has the option of converting the coolant temperature and the cylinder head temperature to an aircraft specific cylinder head temperature. This is possible by calculating the difference between the head material and the coolant temperature.

This is done by following the flight test procedure on page (page 14).

Once the calculation is made and the indicating instrument re-labelled it is acceptable to use the cylinder head temperature as the primary cockpit display instead of installing a sensor in the coolant flow.

d04924.fm

75-00-00

page 13 August 01/2012

INSTALLATION MANUAL

The measurement is based on the maximum coolant temperature and cylinder head temperature according to the current requirement.

NOTICE In no case a cylinder head temperature higher than the limit of 150 °C (300 °F) (for ROTAX 912 A/F/UL) and 135 °C (275 °F) (for ROTAX 912 S/ULS) can be defined because detonation could not be sufficiently prevented.

Refer to the flight test example that follows.

c) Cooling capacity of the installation too low.

Flight test example Calculated values (maximum values found for coolant temperature and cylinder head temperature. Refer to the current specification of the FAA and/or EASA).

that the max. coolant temperature is kept.

Coolant temperature 102 °C (216 °F)

Cylinder head temperature 110 °C (230 °F)

The cylinder head temperature is 8 $^\circ C$ (46 $^\circ F) higher than the coolant temperature.$

<u>Thus:</u>

Coolant temperature	120 °C (248 °F)
Difference cylinder head and coolant temperature	<u>+8 °C (46 °F)</u>
Total	= 128 °C (262 °F)
The highest cylinder head temperature permitted is 12	28 °C (262 °F), so

With this special application, safe operation of the engine that prevents boiling of the coolant is possible up to a cylinder head temperature of 128 °C (262 °F).

NOTICE	This cylinder head temperature with the limit found for this type must be displayed constantly in the cockpit.	
	The indicating instrument and the Manuals must be changed to cylinder head temperature max. 128 °C (262 °F) geändert werden.	
NOTICE	The design of the radiator installation must be changed (example: cowl modifications), if the operating temper- ature exceeds the specified limits.	

d04924.fm

page 14 August 01/2012

75-00-

INSTALLATION MANUAL

3) Cooling system requirements

Safety	WARNIN	Non-compliance can result in serious injuries or death! The cooling system must be designed so that the op- erating limits are not exceeded. To minimize flow resistance, use radiators that have both a parallel flow and have a low flow resistance. A prime example would be the GENUINE-ROTAX radia- tors. Be sure to use short hoses and pipelines.
	NOTICE	All components of the cooling system must be suitably secured.
Coolant hoses	See Fig. 6.	
	NOTICE	Hoses exposed to direct heat radiation from the ex- haust system, must be suitably protected with heat-re- sistant protection tubes, for example.
	NOTE:	Aluminium tubes with an inner diameter of 25 mm (0.98 in.) can be used instead of longer hoses. These must have a bulge (1) in order to prevent coolant hoses working loose. Note as well that this will double the number of hose clips required!
	•	re resistance, min. 125 °C (257 °F)
		urability: min. 5 bar (72 psi) eter: 25 mm (1")
	- Bending ra	dius: min. 175 mm (6.89 in.) (except moulded hoses) 00 % resistant to glycol, antifreeze and ozone.
Graphic	Drawing alum	inium tube
4. fm	Fig. 6	09158
d04924.fm		
Effectivity: 912 Edition 2/Rev. (75-00-00

Edition 2/Rev. 0

page 15 August 01/2012

INSTALLATION MANUAL

Hose connecting expansion tank

Hose from expansion tank to overflow bottle:

WARNING Non-compliance can result in serious injuries or death! A soft walled hose is not suitable as it can collapse and cause cooling system failure..

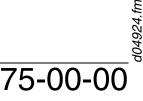
- The hose from the expansion tank to the overflow bottle must be rated for vacuum/suction for min. 125 °C (257 °F), e.g. it must be strong enough to withstand high temperatures and vacuum/suction during the cooling down period.

The aircraft manufacturer must give the possibility to the pilots to check the coolant level in the expansion tank. Also it is necessary to inform the pilots about the daily inspection of the coolant level in the aircraft manufacturers operators (pilots) manual or an adequate link to the ROTAX 912 Series Operators Manual.

It is recommended that adequate measures are taken for carrying out these inspections, e.g. a flap or panel on the cowling or a warning instrument in the cockpit for low coolant level.

3.1) Connecting size and position of connections

General note

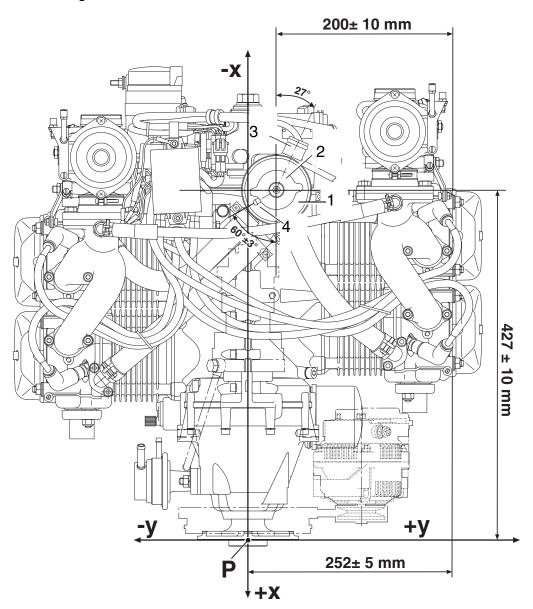

NOTICE

See Fig. 7 and Fig. 8.

The hoses must be fixed with appropriate clips to prevent loss, e.g. with spring type hose clips, such as those used for the coolant hoses between the water pump and cylinder. Clips of this type have performed well in the field..

Expansion tank (1) with radiator cap (2)			
to radiator (3):Outside dia. 25 mm (1")Slip-on lengthMax. 22 mm (7/8")			
to overflow bottle (4):	Outside dia. 8 mm (3/8")		
Slip-on length	Max. 15 mm (9/16")		
water inlet elbow (5)	Outside dia. 27 mm (1 1/16")		
Slip-on length	Max. 19 mm (3/4")		

NOTE: See therefore also SI-912-020 "Running modifications", latest issue.



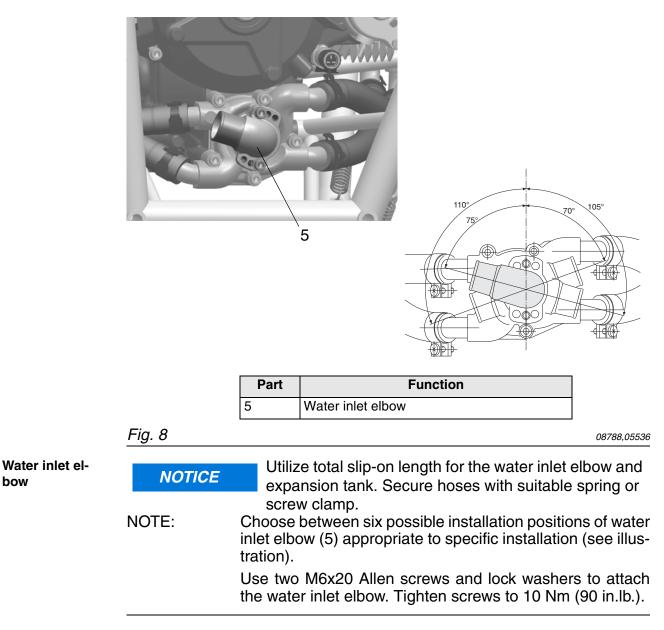
page 16 August 01/2012

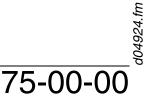
INSTALLATION MANUAL

Connecting dimension

Part	Function		
1	Expansion tank		
2	Radiator cap		
3	Connection to the radiator		
4	Connection to the overflow bottle		

Effectivity: 912 Series Edition 2/Rev. 0


75-00-00


page 17 August 01/2012

07136

INSTALLATION MANUAL

Connecting dimension

bow

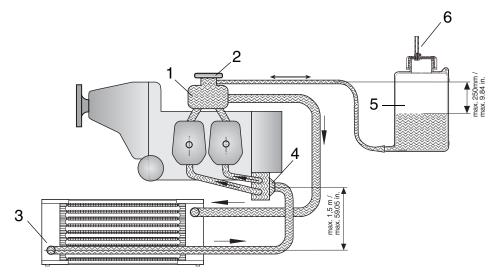
page 18 August 01/2012

INSTALLATION MANUAL

3.2) Requirements, permissible location and installation position of the radiator/expansion tank/overflow bottle

Radiator See Fig. 9.

Non-compliance can result in serious injuries or death! The radiator must be designed and installed such that the permissible operating temperatures are maintained and the max. values are not exceeded. This must also apply to "**Hot day conditions**".



If required, the radiator outlet (3) may be located max. 1.5 m (4.92 ft.) underneath the inlet elbow (4) of the water pump and no higher than the expansion tank (1). (see Fig. 9).

Expansion tank To ensure proper operation of the cooling system, the expansion tank (1) with pressure cap (2) in the main operating systems must be installed on the highest point of the cooling circuit.

NOTE: The expansion tank (1) is fitted on top of the engine.

Graphic Permissible position

Part	Function		
1	Expansion tank		
2	Radiator cap		
3	Radiator outlet		

75-00-00

d04924.fm

Effectivity: 912 Series Edition 2/Rev. 0

page 19 August 01/2012

INSTALLATION MANUAL

		Part	Function	
		4	Water inlet elbow	
		5	Overflow bottle	
		6	Purging	
	Fig. 9			08319
3.2.1)) Overflow bot	tle		
General note	See Fig. 10.			
	•		an overflow bottle in which surplus cool ne coolant circuit during the cooling dow	
	NOTICE	suct	ensure proper operation of the cooling sy ion height between overflow bottle and must not exceed 250 mm (10 in.).	•
	NOTE:		per operation ensure that the hose to th as short as possible.	ne overflow
Overflow bottle	- Transparent	material		
requirements	- Temperature	e resistan	t from -40 °C to +130 °C (-40 °F to 266	°F)
	- 100 % resist	ant to gly	col and suitable for all other antifreeze	agents
	- Volume app	rox. 0.5 l	(.13 USgal)	-
	- With vent (6)), diamete	er 2.5 mm (0.1 in.)	
	NOTE:		o SB-912-039 "Modification of the overf	low bottle",
	NOTE:		rflow bottle should be furnished with a la tion and content.	bel indicat-
Capacity	A WARNING	The will b	-compliance can result in serious injurie overflow bottle must never be empty, oth be sucked into the cooling circuit; this ca ative effect on the safe operation of the	nerwise air an have a
Installation	NOTICE	not k	overflow bottle and its supply and disch be installed close to the exhaust system, coolant can be flammable under certain	as emerg-

page 20 August 01/2012

75-00-00

INSTALLATION MANUAL

3.3) ROTAX overflow bottle (optional extra)

General note If the optional ROTAX overflow bottle is used, the purging system must be arranged as shown below.

NOTE: To vent coolant steam from the overflow bottle in case of overheating, the plastic cap can be retrofitted with a hose nipple and hose.

The purging line (5) must be routed so that coolant cannot come in contact with the hot exhaust system.

The vent line must be routed in a continuous decline or furnished with a drain bore at its lowest point to drain any condensation.

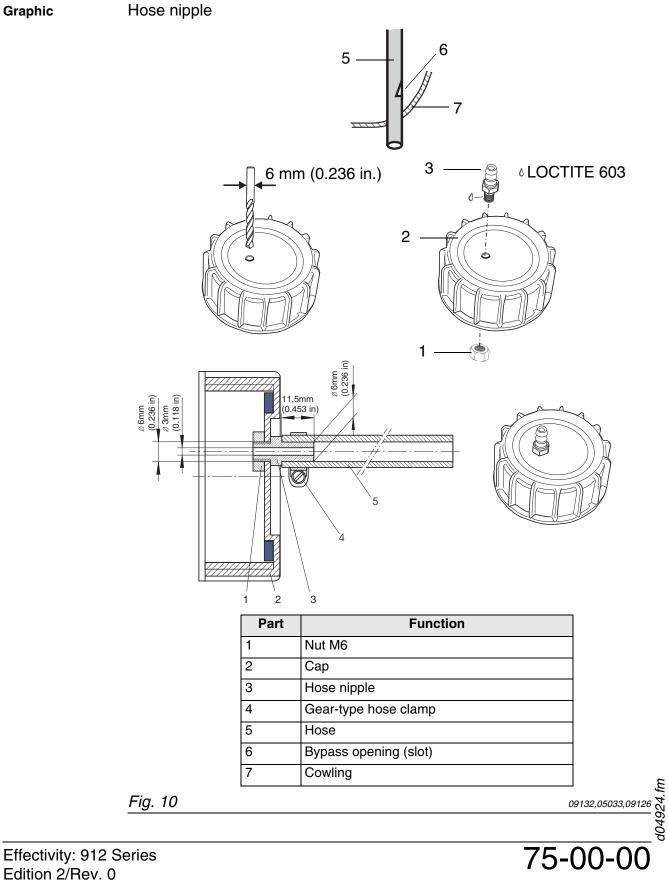
The line must be protected from any kind of ice formation from condensation, e.g. insulation protection or routing in a hose with hot air flow and furnishing the line with a bypass opening before the cowling outlet.

Work instruction See Fig. 10.

Procedure for attaching the hose nipple:

Step	Procedure
1	Unscrew the plug screw (2) from the overflow bottle.
2	Bore the existing purging hole from dia. 2.5 mm (0.10 in.) to dia. 6 mm (0.236 in.).
3	Apply LOCTITE 603 to the threads of the hose nipple (3).
4	Insert hose nipple (3) with the thread first into the vent hole.
5	Fix M6 hex. nut (1) onto the hose nipple (3). Tightening torque 5 Nm (3.69 lbft).
6	Screw the plug screw onto the overflow bottle.

Steps for attaching the hose:


Step	Procedure
1	Secure the hose with a gear-type hose clip (4) or spring type hose clip.
2	Secure and route the hose (5) without kinks.

d04924.fm

75-00-00 page 21 August 01/2012

INSTALLATION MANUAL

page 22 August 01/2012 INSTALLATION MANUAL

4) General notes on the cooling system

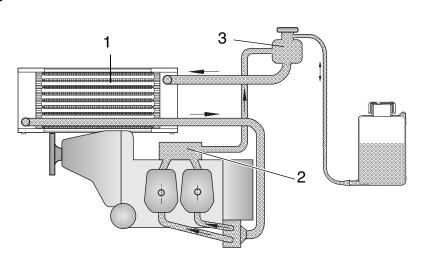
General note

Non-compliance can result in serious injuries or death! Certification according to the latest regulations, such as FAR or EASA, must be conducted by the aircraft or fuselage manufacturer.

Essential parts of the cooling system, such as radiator, etc., are available for this engine from BRP-Powertrain.

Radiator

See Fig. 11.


NOTICE

The size and type of radiator should be adequate to transfer thermal energy of approx. 25 kW (24 BTU/s) (for ROTAX 912 A/F/UL) or approx. 28 kW (26.5 BTU/s) (for ROTAX 912 S/ULS) at take-off power.

In an installation as depicted with the radiator (1) in a higher position than the standard supplied expansion tank, a water accumulator (2) has to be fitted instead of the expansion tank. Additionally a suitable expansion tank (3) has to be installed at the highest point of the cooling circuit.

NOTE: Experience has shown that with good airflow, a radiator with an area of 500 cm² (77.5 in²) is required for troublefree operation.

Graphic Radiator

Part	Function		
1	Radiator		
2	Water accumulator		
3	Expansion tank		

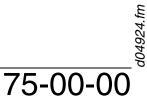
d04924.fm

Fig. 11

Effectivity: 912 Series Edition 2/Rev. 0

75-00-00

page 23 August 01/2012


08320

INSTALLATION MANUAL

Flow rate	The flow rate in the coolant circuit is approx. 60 l/min (15.85 USgal/min.) at 5800 rpm. At full throttle, an approximate value of around 0.75 m ³ /s (28.59 cu.ft/sec) can be assumed for the required cooling air flow.			
Flow resistance	The flow resistance of the coolant in the optional ROTAX radiator is cor- rectly adjusted for the cooling system. If using other radiators, check the flow rate and cooling capacity.			
Installation of the radiator	No provision has been made for attachment of the radiator(s) on the engine (rubber mounts are recommended).			
	NOTICE The radiator must be installed without distortion or stress and free of vibrations. If a GENUINE-ROTAX radiator is not being installed, ensure sufficient cooling capacity.			

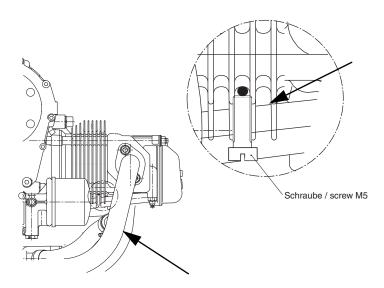
4.1) Coolant capacity

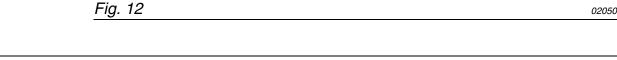
4 cylinder heads	. 560 cm ³ (0.02 cu.ft)
Coolant pump	. 100 cm³ (0.004 cu.ft)
Expansion tank	. 250 cm ³ (0.008 cu.ft)
Overflow bottle	. approx. 0.5 I (0.13 USgal)
2 m coolant hose (inner Ø18 mm)	. 500 cm³ (0.018 cu.ft)
Total coolant quantity for engine	. approx. 1.5 I (0.4 USgal)

page 24 August 01/2012 INSTALLATION MANUAL

4.2) Cooling air ducts (optional)

General note Cooling air ducts are not required if the oil and coolant temperatures are within the prescribed operating limits. Otherwise following measurement must be performed for the first installation of an aircraft type (not in serial-production).


Hot day condi-
tionSee Fig. 12.In contrast to the cylinder heads, the cylinders are ram air cooled. Plan the
cooling air ducts according to installation requirement.


WARNING Non-compliance can result in serious injuries or death! The cooling air ducts must be designed and built such that the operating temperatures are within the specified limits and maximum values are not exceeded. This must also apply to "**Hot day condition**".

Max. permitted cylinder wall temperature on hottest cylinder...200 °C (392 °F)

- NOTE: If this temperature is exceeded, appropriate measures (e.g. cooling air ducts, modifications to cowling, etc.) must be taken to bring it within limits again.
- NOTE: As long as the oil and coolant temperatures are within the operating limits, no cooling air ducts are necessary.

Graphic Cooling air duct

Effectivity: 912 Series Edition 2/Rev. 0

d04924.fm

75-00-

INSTALLATION MANUAL

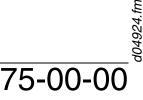
4.3) General notes on the cooling air ducts

Front installation **WARNING** Non-compliance can result in serious injuries or death! Certification according to the latest regulations, such as FAR or EASA, must be conducted by the aircraft or fuselage manufacturer.

For front installation in a closed fuselage, ducting of cooling air to the cylinders is recommended. This removes the need for costly horizontal partitioning (baffles).

NOTE: It also means that the engine remains completely on the warm side of the engine compartment and is very easy to access. In special cases a separate cold air supply to the air filters must be provided.

BRP-Powertrain has developed a non-certified cooling air duct especially for this application.


Selecting cool-
ing air ductsThe following recommendations should assist the aircraft or fuselage man-
ufacturer in selecting suitable cooling air ducts.

Cooling capacity	The cooling air ducts must be designed such that they transfer thermal energy of approx. 6 kW (5.7 BTU/s) at take-off performance.			
Cross section of air duct	Cross section of air duct under the airflow baffle min. 100 cm^2 (15.50 in ²).			
Material	Glass fibre reinforced plastic or heat and fire resistant ma- terial.			
	Formlocking on engine block and mounting above the cyl- inder and the crankcase.			
Attachment options	NOTE:	If formlocking attachment is not suffi- cient, additional attachment is possi- ble using two M8 threaded lugs on the top of the engine block.		

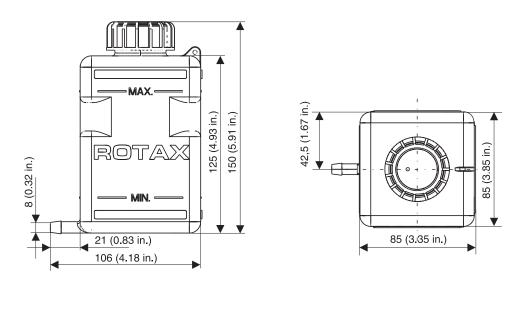
NOTICE

The stated maximum permissible loads (per screw) are valid only if using the minimum specified thread length, and must never be exceeded.

Thread height 18 mm (0.71 in.)).

page 26 August 01/2012

INSTALLATION MANUAL

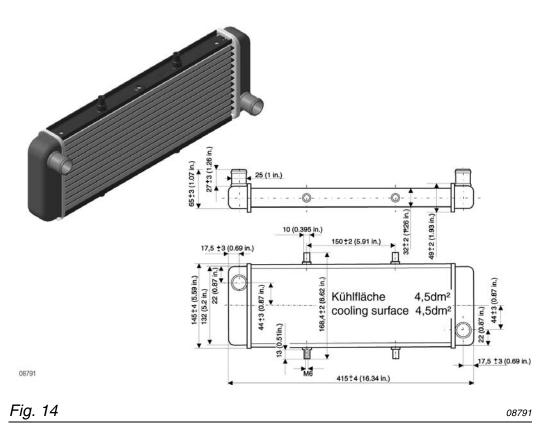

Permissible loads (per screw)

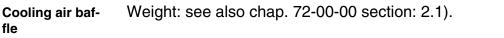
	x-axis	y-axis	z-axis	
Attachment points	-300 mm (-11.81 in.)	-30 mm (-1.18 in.)	-14 mm (-0.55 in.)	
	-300 mm (-11.81 in.)	-30 mm (-1.18 in.)	-14 mm (-0.55 in.)	
		Attachment poir	nts	
Max. permissible force (safe load) in (N) on x, y and z axis		2000 N (449.62 lb-fo	orce)	
Max. permissible bending moment (safe load) in (Nm) in x, y and z axis		50 Nm (36.89 lbft)		
Min. length of thread (mm)		15 mm (0.59 in.)		

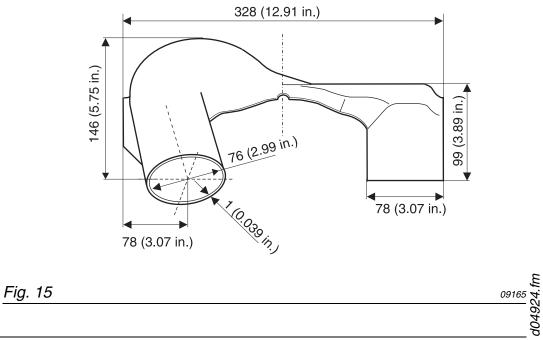
4.4) Data for optional components of cooling system


Overflow bottle

See Fig. 13 and Fig. 15


Effectivity: 912 Series Edition 2/Rev. 0




page 27 August 01/2012

INSTALLATION MANUAL

Radiator Weight: see also chap. 72-00-00 section: 2.1)

Effectivity: 912 Series Edition 2/Rev. 0

page 28 August 01/2012

75-00-00

INSTALLATION MANUAL

Chapter: 76-00-00 ENGINE MANAGEMENT

Introduction

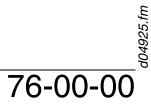
NOTICE

Obey the manufacturers instructions!

Table of contents

This section of the Installation Manual describes the engine management of the aircraft engines.

Subject	Page
Connections for instrumentation	Page 3
Sensor for cylinder head temperature	Page 3
Sensor for oil temperature	Page 4
Oil pressure sensor	Page 6
Mechanical rev counter (tach drive)	Page 8
Monitoring of the intake manifold pressure	Page 9
Air temperature in the airbox (optional)	Page 10


Effectivity: 912 Series Edition 2/Rev. 0

page 1 August 01/2012

INSTALLATION MANUAL

NOTES

Effectivity: 912 Series Edition 2/Rev. 0

page 2 August 01/2012

INSTALLATION MANUAL

1) Connections for instrumentation

General note

NOTICE

These connections to be established in accordance to certification and/or national specifications. The certification for connections and connection lines have to be conducted by the aircraft manufacturer to the latest requirements like FAR and EASA.

For notes regarding the electric rev counter consult the chap. Electric system.

1.1) Sensor for cylinder head temperature

General note	See Fig. 1. NOTE:	A direct reading of the coolant temperature is not provided for.	
Technical data	The temperature sensor (1) is directly fitted into cylinder head i.e. a direct temperature reading of the cylinder head material is taken.		
	Location	In the cylinder head of the cylinder 2 and 3	
	Connection	Spade terminal 6.3x0.8 DIN 46247	
	Grounding	Via engine block	

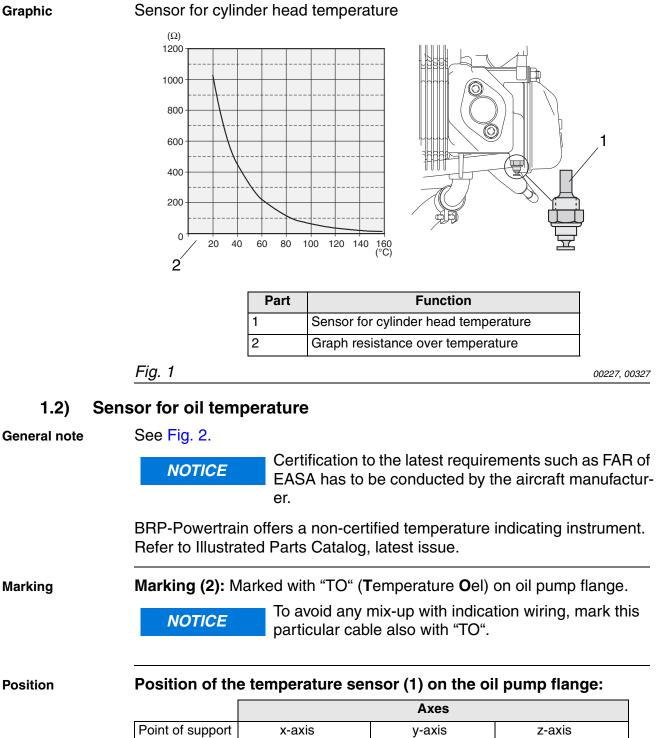
Position Position temperature sensor:

	Axes		
Cylinder head	x-axis	y-axis	z-axis
2	-200.0 mm (-7.88 in)	241.0 mm (9.49 in)	-157.0 mm (-6.18 in)
3	-387.0 mm (-15.24 in)	-241.0 mm (-9.49 in)	-157.0 mm (-6.18 in)

Graph resistance

Graph of sensor resistance over temperature:

See Fig. 1.


NOTICE The graph resistance over temperature has been determined, and is effective at the following conditions only: Ambient temperature: 20 °C (68 °F) Tolerance: Max ±10 %

d04925.fm

Effectivity: 912 Series Edition 2/Rev. 0

76-00-00

INSTALLATION MANUAL

,		•			
General note	See Fig. 2.				
	NOTICE			ements such as FAR (the aircraft manufactu	
		er.			
	BRP-Powertrain offers a non-certified temperature indicating instrument. Refer to Illustrated Parts Catalog, latest issue.			t.	
Marking	Marking (2): Marked with "TO" (Temperature Oel) on oil pump flange.				
	NOTICE To avoid any mix-up with indication wiring, particular cable also with "TO".			tion wiring, mark this	3
Position	Position of the temperature sensor (1) on the oil pump flange:				
	Axes				
	Point of support	x-axis	y-axis	z-axis	
		-115.0 mm (-4.53 in)	46.0 mm (1.81 in)	-150.0 mm (-5.92 in)	

Effectivity: 912 Series

Edition 2/Rev. 0

76-00-00

d04925.fm

INSTALLATION MANUAL

Technical data

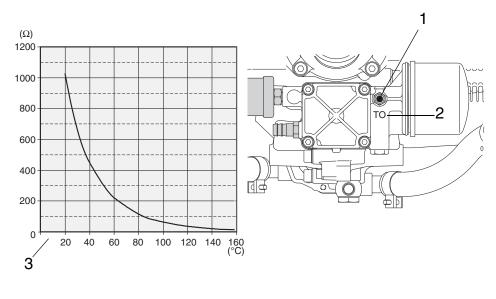
Anschlüsse für Öltemperaturgeber:

Location	Oil pump housing
Connection of sensor wiring	Spade terminal 6.3x0.8 DIN 46247
Grounding	Via engine block

Graph resistance

Graph of sensor resistance over temperature:

See Fig. 2.


NOTICE

The graph resistance over temperature has been determined, and is effective at the following conditions only: Ambient temperature: 20 °C (68 °F)

Tolerance: Max ±10 %

Graphic

Sensor for oil temperature

Part	Function	
1	Sensor for oil temperature	
2	TO marking	
3	Graph resistance over temperature	

00227, 00327

Effectivity: 912 Series Edition 2/Rev. 0

page 5 August 01/2012

INSTALLATION MANUAL

1.3) Oil pressure sensor

General note

See Fig. 3.

NOTICE

Certification to the latest requirements such as FAR of EASA has to be conducted by the aircraft manufacturer.

As the instruments need a separate power supply and a different design for the electrical oil pressure sensor, the resistance type instrument (type VDO), which was supplied by BRP-Powertrain up to now, is not suitable anymore. Suitable instruments are offered by various instrument manufacturers (e.g. ROAD or Aviasport).

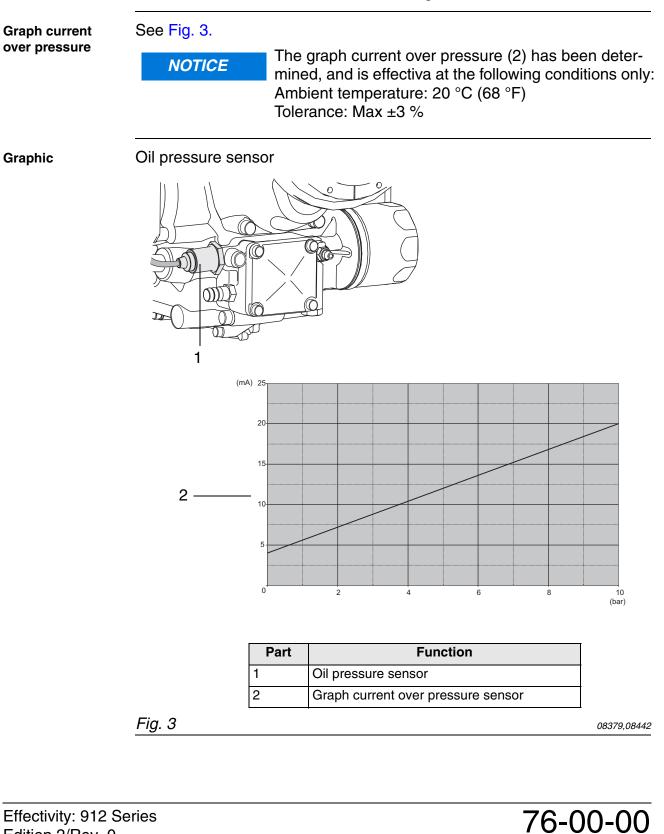
Technical data	Oil pressure sensor:		
	Location	Oil pump housing	
	Wire gauge	Standard wire 0.5 mm ² (AWG 20)	
	Cable length	3 m (118 in)	
	Operating temperature range	Min40 °C (-40 °F) Max. +125 °C (+257 °F)	
	Grounding	Via engine block/airframe ground	
	Tightening torque	15 Nm (98 in.lb) and LOCTITE 243	

Output signal In contrary to the oil pressure sensor offered up to now, which was providing the signal on the basis of a sensor resistance variation, the new oil pressure sensor (1) operates on basis of a current variation. This has to be taken into account for the selection of the appropriate cockpit instrument.

Wiring connection Wiring connection for instrument:

NOTE: The sensor cable can be modified in its length according to the installation situation, e.g. shortened or extended. For extension an appropriate, commercially available cable can be used. A resistance cable or similar is not necessary.

The sensor cable is approx. 3 m (118 in) long and has 3 leads. The **Black** lead is not to be connected and has no function.


- The **Red** lead from the sensor has to be connected to the positive bus via a fuse or circuit breaker.
- The White lead (output signal) has to be connected directly to the instrument.

page 6 August 01/2012

INSTALLATION MANUAL

See also the relevant instructions of the instrument supplier/aircraft manufacturer for correct connection and wiring.

Effectivity: 912 Series Edition 2/Rev. 0

d04925.fm

page 7 August 01/2012

INSTALLATION MANUAL

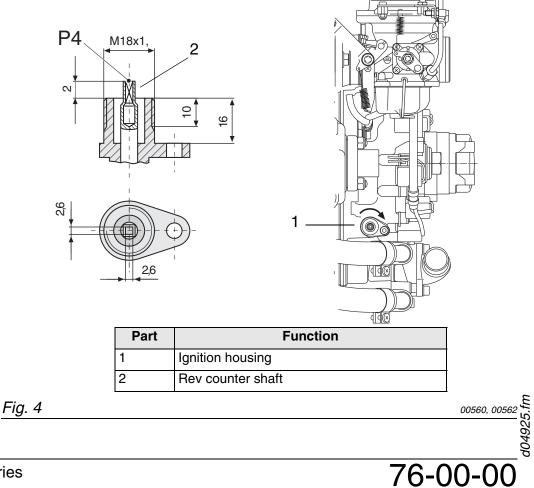
1.4) Mechanical rev counter (tach driver) (optional)

General note See Fig. 4.

Technical data

Mechanical rev counter:

Location	Ignition housing (1)
Direction of rotation of the rev counter shaft (2)	Right (Clockwise)
Reduction ratio	i= 4 i.e. 1/4 of engine speed
Installation dimensions	See figures above


Position

Position mechanical rev counter:

	Axes		
point of engage- ment P4	x-axis	y-axis	z-axis
	-465,0 mm (-18.31 in)	87,0 mm (3.43 in)	-160,0 mm (-6.3 in)

Graphic

Mechanical rev counter

Effectivity: 912 Series Edition 2/Rev. 0

page 8 August 01/2012

INSTALLATION MANUAL

2) Monitoring of the intake manifold pressure

General note	See Fig. 5. <i>NOTICE</i> Utilize the total slip-on length of by suitable screw clamps or c	-
Connection nip-	Connection nipple (1) to measure manifold pre	essure:
ple	Outside dia. 6 mm (1/4")	
	Slip-on length Max. 17 mm (11/16")	
	NOTICEProtective covering to be utilizengine installation only. If con reading is not employed it has style compensating tubes have tion by a screw M3.5x6 (2).NOTICEFlawless operation of the india 	nection for pressure to suitably plugged. New re plugged this connec- cating instrument needs
Graphic	Monitoring of the intake manifold pressure	
	Part Function	
	1 Connection nipple	
	2 Screw M3.5x6	
	Fig. 5	02051
_	<u> </u>	

Effectivity: 912 Series Edition 2/Rev. 0

page 9 August 01/2012

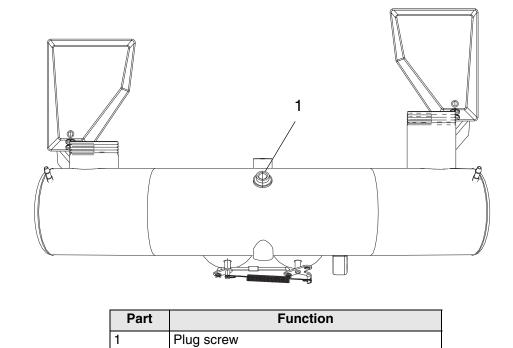
76-00-00

INSTALLATION MANUAL

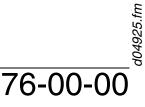
2.1) Air temperature in the airbox (optional)

General note See Fig. 6.

To take air temperature readings in the airbox a connection is provided. This connection is closed on the standard engine by a plug screw.


Plug screw

Connection:


Thread	M6
Thread length	approx. 9 mm (3/8")

Graphic

Airbox

Fig. 6		08647

page 10 August 01/2012

INSTALLATION MANUAL

Chapter: 78-00-00 EXHAUST SYSTEM

General note	See F

See Fig. 1.

NOTICE

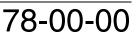
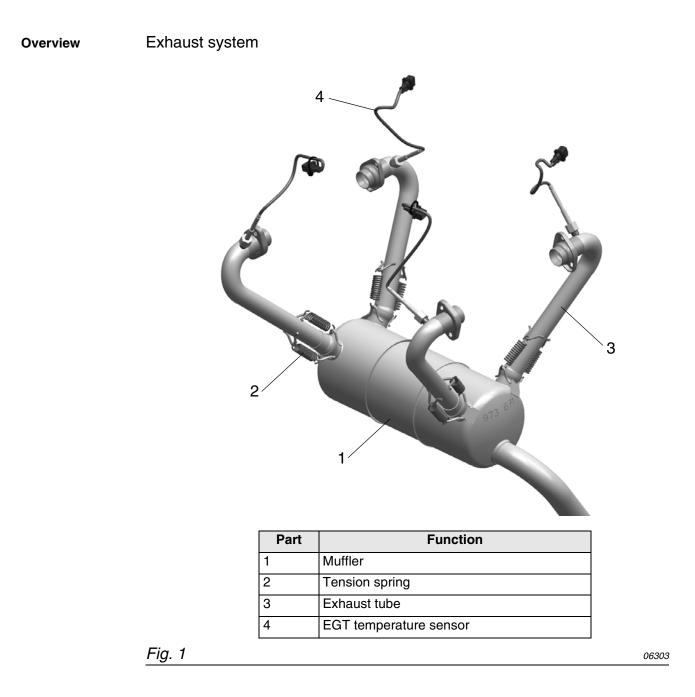

The exhaust system must be designed by the aircraft or fuselage manufacturer such that the permissible loads and bending moments on the points of attachment are not exceeded. The exhaust system may require additional support.

Table of contents

This section of the Installation Manual contains information on the exhaust system of the aircraft engines.

Subject	Page
General notes on the exhaust system	Page 3
Exhaust system requirements Technical data	Page 5 Page 5
Attaching of the exhaust system	Page 7
Operating limits Data for optional components of exhaust system	Page 9 Page 10


d04926.fm

Effectivity: 912 Series Edition 2/Rev. 0

page 1 August 01/2012

INSTALLATION MANUAL

page 2 August 01/2012 INSTALLATION MANUAL

1) General notes on the exhaust system

NOTICE

NOTICE

Certification An exhaust system especially designed for universal application has been developed by BRP-Powertrain. Certification according to the latest regulations, such as FAR or EASA, must be conducted by the aircraft or fuselage manufacturer.

NOTICE Vibrations due to improper installation and maintenance is the most common reason for damage of the exhaust system.

1.1) The following recommendations should help the aircraft or fuselage manufacturer to select a suitable exhaust system.

Damping elementThe ideal is a common transversal damping element serving all 4 cylinders, positioned under the engine.NOTE:Equal length of pipes from the cylinder to damping element is recommended for better tuning.Distribution of the exhaust system into 2 separate systems is not recommended. Individual mufflers on either side cause power loss and increased engine noise.

Ball joints The 4 ball joints must be used to avoid damage due to vibration.

Be aware that locked up stresses cause cracks!

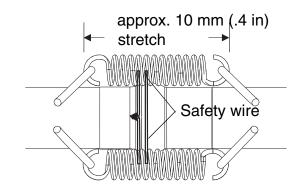
All ball joints have to greased regularly with heat resistant lubricant (e.g. LOCTITE ANTISEIZE) to avoid gripping and seizing of the joints.

Vibration

Appropriate to the installation a vibration damping support for the exhaust system has to be provided on the airframe manufacturers side.

Springs to be secured with safety wire to prevent FOD! See Fig. 2.

The sketch illustrates a possibility how to interconnect the exhaust springs to prevent the vibration of these springs and thus premature wear.


d04926.fm

78-00-0

INSTALLATION MANUAL

Graphic Exhaust spring.

It is also recommended to fill the springs with high heat silicone for additional damping of vibrations.

Fig. 2

08326

page 4 August 01/2012

INSTALLATION MANUAL

2) Exhaust system requirements

General note

Install heat shields in required areas (fuel, oil, coolant hoses or tubes) and/or on the electronic components. Because of the high temperatures, provide suitable protection against accidental contact.

NOTICE

Secure exhaust system by suitable means according to installation requirements (Lockwire, heat-resistant silicone to dampen the exhaust spring etc.).

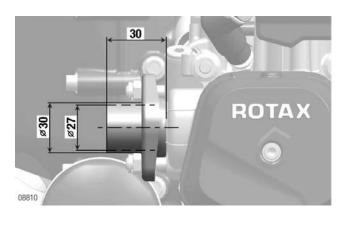
2.1) Technical data

See Fig. 3.

- Average radius of exhaust manifold: at least 40 mm (1.57 in.)
- Inner diameter of manifold pipe: at least 28 mm (1.10 in.)
- Volume of damping element: approx. 5 I (1.32 USgal)
- Back pressure at maximum power: max. 0.2 bar (2.9 psi) measured in each case approx. 100 mm (3.94 in.) beyond the end of the exhaust flange)

2.2) If a GENUINE-ROTAX exhaust is not used

General note


The four prefitted exhaust sockets with exhaust flange and lock nuts must be used.

Exhaust sockets material: X6CrNiTi 1810 (DIN 1.4541)

Tightening torque of M8 lock nuts: 15 Nm (133 in.lb).

NOTE: The exhaust flange does not touch the cylinder head.

Graphic

d04926.fm

Fig. 3

Effectivity: 912 Series Edition 2/Rev. 0

78-00-00

page 5 August 01/2012

08810

INSTALLATION MANUAL

NOTES

page 6 August 01/2012

Effectivity: 912 Series Edition 2/Rev. 0

INSTALLATION MANUAL

3) Attaching of the exhaust system

NOTE:

General note See Fig. 4.

The shape and configuration of the exhaust system is essentially determined by the free space available in the aircraft.

Two M8x23 studs are provided on each cylinder for attaching the exhaust system.

Location of the studs

All dimensions from zero reference point (P).

	Coordinates		
Location	x axis mm/in	y axis mm/in	z axis mm/in
Cylinder 1	-160 mm (-6.3 in)	-196 mm (-7.72 in)	-82 mm (-3.23 in)
	-160 mm (-6.3 in)	-212 mm (-8.35 in)	-113 mm (-4.45 in)
Cylinder 2	-192 mm (-7.56 in)	196 mm (7.72 in)	-82 mm (-3.23 in)
	-192 mm (-7.56 in)	212 mm (8.35 in)	-113 mm (-4.45 in)
Cylinder 3	-408 mm (-16.06 in)	-196 mm (-7.72 in)	-82 mm (-3.23 in)
	-408 mm (-16.06 in)	-212 mm (-8.35 in)	-113 mm (-4.45 in)
Cylinder 4	-438 mm (-17.24 in)	196 mm (7.72 in)	-82 mm (-3.23 in)
	-438 mm (-17.24 in)	212 mm (8.35 in)	-113 mm (-4.45 in)

	Attachment points
Max. permissible forces (safe load) in (N/lb- force) on x, y and z axis	1000 N/224.81
Max. permissible bending moment (safe load) in (Nm) on x, y and z axis	40 Nm/30 ft.lb

Effectivity: 912 Series Edition 2/Rev. 0

INSTALLATION MANUAL

NOTES

page 8 August 01/2012

INSTALLATION MANUAL

4) Operating limits

Safety notes See Fig. 4.

Non-compliance can result in serious injuries or death! The exhaust system must be designed and built such that the permissible operating temperatures are maintained and the max. exhaust gas temperatures are not exceeded.

NOTICE The performance specifications relate to ISA (15 °C) (59 °F)) conditions and are only achieved if the engine is equipped with an unmodified GENUINE-ROTAX exhaust system and airbox.

Readings of EGTThe exhaust gas temperatures (EGT) have to measured at the initial
engine installation in an aircraft and must be verified in the course of test
flights.Readings of EGT taken approx. 100 mm (3.93 in) from exhaust flange

Readings of EGT taken approx. 100 mm (3.93 in) from exhaust flange connections.

Graphic

Readings of EGT

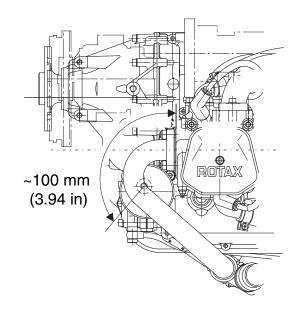


Fig. 4

d04926.fm

Effectivity: 912 Series Edition 2/Rev. 0

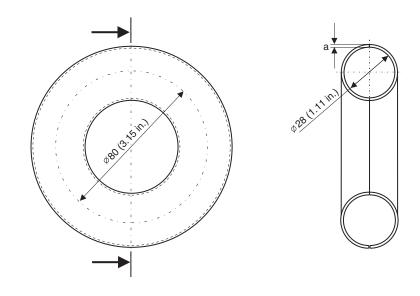
78-00-00

INSTALLATION MANUAL

 Values
 Exhaust gas temperature (EGT):

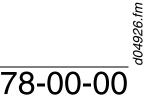
 (both ignition circuits active)

 Nominal exhaust gas temperature:
 800 °C (1470 °F)


 max. 850 °C (1560 °F)

 At take-off:
 max. 880 °C (1616 °F)

4.1) Data for optional components of exhaust system


Weight Graphic See also chap. 72-00-00.

Exhaust elbow

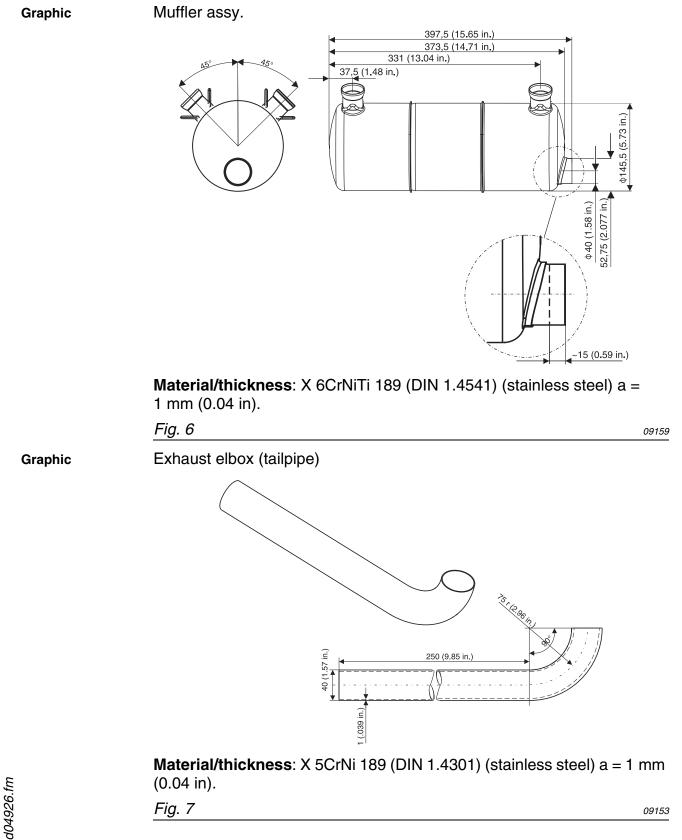

Material/thickness: X 15 CrNiSi20-12 (DIN 1.4828) (stainless steel) a = 1.5 mm (0.06 in).

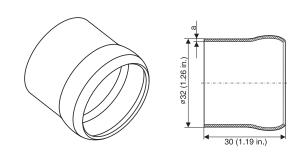
Fig. 5	09164
	••

page 10 August 01/2012

INSTALLATION MANUAL

09153

Effectivity: 912 Series Edition 2/Rev. 0

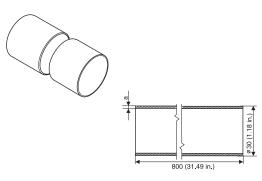

page 11 August 01/2012

78-00-00

INSTALLATION MANUAL

Graphic

Ball joint, male



Material/-thickness: X 15CrNiSi 20, 12 (DIN 1.4828) (stainless steel) a = 1 mm (0.04 in).

Fig. 8	09166

Graphic

Exhaust tube

Material/-stärke: X 15CrNiSi 20, 12 (DIN 1.4828) (stainless steel) a = 1 mm (0.04 in).

page 12 August 01/2012

INSTALLATION MANUAL

Kapitel: 79-00-00 LUBRICATION SYSTEM

General noteSee Fig. 1.The ROTAX 912 Series is fitted with a dry sump forced lubrication system
with a main oil pump with integrated pressure regulator and oil pressure
sensor.

Table of contentsThis section of the Installation Manual describes the system, operating
limits and requirements for the lubrication system.

Subject	Page
Lubrication system (oil system)	Page 3
System description	Page 3
Operating limits	Page 4
Checking the oil circuit	Page 5
Measuring of the vacuum	Page 7
Oil and purging line requirements	Page 9
Connecting sizes and position of connections	Page 11
Oil circuit	Page 11
Oil tank	Page 15
Permissible position and location of the oil tank	Page 18
General notes on the oil cooler	Page 21
Permissible position and location of the oil cooler	Page 21
Capacity	Page 22
Purging the lubrication system	Page 23
Checking the hydraulic valve tappet for correct purging	Page 26
Replacement of components	Page 27
Data for optional components of lubrication system	Page 29
Oil cooler	Page 29
Variants of connectors	Page 29

d04927.fm

Effectivity: 912 Series Edition 2/Rev. 0

page 1 August 01/2012

INSTALLATION MANUAL

NOTES

Effectivity: 912 Series Edition 2/Rev. 0

page 2 August 01/2012

INSTALLATION MANUAL

1) Lubrication system (oil system)

1.1) System description

Drive

See Fig. 1.

NOTE: The oil pump is driven by the camshaft.

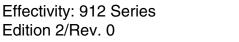
The main oil pump sucks the engine oil from oil tank (1) via the oil cooler (4) and forces it through the oil filter to the individual points of lubrication (also lubricates the propeller governor).

The surplus oil emerging from the points of lubrication accumulates on the bottom of the crankcase and is forced back to the oil tank by the crankcase blow-by gases.

Purging NOTE: The oil circuit is vented via nipple in the oil tank.

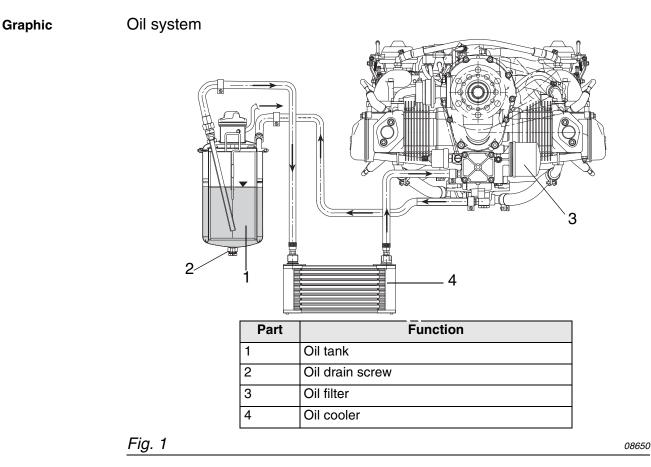
Connections

Non-compliance can result in serious injuries or death!


The oil cooler and its connections must be certified according to the latest regulations, such as FAR and EASA, by the aircraft or fuselage manufacturer.

Only the following connections need to be established to complete the lubrication system (oil system):

	Oil circuit, engine (main oil pump)
Connections from	Oil tank (outlet) to oil cooler
	Oil cooler to oil pump (inlet)
	Oil return to oil tank (inlet)
	Oil tank to purging line


NOTE: An oil tank is included with the standard engine version. No provision has been made for attachment of an oil cooler on the engine.

d04927.fm

INSTALLATION MANUAL

1.2) Operating limits

General note

Non-compliance can result in serious injuries or death! The lubrication system must be designed such that the permissible operating temperatures and maximum values are not exceeded.

Operation limits	Manual
Oil pressure	See OM 912 Series, section. 2.1
Oil temperature	See OM 912 Series, section. 2.1

Non-compliance can result in serious injuries or death! At operation below nominal temperature, formation of condensate in the oil system might negatively affect oil quality.

page 4 August 01/2012

INSTALLATION MANUAL

Low temperatures NOTE: When operating at low temperatures, installation of an oil thermostat, parallel to the oil cooler is highly recommended.

A warning Non-compliance can result in serious injuries or death!

If an oil thermostat is being used and the ambient temperature is low, there is a possibility that the oil may congeal briefly when in a steep descent. Pay extra attention to the oil pressure and oil temperature during these abnormal conditions. If necessary, revert to a cruising or climb situation.

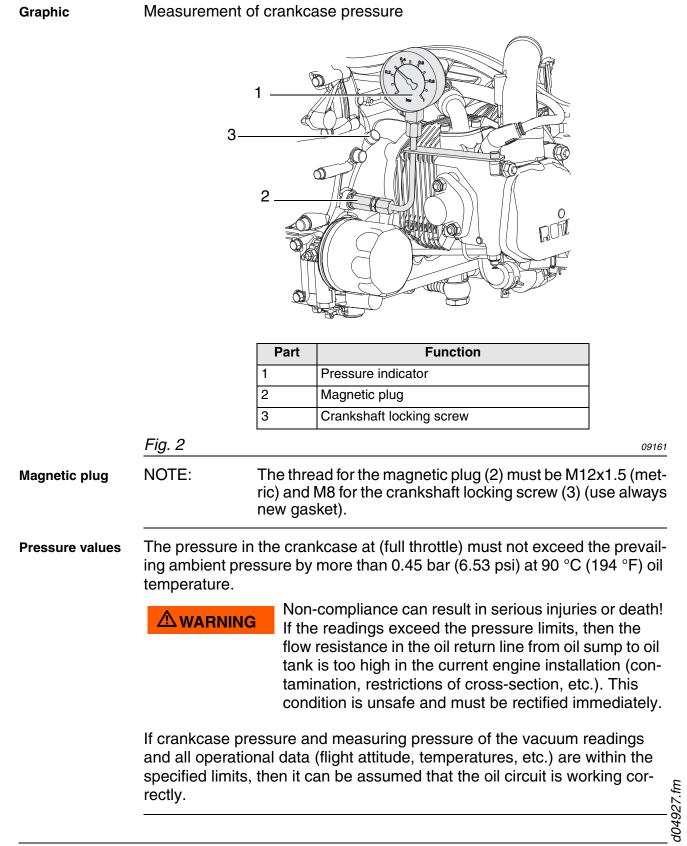
Advantages: safe oil pressure after cold start, prevention of fuel and water accumulation in the oil.

See SL-912-011 "Use of an oil thermostat", latest issue.

1.3) Checking the oil circuit

General note	NOTE: The required pressure gauges and connection parts are not included in the BRP-Powertrain delivery.		
Measurement of		il circuit for correct function, the following readings have to he engine running:	
crankcase pres- sure Measurement of the mean crankcase pressure at full throttle, this ensures correct oil return from crankcase (blow-by gas).		· · · · · ·	
	NOTICE	Do not remove the magnetic plug for prolonged peri- ods nor during flight operations.	

A pressure sensor (1) (pressure gauge with liquid damping) can be fitted instead of the magnetic plug (2) or the crankshaft locking screw (3). The magnetic plug (2) or the crankshaft locking screw (3) is removed and the pressure sensor (1) is fitted.



Effectivity: 912 Series Edition 2/Rev. 0

page 5 August 01/2012

INSTALLATION MANUAL

Effectivity: 912 Series Edition 2/Rev. 0

79-00-00 page 6

August 01/2012

INSTALLATION MANUAL

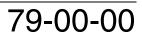
1.4) Measuring of the vacuum

Measuring of the See

vacuum

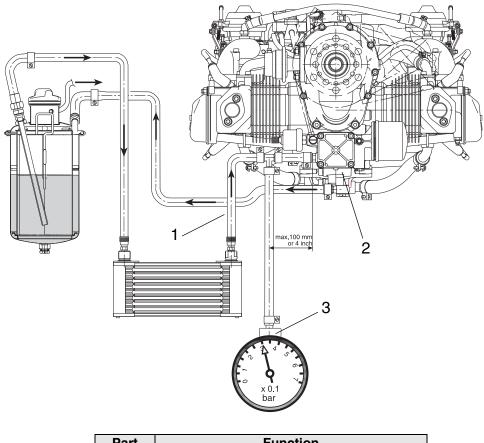
See Fig. 3.

Measure the vacuum in the suction oil line (1) - from the oil tank via the oil cooler to the engine oil pump - at a distance of max. 100 mm (4 in.) from the oil pump suction connector (2).


At full throttle, the indicated vacuum (3) upstream of the oil pump must not be less than 0.3 bar (4.35 psi), otherwise the oil hose (1) could collapse and block the oil supply to the engine.

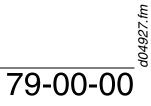
Non-compliance can result in serious injuries or death!

The vacuum (3) (pressure gauge with liquid damping) must be verified over the complete engine operation range. If the oil is cold, the flow resistance increases, which means that not enough oil will flow on the suction side.


Effectivity: 912 Series Edition 2/Rev. 0

page 7 August 01/2012

INSTALLATION MANUAL


Graphic Measuring of the vacuum

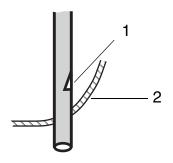
Part	Function	
1	Suction oil line	
2	Oil pump	
3	Pressure gauge	

Fig. 3

08324

INSTALLATION MANUAL

1.5)	Oil and purging li	I and purging line requirements		
Oil lines	Oil circuit, en	Oil circuit, engine (main oil pump)		
	- Temperatur	e durability:	min. 140 °C (284 °F)	
	 Pressure du 	ırability:	min. 10 bar (73 psi.)	
	- Bending rac	lius:	min. 70 mm* (2.76 in.)	
	* unless	* unless otherwise stated by the hose manufacturer		
	- Minimum in	ner dia. of oil lines	in relation to total length	
	up to 1	m (39.37 in.) inner	diameter minimum 11 mm (0.43 in.)	
	up to 2	up to 2 m (78.74 in.) inner diameter minimum 12 mm (0.47 in.)		
	up to 3	up to 3 m (118.11 in.) inner diameter minimum 13 mm (0.51 in.)		
	- Length of in	dividual oil line:	max. 3 m (9.84 ft.)	
Purging line	Purging line of oil tank			
	See Fig. 4.	See Fig. 4.		
	- Route the li	- Route the line without kinks and avoid sharp bends.		
	NOTE:		oduct of the combustion of fuel. Most of sipate from the combustion chamber with es.	
	A small amount will reach the crankcase and must be dis- posed of through the purging line.			
	 The purging line must be routed in a continuous decline or furnished with a drain bore at its lowest point to drain any condensate. 			
	condensatio	on, e.g. insulation p nishing the vent lin	cted from any kind of ice formation from rotection or routing in a hose with hot air e with a bypass opening (1) before the	


Effectivity: 912 Series Edition 2/Rev. 0

page 9 August 01/2012

INSTALLATION MANUAL

Graphic Purging line

Part	Function	
1	Bypass opening	
2	Outlet through the cowling	

Fig. 4

d04927.fm

page 10 August 01/2012

04874

INSTALLATION MANUAL

2) Connecting sizes and position of connections

NOTICE	Utilize the full slip-on length for all connections. Se- cure hoses with suitable screw clamps or crimp con-	
NOTE:	nections The oil line connections are optionally available as UNF threads (AN-8).	
	Infeads (AN-6).	

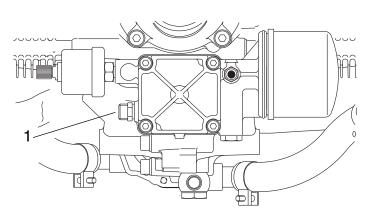
Oil circuit (engine) 2.1)

General note

General note

See Fig. 5.

Depending on engine configuration, the oil feed line connectors may vary:

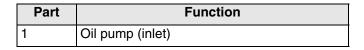

- 912 A/F/S: Thread M18 optional UNF-thread (AN-8)
- 912 UL/ULS: Inlet nipple optional M18 or UNF-thread (AN-8)

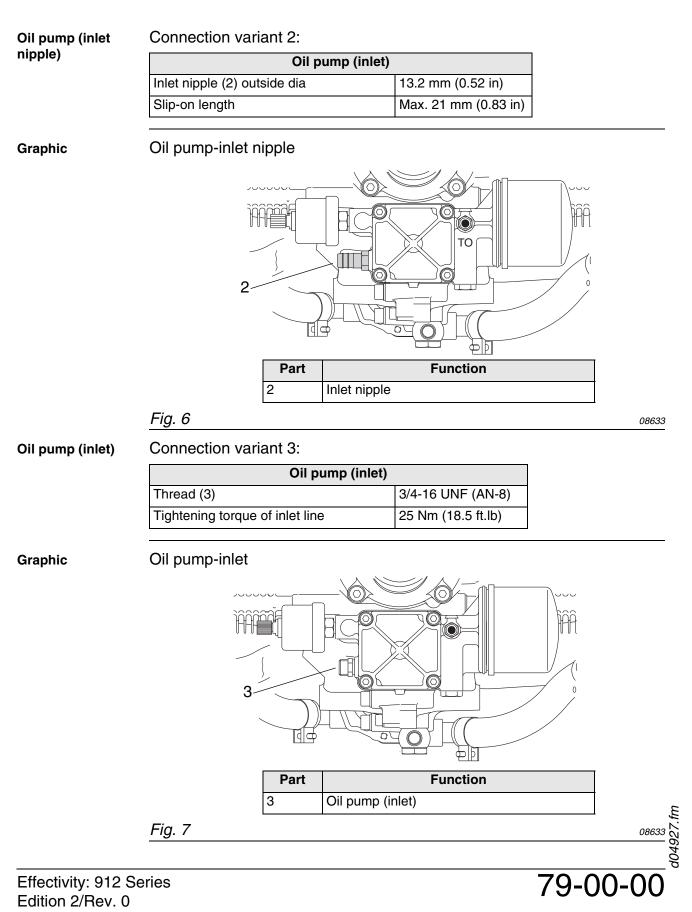
Oil pump (inlet)

Connection variant 1:

	Oil pump (inle	et)
Thread		M18x1,5x11
Tightening torque of inlet line		25 Nm (18.5 ft.lb)
NOTE:	Suitable for use	e of a swivel joint.

Oil pump-inlet Graphic




Fig. 5

d04927.fm

Effectivity: 912 Series Edition 2/Rev. 0

09123

INSTALLATION MANUAL

page 12 August 01/2012

INSTALLATION MANUAL

Oil return See Fig. 8

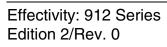
NOTICE

The engine design is for a conventional, non-aerobatic, tractor or pusher configuration with the oil return port in the optimum position. Assuming these points are taken into consideration, the engine will be properly lubricated in all flight profiles. Aircraft that are not conventional (e.g. airships, gyrocopters, dive brake equipped aircraft, etc.) that require engine load at steep inclination angles may have special lubrication requirements.

Select the appropriate connection for the oil return line according to the propeller configuration and oil system layout.

- Position 1 for tractor or position
- Position 2 for pusher configuration

Connector option

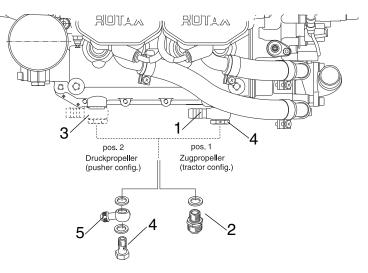

Connector option (1), (2) and (5). See Fig. 8. **Option 1**: Connection with slip-on connection.

Connection with slip-on connection (1)		
Hose nipple (3)	10 DIN 7642	
Outside dia.	13.5 mm (.53 in)	
Slip-on length	Max. 24 mm (max94 in)	
Tightening torque of banjo bolt (4) M16x1.5x28.	30 Nm (22 ft.lb)	

Option 2 and 3

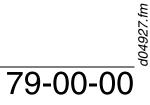
Option 2 and 3: Connection with adaptor (2) or (5).

Connection with ada	ptor (2)	
Thread	3/4-16 UNF (AN-8)	
Tightening torque of oil return line.	25 Nm (18.5 ft.lb)	
Tightening torque of screw connection (2) M16x1.5.	25 Nm (18.5 ft.lb)	
Connection with screw connection (5)		
Thread	3/4-16 UNF (AN-8)	
Tightening torquet of oil return line.	25 Nm (18.5 ft.lb)	
Tightening torque of banjo bolt (4) M16x1.5x28.	30 Nm (22 ft.lb)	



August 01/2012

INSTALLATION MANUAL

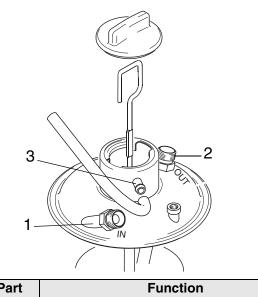

Graphic Connection

Part	Function
1	Slip-on connection
2	Adaptor 3/4-16 UNF (AN-8)
3	Hose nipple 10 DIN 7642
4	Banjo bolt M16x1.5x28
5	Screw connection

Fig. 8

08634

page 14 August 01/2012


INSTALLATION MANUAL

2.2) Oil tank

Connection	See Fig. 9 and	Fig. 10.
	NOTICE	Only use the oil tank provided in the scope of delivery, as its design has changed compared with older tanks.
	NOTE:	Optional extra: Nipple either straight or with 90° elbow. Metric M18x1.5 or UNF 3/4-16 thread
	NOTICE	Check what type of thread or connection there is on the supplied oil tank.

Connections for oil circuit (engine)

Graphic

Function
Oil feed line
Oil outlet
Purging nipple

08246

Effectivity: 912 Series Edition 2/Rev. 0

79-00-00

INSTALLATION MANUAL

UNF-thread

- Oil feed line and outlet have UNF thread (AN-8) (optional):

Screw connection (optional)	
Thread	3/4-16 UNF (AN-8)
Tightening torque of oil inlet and outlet	25 Nm (18.5 ft.lb)

 NOTICE
 The oil tank cover is also marked with the designations

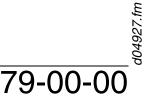
 IN- oil return line from crankcase
 OUT- outlet to oil cooler/oil pump.

Purging nipple

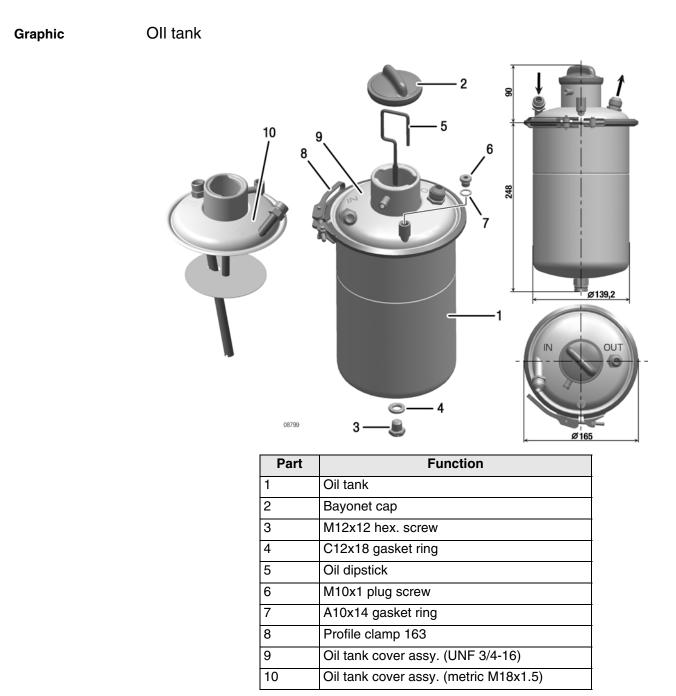
Purging nipple:

Purging nipple	
Outer dia.	8 mm (.31 in)
Slip-on length	Max. 15 mm (.59 in)

Bent socket 90° optional


part no. 956580

Bent socket 90° / M18x1.5	
Outer dia.	12 mm (0.47 in.)
Slip-on length	max. 24 mm (0.94 in.)
Tightening torque	25 Nm (18.44 ft.lb.)


Nipple optional

part no. 956610

Nipple with cap nut / straight	
Outer dia.	12 mm (0.47 in.)
Slip-on length	max. 24 mm (0.94 in.)
Tightening torque	25 Nm (18.44 ft.lb.)

INSTALLATION MANUAL

Fig. 10

NOTICE

If the lines are connected incorrectly, the engine will not be lubricated and the engine will be damaged very quickly!

Effectivity: 912 Series Edition 2/Rev. 0

page 17 August 01/2012

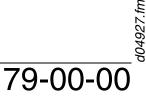
08799

INSTALLATION MANUAL

2.3) Permissible position and location of the oil tank

Position and Io- See Fig. 11.

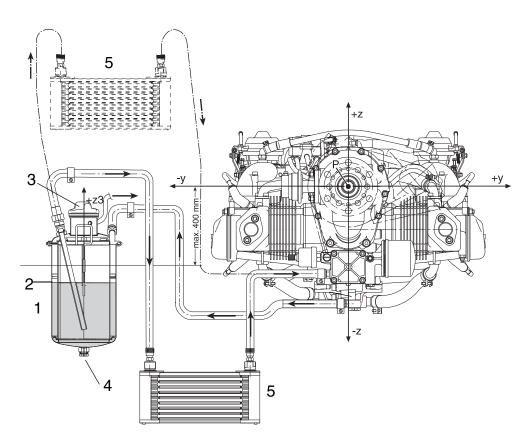
cation


The longitudinal axis z3 must be parallel to z-axis of the system of coordinates.

Permissible deviation from parallel: $\pm 10^\circ$

NOTE: This applies to both planes..

WARNING Non-compliance can result in serious injuries or death! If the oil tank is located higher, oil might trickle through bearing clearances into the crankcase during longer periods of engine stop. If fitted too low it might damage the oil circuit.


- The oil tank (1) must be positioned on its z-axis such that the normal oil level (2) is always between 0 and -400 mm (-15.75 in) on the y-axis.
- NOTE: If the profile clamp of the oil tank is 360 mm (14.17 in.) below the propeller shaft, then the oil in the oil tank is at the same level as the oil pump. This is the ideal position for the oil tank.
- Install the oil tank free of vibrations and not directly to the engine.
- Oil tank cover (3) and oil drain screw (4) must be easily accessible.

INSTALLATION MANUAL

Graphic

Position and location of the oil tank and oil cooler

Part	Function
1	Oil tank
2	Oil level
3	Oil tank cover
4	Oil drain screw
5	Oil cooler

Fig. 11

09162

d04927.fm

Effectivity: 912 Series Edition 2/Rev. 0

page 19 August 01/2012

INSTALLATION MANUAL

NOTES

Effectivity: 912 Series Edition 2/Rev. 0

page 20 August 01/2012

INSTALLATION MANUAL

3) General notes on oil cooler

General note An oil cooler is available for this engine from BRP-Powertrain (see Illustrated Parts Catalog).

> Non-compliance can result in serious injuries or death! Certification according to the latest regulations, such as FAR or EASA, must be conducted by the aircraft or fuselage manufacturer. The oil cooler must be designed to dissipate approx. NOTICE 10 kW (7.58 BTU/s) of thermal energy at take-off performance. The oil cooler must not restrict oil flow. Test system as NOTICE per chap. 79-00-00 section 1.3. Experience has shown that an oil cooler of at least NOTE: 160 cm² (25 in²) is required, provided that air flow is adequate.

3.1) Permissible position and location of the oil cooler

Installation

See Fig. 11.

WARNING Non-compliance can result in serious injuries or death! The oil cooler must be designed and installed such that the permissible operating temperatures are maintained and that these do no exceed or fall below the maximum values.

This must also apply to "hot day conditions". If need be, take appropriate measures such as changing the size of the oil cooler, partially covering the cooler, etc.

- The oil cooler should always be installed below the engine oil pump.

NOTICE The oil cooler must be installed with the radiator caps pointing upwards i.e. in positive direction on the z-axis.

Effectivity: 912 Series Edition 2/Rev. 0

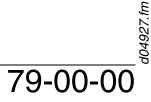
page 21 August 01/2012

INSTALLATION MANUAL

- If this position is not practical, also install the oil cooler with the radiator caps pointing upwards, i.e. in positive direction on the z-axis.

NOTICE

This will prevent unintentional draining of the oil cooler during longer periods of engine stop.


3.2) Capacity

Oil tank

- Capacity without oil cooler and connecting lines min. 3 I (0.8 USgal) depending on the respective installation.

Volume of oil tank		
Up to the MINmark	2.5 I (0.66 US gal)	
Up to the MAXmark	3.0 I (0.8 US gal)	

- Perform oil level check and add oil if necessary.

page 22 August 01/2012

INSTALLATION MANUAL

3.3) Purging the lubrication system

Risk of burns and scalds. Hot engine parts. Always allow engine to cool down to ambient temperature before starting work..

Introduction Ensure that oil lines are connected correctly and secured and that the oil cooler (if fitted) is in the suction line (1) between the oil tank and the oil pump. Verify that the oil tank is filled up to the maximum level (to the top of the flat portion of the dipstick). Additional oil (up to 0.5 litre (0.13 USgal)) may be added to the tank for the purpose of this procedure.

Instruction The following work procedures must be carried out:

NOTICE

Incorrectly connected oil lines to the oil tank or to the engine will result in severe engine damage.

Step	Procedure	
1	Disconnect oil return line (2) from the oil tank.	
2	Place the free end (3) of the return line into a suitable container (4) below the engine.	
3	Plug open connection (5) on oil tank with suitable air tight cap.	
4	Remove the spark plug connectors.	
5	For easier rotation of engine remove one spark plug from each cylinder.	
	NOTICE Prevent any foreign objects entering through spark plug hole.	
6	Using a compressed air line, pressurise the oil tank through its purging connection (6) (on the neck of the tank). Adjust the compressor outlet regulator so that the air line pressure is between 0.4 bar (5.8 psi) and 1 bar (14.5 psi). Do not exceed 1 bar (14.5 psi).	

Non-compliance can result in serious injuries or death!

Do not remove the oil tank cover before ensuring that air pressure has been completely released from the tank.

d04927.fm

79-00-00

page 23 August 01/2012

INSTALLATION MANUAL

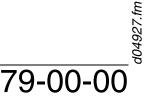
NOTE: The oil tank cover is not pressure-tight, some air can escape.

The pressure in the oil tank has to be maintained during the following steps.

NOTICE The oil tank may empty and as a result introduce air into the oil system. Pay attention to the oil level and fill tank as required.

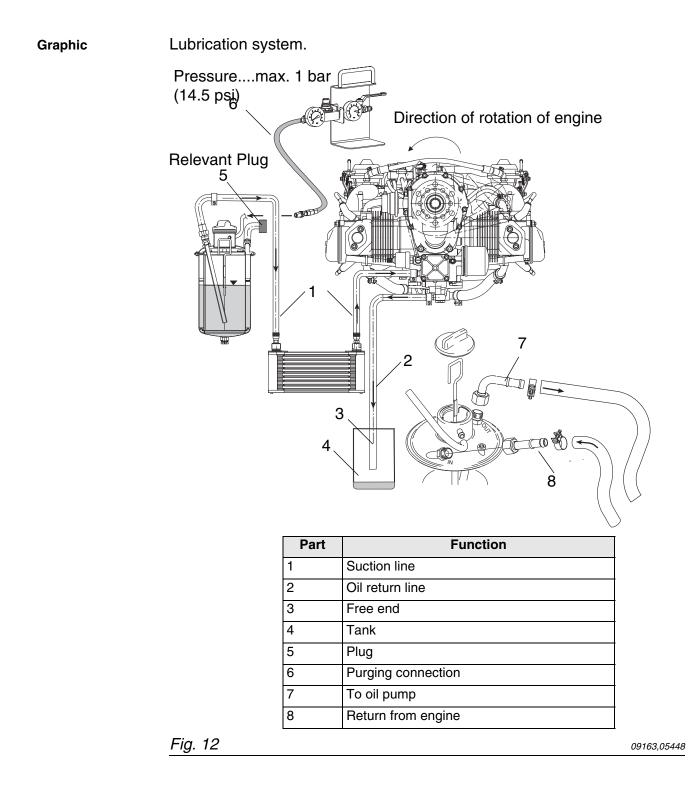
NOTICE

Do not use the starter for this purpose. Fit propeller and use it to turn the engine.


7	Turn the engine by hand in direction of normal rotation until the first pres- sure indication appears on the oil pressure gauge. Normally this will take approx. 20 turns. Depending on installation it may take up to 60 turns.	
8	Stop the pressurisation.	
9	Open the cap (5) for the oil return line on the oil tank and reconnect the en- gine oil return line (2) to the tank.	
	NOTICE Ensure that the suction oil line (1) and oil return lines (2) are connected to the proper fittings on the oil tank. If the oil lines from the engine to the oil tank are incorrectly connected, severe engine damage may result.	
10	Refit the spark plug. Restore aircraft to original operating condition.	
11	Residual oil may have accumulated in the crankcase. Return it to the oil tank by following the oil level check procedure in the relevant Operators Manual.	
12	Fill the oil in the tank up to the full mark on the dipstick.	

NOTICE

Carefully check all lubrication system connections, lines and clamps for leaks and tightness.


ENVIRONMENT NOTE

Protect their environment. Observe to bury no oil! Dispose of oil in an environmentally friendly manner.

page 24 August 01/2012

INSTALLATION MANUAL

d04927.fm

Effectivity: 912 Series Edition 2/Rev. 0

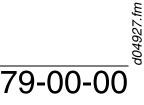
79-00-00 page 25 August 01/2012

INSTALLATION MANUAL

3.4) Checking the hydraulic valve tappet for correct purging

General note

See Fig. 13.


Risk of burns and scalds. Hot engine parts. Always allow engine to cool down to ambient temperature before starting work.

The following check procedure describes the correct method for purging the hydraulic valve tappet.

Instruction

The following work procedures must be carried out:

Step	Procedure	
1	Remove valve cover on cylinder 1.	
2	Turn crankshaft in direction of normal rotation so that cylinder 1 is set to top dead centre ignition (both valves are closed).	
3	Push down the rocker arm on the push-rod side with a force (F) of around 70 N (15.74 lb-force) for about 3 seconds. You can using a belt tester, for example, to check approximately how much force is being exerted. Repeat on other rocker arms.	
4	Check the size of the gap between the rocker arm and the valve contact surfaces. Max. permitted gap 0.5 mm (0.02 in.).	
	NOTICE If it is possible to push the hydraulic valve tappet further than this limit, an additional engine run for about 5 min. at 3500 rpm, after refitting the valve covers, is required. In order to vent the hydraulic valve tappet, this process can be repeated another 2 times.	
5	Repeat on all other cylinders.	

page 26 August 01/2012

INSTALLATION MANUAL

Graphic

Hydraulic valve tappet

Fig. 13	08800
---------	-------

3.5) Replacement of components

General note If an hydraulic valve tappet still malfunctions after several engine runs, it must be replaced and the valve spring support must be inspected for wear.

Work procedures All work has to be performed in accordance with the relevant Maintenance Manual.

Effectivity: 912 Series Edition 2/Rev. 0

page 27 August 01/2012

INSTALLATION MANUAL

NOTES

Effectivity: 912 Series Edition 2/Rev. 0

page 28 August 01/2012

INSTALLATION MANUAL

4) Data for optional components of lubrication system

4.1) Oil cooler

General note	See Fig. 14.	
Weight	See also chap. 72-00-00 sectiont: weight.	

4.1.1) Variants of connectors

General note

NOTICE

Counter hold screw sockets when securing the oil lines.

UNF screw socket

UNF screw socket	
Thread	3/4-16 UNF (AN-8)
Tightening torque	22 Nm (16.23 ft.lb) and LOCTITE 648
Tightening torque of oil feed line and outlet	25 Nm (18.5 ft.lb)

Nipple 13.2/9.2

Nipple	
Outer dia.	13.2 mm (0.52 in)
Slip-on length	max. 21 mm (0.83 in)
Tightening torque	22 Nm (16.23 ft.lb) and LOCTITE 243

Metric screw socket

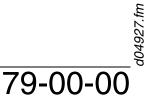
Counter hold screw sockets when securing the oil lines.

Metric screw socket	
Thread	M18x1,5
Tightening torque	22 Nm (16.23 ft.lb) and LOCTITE 648
Tightening torque of oil feed line and outlet, bent socket or hose nipple	25 Nm (18.5 ft.lb)

page 29 August 01/2012

INSTALLATION MANUAL

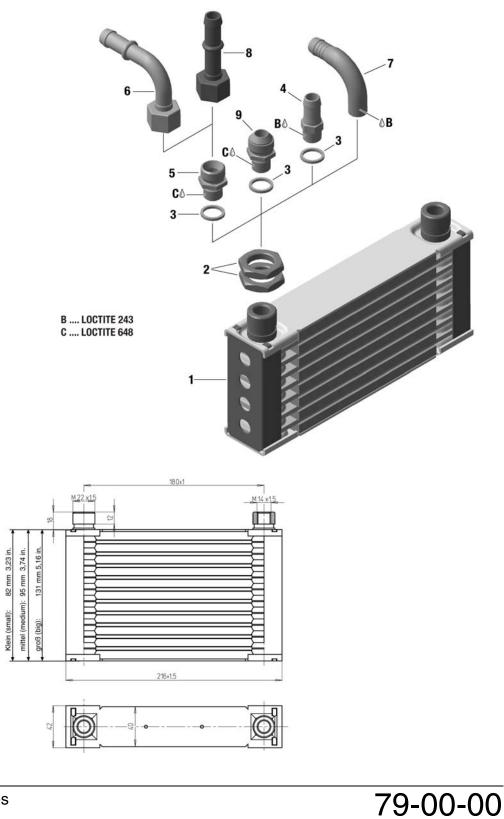
Angular tube


Angular tube (90°)	
Outer dia.	13.2 mm (0.52 in)
Slip-on length	max. 21 mm (0.83 in)
Tightening torque	22 Nm (16.23 ft.lb) and LOCTITE 648

Bent socket

Bent socket 90°	
Outer dia.	12 mm (0.47 in)
Slip-on length	max. 24 mm (max. 0.94 in)
Tightening torque	25 Nm (18.5 ft.lb)

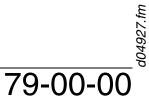
Hose nipple with cap nut (straight nipple)


Hose nipple with union nut		
Outer dia.	12 mm (0.47 in)	
Slip-on length	max. 24 mm (max. 0.94 in)	
Tightening torque	25 Nm (18.5 ft.lb)	

page 30 August 01/2012

INSTALLATION MANUAL

Effectivity: 912 Series Edition 2/Rev. 0


page 31 August 01/2012

INSTALLATION MANUAL

Part	Function	
1	Oil cooler	
2	M22x1.5 hex. nut	
3	Gasket ring 14.2/18/2	
4	Nipple 13.2/9.5	
5	M18x1.5/M14x1.5 screw socket	
6	Bent socket assy.	
7	M14x1.5 angular tube	
8	Hose nipple with cap nut	
9	3/4-16 UNF/M14x1.5 screw socket	

Fi<u>g</u>. 14

08900

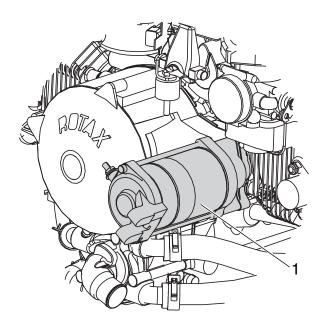
Effectivity: 912 Series Edition 2/Rev. 0

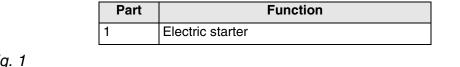
page 32 August 01/2012

INSTALLATION MANUAL

Chapter: 80-00-00 ELECTRIC STARTER

General note	WARNING	risk of short circuit and ele All installation work on the	ctric starter assy., there is a ectrical fault. e electric starter assy. must switched off and the battery nnected.
Table of contents	This section of the Installation Manual contains the electric starter of the aircraft engine.		
		Subject	Page
	Electric starter		Page 3
	Power supply v electric starter	vires from starter relay to the	Page 3
	Starter relay as	ssy. technical data	Page 4


Effectivity: 912 Series Edition 2/Rev. 0



page 1 August 01/2012

INSTALLATION MANUAL

Electric starter Overview

d04928.fm

05900

INSTALLATION MANUAL

1) Electric starter

General note

NOTICE

Suitable for short starting periods only.

NOTICE

Max. 80 °C (176 °F) ambient temperature by the electric starter housing. Activate starter for max. 10 sec. (without interruption), followed by a cooling period of 2 minutes!

1.1) Power supply wires from starter relay to the electric starter

 $\label{eq:cross section} \mbox{ At least 16 mm}^2 \ (2.48 \ in^2).$

Output 0.7 kW (0.9 kW optional)

Connection See Fig. 2.

Plus terminal (2): M6 screw connection (tightening torque 4 Nm (36 in.lb)) suitable for cable terminals according to DIN 46225 (MIL-T7928; PIDG or equivalent).

Graphic

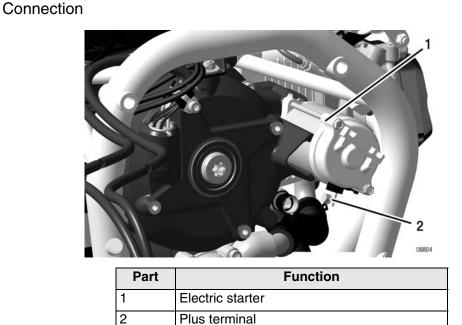


Fig. 2

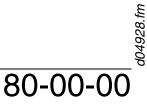
00545

Grounding

Grounding cable via engine block.

d04928.fm

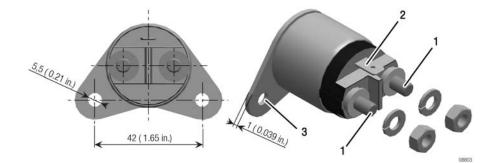
Effectivity: 912 Series Edition 2/Rev. 0


80-00-00

page 3 August 01/2012

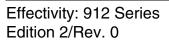
INSTALLATION MANUAL

1.2) Starter relay assy. technical data


General note	See Fig. 3.		
	NOTICE Activation of starter relay limited to short duration. The duty cycle over an interval of 4 minutes is 25%.		
Nominal voltage	- 12 V/DC		
Control voltage	- Min. 6 V - Max. 18 V		
Switching current	 Max. 75 A 8 (permanent) Max. 300 A/1 sec. (short duration) 		
Ambient tempera- ture range	Ambient temperature range: - Min40 °C (-40 °F) - Max. +100 °C (212 °F)		
Weight	See chap. 72-00-00 section: Technical data.		
Connections	 Main current connections (1): M6 screw connection (tightening torque 4 Nm (36 in.lb.)) suitable for cable terminals according to DIN 46225 (MIL-T-7928; PIDG or equivalent). Control wiring (2): 6.3x0.8 plug connector suitable for Faston connector (female) according to DIN 46247 (MIL-T-7928; (PIDG) or equivalent). 		
Grounding	NOTICE The starter relay must be isolated from the aircraft ground.		

page 4 August 01/2012

INSTALLATION MANUAL



Part	Function
1	Main current connections
2	Control wiring
3	Ground

d04928.fm

page 5 August 01/2012

INSTALLATION MANUAL

NOTES

Effectivity: 912 Series Edition 2/Rev. 0

page 6 August 01/2012

Motornummer / Engine serial no.

Flugzeugtype / Type of aircraft

Flugzeugkennzeichen / Aircraft registration no.

ROTAX® Vertriebspartner

ROTAX® authorized distributor

WWW.FLYROTAX.COM

® and TM are trademarks of BRP-Powertrain GmbH & Co KG. © 2011 BRP-Powertrain GmbH & Co KG. All rights reserved